Search results for: experimental alloy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7875

Search results for: experimental alloy

5355 Derivation of Fragility Functions of Marine Drilling Risers Under Ocean Environment

Authors: Pranjal Srivastava, Piyali Sengupta

Abstract:

The performance of marine drilling risers is crucial in the offshore oil and gas industry to ensure safe drilling operation with minimum downtime. Experimental investigations on marine drilling risers are limited in the literature owing to the expensive and exhaustive test setup required to replicate the realistic riser model and ocean environment in the laboratory. Therefore, this study presents an analytical model of marine drilling riser for determining its fragility under ocean environmental loading. In this study, the marine drilling riser is idealized as a continuous beam having a concentric circular cross-section. Hydrodynamic loading acting on the marine drilling riser is determined by Morison’s equations. By considering the equilibrium of forces on the marine drilling riser for the connected and normal drilling conditions, the governing partial differential equations in terms of independent variables z (depth) and t (time) are derived. Subsequently, the Runge Kutta method and Finite Difference Method are employed for solving the partial differential equations arising from the analytical model. The proposed analytical approach is successfully validated with respect to the experimental results from the literature. From the dynamic analysis results of the proposed analytical approach, the critical design parameters peak displacements, upper and lower flex joint rotations and von Mises stresses of marine drilling risers are determined. An extensive parametric study is conducted to explore the effects of top tension, drilling depth, ocean current speed and platform drift on the critical design parameters of the marine drilling riser. Thereafter, incremental dynamic analysis is performed to derive the fragility functions of shallow water and deep-water marine drilling risers under ocean environmental loading. The proposed methodology can also be adopted for downtime estimation of marine drilling risers incorporating the ranges of uncertainties associated with the ocean environment, especially at deep and ultra-deepwater.

Keywords: drilling riser, marine, analytical model, fragility

Procedia PDF Downloads 147
5354 Reconfigurable Multiband Meandered Line Antenna

Authors: D. Rama Krishna, Y. Pandu Rangaiah

Abstract:

This paper presents the design of multiband reconfigurable antenna using PIN diodes for four iterations and all the four iterations have been validated by measuring return loss and pattern measurements of developed prototype antenna. The simulated and experimental data have demonstrated the concepts of a multiband reconfigurable antenna by switching OFF and ON of PIN diodes for multiple band frequencies. The technique has taken the advantage of a different number of radiating lengths with the use of PIN diode switches, each configuration resonating at multiband frequencies.

Keywords: frequency reconfigurable, meandered line multiband antenna, PIN diode, multiband frequencies

Procedia PDF Downloads 387
5353 Role of Onion Extract for Neuro-Protection in Experimental Stroke Model

Authors: Richa Shri, Varinder Singh, Kundan Singh Bora, Abhishek Bhanot, Rahul Kumar, Amit Kumar, Ravinder Kaur

Abstract:

The term ‘neuroprotection’ means preserving/salvaging function and structure of neurons. Neuroprotection is an adjunctive treatment option for neurodegenerative disorders. Oxidative stress is considered a major culprit in neurodegenerative disorders; hence, management strategies include use of antioxidants. Our search for a neuroprotective agent began with Allium cepa L. or onions, (family Amaryllidaceae) - a potent antioxidant. We have investigated the neuroprotective potential of onions in experimental models of ischemic stroke, diabetic neuropathy, neuropathic pain, and dementia. In pre and post-ischemic stroke model, the methanol extract of outer scales of onion bulbs (MEOS) prevented memory loss and motor in-coordination; reduced oxidative stress and cerebral infarct size. This also prevented and ameliorated diabetic neuropathy in mice. The MEOS was fractionated to yield a flavonoid rich fraction (FRF) that successfully reversed ischemia-reperfusion induced neuronal damage, thereby demonstrating that the flavonoids are responsible for the activity. The FRF effectively ameliorated chronic constriction induced neuropathic pain in rats. The FRF was subjected to bioactivity-guided fractionated. It was seen that FRF is more effective as compared to the isolated components probably due to synergism among the constituents (i.e., quercetin and quercetin glucosides) in the FRF. The outer scales of onion bulbs have great potential for prevention as well as for treatment of neuronal disorders. Red onions, with higher amounts of flavonoids as compared to the white onions, produced more significant neuroprotection. Thus, the standardized FRF from the waste material of a commonly used vegetable, especially the red variety, may be developed as a valuable neuroprotective agent.

