Search results for: linear predictive coding (LPC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4829

Search results for: linear predictive coding (LPC)

2309 Analysis of Delamination in Drilling of Composite Materials

Authors: Navid Zarif Karimi, Hossein Heidary, Giangiacomo Minak, Mehdi Ahmadi

Abstract:

In this paper analytical model based on the mechanics of oblique cutting, linear elastic fracture mechanics (LEFM) and bending plate theory has been presented to determine the critical feed rate causing delamination in drilling of composite materials. Most of the models in this area used LEFM and bending plate theory; hence, they can only determine the critical thrust force which is an incorporable parameter. In this model by adding cutting oblique mechanics to previous models, critical feed rate has been determined. Also instead of simplification in loading condition, actual thrust force induced by chisel edge and cutting lips on composite plate is modeled.

Keywords: composite material, delamination, drilling, thrust force

Procedia PDF Downloads 522
2308 Effectiveness of Metacognitive Skills in Comprehension Instruction for Elementary Students

Authors: Mahdi Taheri Asl

Abstract:

Using a variety of strategies to read text plays an important role to make students strategic independent, strategic, and metacognitive readers. Given the importance of comprehension instruction (CI), it is essential to support the fostering comprehension skills at elementary age students, particularly those who struggle with or dislike reading. One of the main components of CI is activating metacognitive skills, which double function of elementary students. Thus, it’s important to evaluate the implemented comprehension interventions to inform reading specialist and teachers. There has been limited review research in the area of CI, so the conduction review research is required. The purpose of this review is to examine the effectiveness of metacognitive reading strategies in a regular classroom environment with elementary aged students. We develop five inclusion criteria to identify researches relevant to our research. First, the article had to be published in a peer-reviewed journal from 2000 to 2023. second, the study had to include participants in elementary school it could include of special education students. Third, the intervention needed to be involved with metacognitive strategies. Fourth, the articles had to use experimental or quasi experimental design. The last one needed to include measurement of reading performance in pre and post intervention. We used computer data-based site like Eric, PsychoINFO, and google scholar to search for articles that met these criteria. we used the following search terms: comprehension instruction, meta cognitive strategies, and elementary school. The next step was to do an ancestral search that get in reviewing the relevant studies cited in the articles that were found in the database search. We identified 30studies in the initial searches. After coding agreement, we synthesized 13 with respect to the participant, setting, research design, dependent variables, measures, the intervention used by instructors, and general outcomes. The finding show metacognitive strategies were effective to empower student’s comprehension skills. It also showed that linguistic instruction will be effective if got mixed with metacognitive strategies. The research provides a useful view into reading intervention. Despite the positive effect of metacognitive instruction on students’ comprehension skills, it is not widely used in classroom.

Keywords: comprehension instruction, metacogntion, metacognitive skills, reading intervention

Procedia PDF Downloads 75
2307 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 302
2306 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling

Authors: Dong Wu, Michael Grenn

Abstract:

Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.

Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction

Procedia PDF Downloads 84
2305 Enhancement of MIMO H₂S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array

Authors: Muhammad M. A. S. Mahmoud

Abstract:

Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H₂S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. The new design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.

Keywords: gas separator, gas sweetening, intelligent controller, fuzzy control

Procedia PDF Downloads 476
2304 Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

Authors: Abdulatif Abdusalam, Mohamed Shaban

Abstract:

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We, then, discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Keywords: Bragg grating, non uniform fiber, non linear pulse

Procedia PDF Downloads 322
2303 Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection

Authors: Ali Akbar Kazemi Asl, Mansour Rahsepar

Abstract:

Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity.