Keywords: Allium cepa, antioxidant activity, flavonoid rich fraction, neuroprotection

Procedia PDF Downloads 152
5352 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir

Authors: Fengxia Li, Lufeng Zhang, Haibo Wang

Abstract:

The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.

Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties

Procedia PDF Downloads 75
5351 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment

Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.

Keywords: climate change, arabian sea, thermodynamics, machine learning

Procedia PDF Downloads 7
5350 Micro-Milling Process Development of Advanced Materials

Authors: M. A. Hafiz, P. T. Matevenga

Abstract:

Micro-level machining of metals is a developing field which has shown to be a prospective approach to produce features on the parts in the range of a few to a few hundred microns with acceptable machining quality. It is known that the mechanics (i.e. the material removal mechanism) of micro-machining and conventional machining have significant differences due to the scaling effects associated with tool-geometry, tool material and work piece material characteristics. Shape memory alloys (SMAs) are those metal alloys which display two exceptional properties, pseudoelasticity and the shape memory effect (SME). Nickel-titanium (NiTi) alloys are one of those unique metal alloys. NiTi alloys are known to be difficult-to-cut materials specifically by using conventional machining techniques due to their explicit properties. Their high ductility, high amount of strain hardening, and unusual stress–strain behaviour are the main properties accountable for their poor machinability in terms of tool wear and work piece quality. The motivation of this research work was to address the challenges and issues of micro-machining combining with those of machining of NiTi alloy which can affect the desired performance level of machining outputs. To explore the significance of range of cutting conditions on surface roughness and tool wear, machining tests were conducted on NiTi. Influence of different cutting conditions and cutting tools on surface and sub-surface deformation in work piece was investigated. Design of experiments strategy (L9 Array) was applied to determine the key process variables. The dominant cutting parameters were determined by analysis of variance. These findings showed that feed rate was the dominant factor on surface roughness whereas depth of cut found to be dominant factor as far as tool wear was concerned. The lowest surface roughness was achieved at the feed rate of equal to the cutting edge radius where as the lowest flank wear was observed at lowest depth of cut. Repeated machining trials have yet to be carried out in order to observe the tool life, sub-surface deformation and strain induced hardening which are also expecting to be amongst the critical issues in micro machining of NiTi. The machining performance using different cutting fluids and strategies have yet to be studied.

Keywords: nickel titanium, micro-machining, surface roughness, machinability

Procedia PDF Downloads 340
5349 Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan

Authors: Emad A. Ahmed

Abstract:

Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual Basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behaviour of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data.

Keywords: electron mobility, relaxation time, GaN, scattering, computer software, computation physics

Procedia PDF Downloads 670
5348 Effectiveness of Metacognitive Skills in Comprehension Instruction for Elementary Students

Authors: Mahdi Taheri Asl

Abstract:

Using a variety of strategies to read text plays an important role to make students strategic independent, strategic, and metacognitive readers. Given the importance of comprehension instruction (CI), it is essential to support the fostering comprehension skills at elementary age students, particularly those who struggle with or dislike reading. One of the main components of CI is activating metacognitive skills, which double function of elementary students. Thus, it’s important to evaluate the implemented comprehension interventions to inform reading specialist and teachers. There has been limited review research in the area of CI, so the conduction review research is required. The purpose of this review is to examine the effectiveness of metacognitive reading strategies in a regular classroom environment with elementary aged students. We develop five inclusion criteria to identify researches relevant to our research. First, the article had to be published in a peer-reviewed journal from 2000 to 2023. second, the study had to include participants in elementary school it could include of special education students. Third, the intervention needed to be involved with metacognitive strategies. Fourth, the articles had to use experimental or quasi experimental design. The last one needed to include measurement of reading performance in pre and post intervention. We used computer data-based site like Eric, PsychoINFO, and google scholar to search for articles that met these criteria. we used the following search terms: comprehension instruction, meta cognitive strategies, and elementary school. The next step was to do an ancestral search that get in reviewing the relevant studies cited in the articles that were found in the database search. We identified 30studies in the initial searches. After coding agreement, we synthesized 13 with respect to the participant, setting, research design, dependent variables, measures, the intervention used by instructors, and general outcomes. The finding show metacognitive strategies were effective to empower student’s comprehension skills. It also showed that linguistic instruction will be effective if got mixed with metacognitive strategies. The research provides a useful view into reading intervention. Despite the positive effect of metacognitive instruction on students’ comprehension skills, it is not widely used in classroom.

Keywords: comprehension instruction, metacogntion, metacognitive skills, reading intervention

Procedia PDF Downloads 72
5347 Development of an Analytical Model for a Synchronous Permanent Magnet Generator

Authors: T. Sahbani, M. Bouteraa, R. Wamkeue

Abstract:

Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model.

Keywords: MATLAB, synchronous permanent magnet generator, wind turbine, analytical model

Procedia PDF Downloads 549
5346 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud

Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova

Abstract:

Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.

Keywords: cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud

Procedia PDF Downloads 316
5345 Tillage and Intercropping Effects on Growth and Yield of Groundnut in Maize/Groundnut Cropping System

Authors: Oyewole Charles Iledun, Shuaib Harira, Ezeogueri-Oyewole Anne Nnenna

Abstract:

Due to high population pressure/human activities competing for agricultural land, the need to maximize the productivity of available land has become necessary; this has not been achievable in the tropics with monoculture systems where a single harvest per season is the practice. Thus, this study evaluates intercropping combination and tillage practice on yield and yield components of groundnut in a mixture with maize. The trial was conducted in the rainy seasons of 2020 and 2021 at the Kogi State University Students’ Research and Demonstration Farm, Latitude 70 301 and Longitude 70 091 E in the Southern Guinea Savannah agro-ecological zone of Nigeria. Treatment consisted of three tillage practices [as main plot factor] and five intercropping combinations [subplot factor] assigned to a 3 x 5 Factorial experiment replicated four times. Data were collected for growth, development, yield components, and yield of groundnut. Data collected were subjected to Statistical Analysis in line with Factorial Experiments. Means found to be statistically significant at 5 % probability were separated using the LSD method. Regarding yield components and yield related parameters in groundnuts, better performance was observed in cole cropped groundnut plots compared to the intercropped plots. However, intercropping groundnut with maize was generally advantageous, with LER greater than unity. Among the intercrops, the highest LERs were observed when one row of maize was cropped with one row of groundnut, with the least LER recorded in intercropping two rows of maize with one row of groundnut. For the tillage operations, zero tillage gave the highest LERs in both seasons, while the least LERs were recorded when the groundnut was planted on ridges. Since the highest LERs were observed when one row of maize was intercropped with one row of groundnut, this level of crop combination is recommended for the study area, while ridging may not be necessary to get good groundnut yield, particularly under similar soil conditions as obtained in the experimental area, and with similar rainfall observed during the experimental period.

Keywords: canopy height, leaf number, haulm yield / ha, pod yield / ha, harvest index and shelling percentage

Procedia PDF Downloads 22
5344 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System

Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar

Abstract:

Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.

Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel

Procedia PDF Downloads 135
5343 Structural Properties of CuCl, CuBr, and CuI Compounds under Hydrostatic Pressure

Authors: S. Louhibi-Fasla, H. Rekab Djabri, H. Achour

Abstract:

The aim of this work is to investigate the structural phase-transitions and electronic properties of copper halides. Our calculations were performed within the PLW extension to the first principle FPLMTO method, which enables an accurate treatment of all kinds of structures including the open ones. Results are given for lattice parameters, bulk modulus and its first derivatives in five different surface phases, and are compared with the available theoretical and experimental data. In the zinc-blende (B3) and PbO (B10) phases, the fundamental gap remains direct with both the top of VB and the bottom of CB located at Γ.