Keywords: biosensor, electrochemical, glucose, mesoporous carbon, non-enzymatic

Procedia PDF Downloads 195
2302 Encapsulation of Volatile Citronella Essential oil by Coacervation: Efficiency and Release Kinetic Study

Authors: Rafeqah Raslan, Mastura AbdManaf, Junaidah Jai, Istikamah Subuki, Ana Najwa Mustapa

Abstract:

The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using gum Arabic and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph was developed with R2 equal to 0.9523 for the accurate determination of encapsulation efficiency and release study. The release kinetic was analyzed based on Fick’s law of diffusion for polymeric system and linear graph of log fraction release over log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The capsules morphology analysis supported the release kinetic mechanisms of produced capsules for both coacervation process.

Keywords: simple coacervation, complex coacervation, encapsulation efficiency, release kinetic study

Procedia PDF Downloads 319
2301 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 451
2300 Modeling of Traffic Turning Movement

Authors: Michael Tilahun Mulugeta

Abstract:

Pedestrians are the most vulnerable road users as they are more exposed to the risk of collusion. Pedestrian safety at road intersections still remains the most vital and yet unsolved issue in Addis Ababa, Ethiopia. One of the critical points in pedestrian safety is the occurrence of conflict between turning vehicle and pedestrians at un-signalized intersection. However, a better understanding of the factors that affect the likelihood of the conflicts would help provide direction for countermeasures aimed at reducing the number of crashes. This paper has sorted to explore a model to describe the relation between traffic conflicts and influencing factors using Multiple Linear regression methodology. In this research the main focus is to study the interaction of turning (left & right) vehicle with pedestrian at unsignalized intersections. The specific objectives also to determine factors that affect the number of potential conflicts and develop a model of potential conflict.

Keywords: potential, regression analysis, pedestrian, conflicts

Procedia PDF Downloads 69
2299 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters

Procedia PDF Downloads 115
2298 Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation

Authors: Pavlo Selyshchev, Tetiana Didenko

Abstract:

Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones.

Keywords: climb and glide of dislocations, fractures of transient plasticity, irradiation, non-linear feed-back, point defects

Procedia PDF Downloads 205
2297 Causality Channels between Corruption and Democracy: A Threshold Non-Linear Analysis

Authors: Khalid Sekkat, Fredj Fhima, Ridha Nouira

Abstract:

This paper focuses on three main limitations of the literature regarding the impact of corruption on democracy. These limitations relate to the distinction between causality and correlation, the components of democracy underlying the impact and the shape of the relationship between corruption and democracy. The study uses recent developments in panel data causality econometrics, breaks democracy down into different components, and examines the types of the relationship. The results show that Control of Corruption leads to a higher quality of democracy. Regarding the estimated coefficients of the components of democracy, they are significant at the 1% level, and their signs and levels are in accordance with expectations except in a few cases. Overall, the results add to the literature in three respects: i). corruption has a causal effect on democracy and, hence, single equation estimation may pose a problem, ii) the assumption of the linearity of the relationships between control of corruption and democracy is also possibly problematic, and iii) the channels of transmission of the effects of corruption on democracy can be diverse. Disentangling them is useful from a policy perspective.

Keywords: corruption, governance, causality, threshold models

Procedia PDF Downloads 56
2296 Numerical Investigation of the Boundary Conditions at Liquid-Liquid Interfaces in the Presence of Surfactants