Keywords: FPLMTO, structural properties, Copper halides, phase transitions, ground state phase

Procedia PDF Downloads 430
5342 The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves

Authors: Nur Aimi Syairah Mohd Abdul Alim, Azilah Ajit, A. Z. Sulaiman

Abstract:

The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine.

Keywords: Ficus, ultrasounds, vitexin, isovitexin

Procedia PDF Downloads 416
5341 Spectroscopic Constant Calculation of the BeF Molecule

Authors: Nayla El-Kork, Farah Korjieh, Ahmed Bentiba, Mahmoud Korek

Abstract:

Ab-initio calculations have been performed to investigate the spectroscopic constants for the diatomic compound BeF. Values of the internuclear distance Re, the harmonic frequency ωe, the rotational constants Be, the electronic transition energy with respect to the ground state Te, the eignvalues Ev, the abscissas of the turning points Rmin, Rmax, the rotational constants Bv and the centrifugal distortion constants Dv have been calculated for the molecule’s ground and excited electronic states. Results are in agreement with experimental data.

Keywords: spectroscopic constant, potential energy curve, diatomic molecule, spectral analysis

Procedia PDF Downloads 569
5340 Progressive Participatory Observation Applied to Priority Neighbourhoods

Authors: Serge Rohmer

Abstract:

This paper proposes a progressive participatory observation that can be used as a sociological investigation within communities. The usefulness of participant observation in sociological projects is first asserted, particularly in an urban context. Competencies, know-how and interpersonal skills are then explained before to detail the progressive approach, consisting of four levels of observation. The progressive participatory observation is applied to an experimental project to set up a permaculture urban micro-farm with residents of a priority neighbourhood. Feedback on the experiment has identified several key recommendations for implementing the approach.

Keywords: participatory observation, observation scale, priority neighbourhood, urban sociology

Procedia PDF Downloads 26
5339 Experimental Studies on the Effect of Premixing Methods in Anaerobic Digestor with Corn Stover

Authors: M. Sagarika, M. Chandra Sekhar

Abstract:

Agricultural residues are producing in large quantities in India and account for abundant but underutilized source of renewable biomass in agriculture. In India, the amount of crop residues available is estimated to be approximately 686 million tons. Anaerobic digestion is a promising option to utilize the surplus agricultural residues and can produce biogas and digestate. Biogas is mainly methane (CH4), which can be utilized as an energy source in replacement for fossil fuels such as natural gas, oil, in other hand, digestate contains high amounts of nutrients, can be employed as fertilizer. Solid state anaerobic digestion (total solids ≥ 15%) is suitable for agricultural residues, as it reduces the problems like stratification and floating issues that occur in liquid anaerobic digestion (total solids < 15%). The major concern in solid-state anaerobic digestion is the low mass transfer of feedstock and inoculum that resulting in low performance. To resolve this low mass transfer issue, effective mixing of feedstock and inoculum is required. Mechanical mixing using stirrer at the time of digestion process can be done, but it is difficult to operate the stirring of feedstock with high solids percentage and high viscosity. Complete premixing of feedstock and inoculum is an alternative method, which is usual in lab scale studies but may not be affordable due to high energy demand in large-scale digesters. Developing partial premixing methods may reduce this problem. Current study is to improve the performance of solid-state anaerobic digestion of corn stover at feedstock to inoculum ratios 3 and 5, by applying partial premixing methods and to compare the complete premixing method with two partial premixing methods which are two alternative layers of feedstock and inoculum and three alternative layers of feedstock and inoculum where higher inoculum ratios in the top layers. From experimental studies it is observed that, partial premixing method with three alternative layers of feedstock and inoculum yielded good methane.

Keywords: anaerobic digestion, premixing methods, methane yield, corn stover, volatile solids

Procedia PDF Downloads 234
5338 Condition Monitoring for Controlling the Stability of the Rotating Machinery

Authors: A. Chellil, I. Gahlouz, S. Lecheb, A. Nour, S. Chellil, H. Mechakra, H. Kebir

Abstract:

In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor are developed. Numerical calculations on the model develop of three dimensions prove that the defects effect has a negative effect on the stability of the rotor. Experimentally, the study of the rotor in the transient system allowed to determine the vibratory responses due to the unbalances and various excitations.

Keywords: rotor, frequency, finite element, specter

Procedia PDF Downloads 382
5337 Environmental Conditions Simulation Device for Evaluating Fungal Growth on Wooden Surfaces

Authors: Riccardo Cacciotti, Jiri Frankl, Benjamin Wolf, Michael Machacek

Abstract:

Moisture fluctuations govern the occurrence of fungi-related problems in buildings, which may impose significant health risks for users and even lead to structural failures. Several numerical engineering models attempt to capture the complexity of mold growth on building materials. From real life observations, in cases with suppressed daily variations of boundary conditions, e.g. in crawlspaces, mold growth model predictions well correspond with the observed mold growth. On the other hand, in cases with substantial diurnal variations of boundary conditions, e.g. in the ventilated cavity of a cold flat roof, mold growth predicted by the models is significantly overestimated. This study, founded by the Grant Agency of the Czech Republic (GAČR 20-12941S), aims at gaining a better understanding of mold growth behavior on solid wood, under varying boundary conditions. In particular, the experimental investigation focuses on the response of mold to changing conditions in the boundary layer and its influence on heat and moisture transfer across the surface. The main results include the design and construction at the facilities of ITAM (Prague, Czech Republic) of an innovative device allowing for the simulation of changing environmental conditions in buildings. It consists of a square section closed circuit with rough dimensions 200 × 180 cm and cross section roughly 30 × 30 cm. The circuit is thermally insulated and equipped with an electric fan to control air flow inside the tunnel, a heat and humidity exchange unit to control the internal RH and variations in temperature. Several measuring points, including an anemometer, temperature and humidity sensor, a loading cell in the test section for recording mass changes, are provided to monitor the variations of parameters during the experiments. The research is ongoing and it is expected to provide the final results of the experimental investigation at the end of 2022.

Keywords: moisture, mold growth, testing, wood

Procedia PDF Downloads 133
5336 The Role of Nickel on the High-Temperature Corrosion of Modell Alloys (Stainless Steels) before and after Breakaway Corrosion at 600°C: A Microstructural Investigation

Authors: Imran Hanif, Amanda Persdotter, Sedigheh Bigdeli, Jesper Liske, Torbjorn Jonsson

Abstract:

Renewable fuels such as biomass/waste for power production is an attractive alternative to fossil fuels in order to achieve a CO₂ -neutral power generation. However, the combustion results in the release of corrosive species. This puts high demands on the corrosion resistance of the alloys used in the boiler. Stainless steels containing nickel and/or nickel containing coatings are regarded as suitable corrosion resistance material especially in the superheater regions. However, the corrosive environment in the boiler caused by the presence of water vapour and reactive alkali very rapidly breaks down the primary protection, i.e., the Cr-rich oxide scale formed on stainless steels. The lifetime of the components, therefore, relies on the properties of the oxide scale formed after breakaway, i.e., the secondary protection. The aim of the current study is to investigate the role of varying nickel content (0–82%) on the high-temperature corrosion of model alloys with 18% Cr (Fe in balance) in the laboratory mimicking industrial conditions at 600°C. The influence of nickel is investigated on both the primary protection and especially the secondary protection, i.e., the scale formed after breakaway, during the oxidation/corrosion process in the dry O₂ (primary protection) and more aggressive environment such as H₂O, K₂CO₃ and KCl (secondary protection). All investigated alloys experience a very rapid loss of the primary protection, i.e., the Cr-rich (Cr, Fe)₂O₃, and the formation of secondary protection in the aggressive environments. The microstructural investigation showed that secondary protection of all alloys has a very similar microstructure in all more aggressive environments consisting of an outward growing iron oxide and inward growing spinel-oxide (Fe, Cr, Ni)₃O₄. The oxidation kinetics revealed that it is possible to influence the protectiveness of the scale formed after breakaway (secondary protection) through the amount of nickel in the alloy. The difference in oxidation kinetics of the secondary protection is linked to the microstructure and chemical composition of the complex spinel-oxide. The detailed microstructural investigations were carried out using the extensive analytical techniques such as electron back scattered diffraction (EBSD), energy dispersive X-rays spectroscopy (EDS) via the scanning and transmission electron microscopy techniques and results are compared with the thermodynamic calculations using the Thermo-Calc software.