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Liquid-liquid interfacial flow is an important process that has applications across many spheres. One such applications are residual oil mobilization, where crude oil and low salinity water are emulsified due to lowered interfacial tension under the condition of low shear rates. The amphiphilic components (asphaltenes and resins) in crude oil are considered to assemble at the interface between the two immiscible liquids. To justify emulsification, drag and snap-off suppression as the main effects of low salinity water, mobilization of residual oil is visualized as thickening and slip of the wetting phase at the brine/crude oil interface which results in the squeezing and drag of the non-wetting phase to the pressure sinks. Meanwhile, defining the boundary conditions for such a system can be very challenging since the interfacial dynamics do not only depend on interfacial tension but also the flow rate. Hence, understanding the flow boundary condition at the brine/crude oil interface is an important step towards defining the influence of low salinity water composition on residual oil mobilization. This work presents a numerical evaluation of three slip boundary conditions that may apply at liquid-liquid interfaces. A mathematical model was developed to describe the evolution of a viscoelastic interfacial thin liquid film. The base model is developed by the asymptotic expansion of the full Navier-Stokes equations for fluid motion due to gradients of surface tension. This model was upscaled to describe the dynamics of the film surface deformation. Subsequently, Jeffrey’s model was integrated into the formulations to account for viscoelastic stress within a long wave approximation of the Navier-Stokes equations. To study the fluid response to a prescribed disturbance, a linear stability analysis (LSA) was performed. The dispersion relation and the corresponding characteristic equation for the growth rate were obtained. Three slip (slip, 1; locking, -1; and no-slip, 0) boundary conditions were examined using the resulted characteristic equation. Also, the dynamics of the evolved interfacial thin liquid film were numerically evaluated by considering the influence of the boundary conditions. The linear stability analysis shows that the boundary conditions of such systems are greatly impacted by the presence of amphiphilic molecules when three different values of interfacial tension were tested. The results for slip and locking conditions are consistent with the fundamental solution representation of the diffusion equation where there is film decay. The interfacial films at both boundary conditions respond to exposure time in a similar manner with increasing growth rate which resulted in the formation of more droplets with time. Contrarily, no-slip boundary condition yielded an unbounded growth and it is not affected by interfacial tension.

Keywords: boundary conditions, liquid-liquid interfaces, low salinity water, residual oil mobilization

Procedia PDF Downloads 133
2295 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy

Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny

Abstract:

Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.

Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy

Procedia PDF Downloads 90
2294 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents

Authors: Neha Singh, Shristi Singh

Abstract:

Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.

Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning

Procedia PDF Downloads 118
2293 Identification of Rare Mutations in Genes Involved in Monogenic Forms of Obesity and Diabetes in Obese Guadeloupean Children through Next-Generation Sequencing

Authors: Lydia Foucan, Laurent Larifla, Emmanuelle Durand, Christine Rambhojan, Veronique Dhennin, Jean-Marc Lacorte, Philippe Froguel, Amelie Bonnefond

Abstract:

In the population of Guadeloupe Island (472,124 inhabitants and 80% of subjects of African descent), overweight and obesity were estimated at 23% and 9% respectively among children. High prevalence of diabetes has been reported (~10%) in the adult population. Nevertheless, no study has investigated the contribution of gene mutations to childhood obesity in this population. We aimed to investigate rare genetic mutations in genes involved in monogenic obesity or diabetes in obese Afro-Caribbean children from Guadeloupe Island using next-generation sequencing. The present investigation included unrelated obese children, from a previous study on overweight conducted in Guadeloupe Island in 2013. We sequenced coding regions of 59 genes involved in monogenic obesity or diabetes. A total of 25 obese schoolchildren (with Z-score of body mass index [BMI]: 2.0 to 2.8) were screened for rare mutations (non-synonymous, splice-site, or insertion/deletion) in 59 genes. Mean age of the study population was 12.4 ± 1.1 years. Seventeen children (68%) had insulin-resistance (HOMA-IR > 3.16). A family history of obesity (mother or father) was observed in eight children and three of the accompanying parent presented with type 2 diabetes. None of the children had gonadotrophic abnormality or mental retardation. We detected five rare heterozygous mutations, in four genes involved in monogenic obesity, in five different obese children: MC4R p.Ile301Thr and SIM1 p.Val326Thrfs*43 mutations which were pathogenic; SIM1 p.Ser343Pro and SH2B1 p.Pro90His mutations which were likely pathogenic; and NTRK2 p.Leu140Phe that was of uncertain significance. In parallel, we identified seven carriers of mutation in ABCC8 or KCNJ11 (involved in monogenic diabetes), which were of uncertain significance (KCNJ11 p.Val13Met, KCNJ11 p.Val151Met, ABCC8 p.Lys1521Asn and ABCC8 p.Ala625Val). Rare pathogenic or likely pathogenic mutations, linked to severe obesity were detected in more than 15% of this Afro-Caribbean population at high risk of obesity and type 2 diabetes.