Keywords: breakaway corrosion, EBSD, high-temperature oxidation, SEM, TEM

Procedia PDF Downloads 142
5335 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 144
5334 Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces

Authors: Giulia Magi Meconi, Nicholas Ballard, José M. Asua, Ronen Zangi

Abstract:

Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water.

Keywords: emulsion polymerization process, molecular dynamics simulations, polymer surface, surfactants adsorption

Procedia PDF Downloads 343
5333 Civility in Indonesia: Comparison of Indonesian People's Friendliness with the Past

Authors: Abshari Nabilah Fiqi, Sekar Ayu Dian Kusumaningtyas, Amira Eka Pratiwi

Abstract:

Since a very long time ago, Indonesia are well known for their hospitality. Hospitality has been one of the civility concepts that represented Indonesia’s culture. However, as an Indonesian, we found that nowadays we are starting to lose this particular culture. The influence of modern culture is undeniably strong. As a capital city, Jakarta is one of the most modern cities in Indonesia. We conduct this experimental study to find out whether the people in Jakarta are still willing to maintain their identity as a friendly Indonesian or not by testing their willingness to reply greetings from strangers.

Keywords: city, civility, culture, greetings, hospitality, modern

Procedia PDF Downloads 483
5332 Effect of Jet Diameter on Surface Quenching at Different Spatial Locations

Authors: C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee

Abstract:

An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 °C initial temperature. A round water jet of 22 ± 1 °C temperature was injected over the hot surface through straight tube type nozzles of 2.5-4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000-24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.

Keywords: hot-surface, jet impingement, quenching, stagnation point

Procedia PDF Downloads 610
5331 Digital Image Correlation Based Mechanical Response Characterization of Thin-Walled Composite Cylindrical Shells

Authors: Sthanu Mahadev, Wen Chan, Melanie Lim

Abstract:

Anisotropy dominated continuous-fiber composite materials have garnered attention in numerous mechanical and aerospace structural applications. Tailored mechanical properties in advanced composites can exhibit superiority in terms of stiffness-to-weight ratio, strength-to-weight ratio, low-density characteristics, coupled with significant improvements in fatigue resistance as opposed to metal structure counterparts. Extensive research has demonstrated their core potential as more than just mere lightweight substitutes to conventional materials. Prior work done by Mahadev and Chan focused on formulating a modified composite shell theory based prognosis methodology for investigating the structural response of thin-walled circular cylindrical shell type composite configurations under in-plane mechanical loads respectively. The prime motivation to develop this theory stemmed from its capability to generate simple yet accurate closed-form analytical results that can efficiently characterize circular composite shell construction. It showcased the development of a novel mathematical framework to analytically identify the location of the centroid for thin-walled, open cross-section, curved composite shells that were characterized by circumferential arc angle, thickness-to-mean radius ratio, and total laminate thickness. Ply stress variations for curved cylindrical shells were analytically examined under the application of centric tensile and bending loading. This work presents a cost-effective, small-platform experimental methodology by taking advantage of the full-field measurement capability of digital image correlation (DIC) for an accurate assessment of key mechanical parameters such as in-plane mechanical stresses and strains, centroid location etc. Mechanical property measurement of advanced composite materials can become challenging due to their anisotropy and complex failure mechanisms. Full-field displacement measurements are well suited for characterizing the mechanical properties of composite materials because of the complexity of their deformation. This work encompasses the fabrication of a set of curved cylindrical shell coupons, the design and development of a novel test-fixture design and an innovative experimental methodology that demonstrates the capability to very accurately predict the location of centroid in such curved composite cylindrical strips via employing a DIC based strain measurement technique. Error percentage difference between experimental centroid measurements and previously estimated analytical centroid results are observed to be in good agreement. The developed analytical modified-shell theory provides the capability to understand the fundamental behavior of thin-walled cylindrical shells and offers the potential to generate novel avenues to understand the physics of such structures at a laminate level.