Keywords: childhood obesity, MC4R, monogenic obesity, SIM1

Procedia PDF Downloads 197
2292 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 137
2291 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi

Abstract:

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data

Procedia PDF Downloads 407
2290 Identification of New Familial Breast Cancer Susceptibility Genes: Are We There Yet?

Authors: Ian Campbell, Gillian Mitchell, Paul James, Na Li, Ella Thompson

Abstract:

The genetic cause of the majority of multiple-case breast cancer families remains unresolved. Next generation sequencing has emerged as an efficient strategy for identifying predisposing mutations in individuals with inherited cancer. We are conducting whole exome sequence analysis of germ line DNA from multiple affected relatives from breast cancer families, with the aim of identifying rare protein truncating and non-synonymous variants that are likely to include novel cancer predisposing mutations. Data from more than 200 exomes show that on average each individual carries 30-50 protein truncating mutations and 300-400 rare non-synonymous variants. Heterogeneity among our exome data strongly suggest that numerous moderate penetrance genes remain to be discovered, with each gene individually accounting for only a small fraction of families (~0.5%). This scenario marks validation of candidate breast cancer predisposing genes in large case-control studies as the rate-limiting step in resolving the missing heritability of breast cancer. The aim of this study is to screen genes that are recurrently mutated among our exome data in a larger cohort of cases and controls to assess the prevalence of inactivating mutations that may be associated with breast cancer risk. We are using the Agilent HaloPlex Target Enrichment System to screen the coding regions of 168 genes in 1,000 BRCA1/2 mutation-negative familial breast cancer cases and 1,000 cancer-naive controls. To date, our interim analysis has identified 21 genes which carry an excess of truncating mutations in multiple breast cancer families versus controls. Established breast cancer susceptibility gene PALB2 is the most frequently mutated gene (13/998 cases versus 0/1009 controls), but other interesting candidates include NPSR1, GSN, POLD2, and TOX3. These and other genes are being validated in a second cohort of 1,000 cases and controls. Our experience demonstrates that beyond PALB2, the prevalence of mutations in the remaining breast cancer predisposition genes is likely to be very low making definitive validation exceptionally challenging.

Keywords: predisposition, familial, exome sequencing, breast cancer

Procedia PDF Downloads 497
2289 Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid

Authors: Zahra Majd, Mohsen Kalantar

Abstract:

Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model.

Keywords: microgrid, energy management system, voltage fluctuations, modified Jacobian matrix

Procedia PDF Downloads 96
2288 Influence of Orientation in Complex Building Architecture in Various Climatic Regions in Winter

Authors: M. Alwetaishi, Giulia Sonetti

Abstract:

It is architecturally accepted that building form and design is considered as one of the most important aspects in affecting indoor temperature. The total area of building plan might be identical, but the design will have a major influence on the total area of external walls. This will have a clear impact on the amount of heat exchange with outdoor. Moreover, it will affect the position and area of glazing system. This has not received enough consideration in research by the specialists, since most of the publications are highlighting the impact of building envelope in terms of physical heat transfer in buildings. This research will investigate the impact of orientation of various building forms in various climatic regions. It will be concluded that orientation and glazing to wall ratio were recognized to be the most effective variables despite the shape of the building. However, linear ad radial forms were found more appropriate shapes almost across the continent.

Keywords: architectural building design, building form, building design in different climate, indoor air temperature

Procedia PDF Downloads 408
2287 Nonlinear Modeling of the PEMFC Based on NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear modeling, NNARX

Procedia PDF Downloads 384
2286 In Vivo Investigation of microRNA Expression and Function at the Mammalian Synapse by AGO-APP

Authors: Surbhi Surbhi, Andrea Erni, Gunter Meister, Harold Cremer, Christophe Beclin

Abstract:

MicroRNAs (miRNAs) are short 20-23 nucleotide long non-coding RNAs; there are 2605 miRNA in humans and 1936 miRNA in mouse in total (miRBase). The nervous system expresses the most abundant miRNA and most diverse. MiRNAs play a role in many steps during neurogenesis, like cell proliferation, differentiation, neural patterning, axon pathfinding, etc. Moreover, in vitro studies suggested a role in the regulation of local translation at the synapse, thus controlling neuronal plasticity. However, due to the specific structure of miRNA molecules, an in-vivo confirmation of the general role of miRNAs in the control of neuronal plasticity is still pending. For example, their small size and their high level of sequence homology make difficult the analysis of their cellular and sub-cellular localization in-vivo by in-situ hybridization. Moreover, it was found that only 40% of the expressed miRNA molecules in a cell are included in RNA-Induced Silencing Complexes (RISC) and, therefore, involved in inhibitory interactions while the rest is silent. Definitively, the development of new tools is needed to have a better understanding of the cellular function of miRNAs, in particular their role in neuronal plasticity. Here we describe a new technique called in-vivo AGO-APP designed to investigate miRNA expression and function in-vivo. This technique is based on the expression of a small peptide derived from the human RISC-complex protein TNRC6B, called T6B, which binds all known Argonaute (Ago) proteins with high affinity allowing the efficient immunoprecipitation of AGO-bound miRNAs. We have generated two transgenic mouse lines conditionally expressing T6B either ubiquitously in the cell or targeted at the synapse. A comparison of the repertoire of miRNAs immuno-precipitated from mature neurons of both mouse lines will provide us with a list of miRNAs showing a specific activity at the synapse. The physiological role of these miRNAs will be subsequently addressed through gain and loss of function experiments.

Keywords: RNA-induced silencing complexes, TNRC6B, miRNA, argonaute, synapse, neuronal plasticity, neurogenesis

Procedia PDF Downloads 139
2285 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 395
2284 Mode-Locked Fiber Laser Using Charcoal and Graphene Saturable Absorbers to Generate 20-GHz and 50-GHz Pulse Trains, Respectively

Authors: Ashiq Rahman, Sunil Thapa, Shunyao Fan, Niloy K. Dutta

Abstract:

A 20-GHz and a 50-GHz pulse train are generated using a fiber ring laser setup that incorporates Rational Harmonic Mode Locking. Two separate experiments were carried out using charcoal nanoparticles and graphene nanoparticles acting as saturable absorbers to reduce the pulse width generated from rational harmonic mode-locking (RHML). Autocorrelator trace shows that the pulse width is reduced from 5.6-ps to 3.2-ps using charcoal at 20-GHz, and to 2.7-ps using graphene at 50-GHz repetition rates, which agrees with the simulation findings. Numerical simulations have been carried out to study the effect of varying the linear and nonlinear absorbance parameters of both absorbers on output pulse widths. Experiments closely agree with the simulations.

Keywords: fiber optics, fiber lasers, mode locking, saturable absorbers

Procedia PDF Downloads 102
2283 Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters

Authors: Aihong Zhao, Priya Sastry, Mark L Field, Mohamad Bashir, Arvind Singh, David Richens

Abstract:

Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma.

Keywords: intramural haematoma, acute aortic syndrome, finite element analysis,

Procedia PDF Downloads 433
2282 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 23
2281 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia

Authors: Dawit Abay Tesfamariam

Abstract:

Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.

Keywords: renewable energy, power, storage, wind, energy plan

Procedia PDF Downloads 83
2280 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads

Authors: Aaron Aboshio

Abstract:

Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.

Keywords: bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction

Procedia PDF Downloads 305