Keywords: anisotropy, composites, curved cylindrical shells, digital image correlation

Procedia PDF Downloads 316
5330 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping

Authors: Masato Saeki

Abstract:

Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.

Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level

Procedia PDF Downloads 453
5329 Experimental Study of Sand-Silt Mixtures with Torsional and Flexural Resonant Column Tests

Authors: Meghdad Payan, Kostas Senetakis, Arman Khoshghalb, Nasser Khalili

Abstract:

Dynamic properties of soils, especially at the range of very small strains, are of particular interest in geotechnical engineering practice for characterization of the behavior of geo-structures subjected to a variety of stress states. This study reports on the small-strain dynamic properties of sand-silt mixtures with particular emphasis on the effect of non-plastic fines content on the small strain shear modulus (Gmax), Young’s Modulus (Emax), material damping (Ds,min) and Poisson’s Ratio (v). Several clean sands with a wide range of grain size characteristics and particle shape are mixed with variable percentages of a silica non-plastic silt as fines content. Prepared specimens of sand-silt mixtures at different initial void ratios are subjected to sequential torsional and flexural resonant column tests with elastic dynamic properties measured along an isotropic stress path up to 800 kPa. It is shown that while at low percentages of fines content, there is a significant difference between the dynamic properties of the various samples due to the different characteristics of the sand portion of the mixtures, this variance diminishes as the fines content increases and the soil behavior becomes mainly silt-dominant, rendering no significant influence of sand properties on the elastic dynamic parameters. Indeed, beyond a specific portion of fines content, around 20% to 30% typically denoted as threshold fines content, silt is controlling the behavior of the mixture. Using the experimental results, new expressions for the prediction of small-strain dynamic properties of sand-silt mixtures are developed accounting for the percentage of silt and the characteristics of the sand portion. These expressions are general in nature and are capable of evaluating the elastic dynamic properties of sand-silt mixtures with any types of parent sand in the whole range of silt percentage. The inefficiency of skeleton void ratio concept in the estimation of small-strain stiffness of sand-silt mixtures is also illustrated.

Keywords: damping ratio, Poisson’s ratio, resonant column, sand-silt mixture, shear modulus, Young’s modulus

Procedia PDF Downloads 250
5328 Simplifying Writing Composition to Assist Students in Rural Areas: An Experimental Study for the Comparison of Guided and Unguided Instruction

Authors: Neha Toppo

Abstract:

Method and strategies of teaching instruction highly influence learning of students. In second language teaching, number of ways and methods has been suggested by different scholars and researchers through times. The present article deals with the role of teaching instruction in developing compositional ability of students in writing. It focuses on the secondary level students of rural areas, whose exposure to English language is limited and they face challenges even in simple compositions. The students till high school suffer with their disability in writing formal letter, application, essay, paragraph etc. They face problem in note making, writing answers in examination using their own words and depend fully on rote learning. It becomes difficult for them to give language to their own ideas. Teaching writing composition deserves special attention as writing is an integral part of language learning and students at this level are expected to have sound compositional ability for it is useful in numerous domains. Effective method of instruction could help students to learn expression of self, correct selection of vocabulary and grammar, contextual writing, composition of formal and informal writing. It is not limited to school but continues to be important in various other fields outside the school such as in newspaper and magazine, official work, legislative work, material writing, academic writing, personal writing, etc. The study is based on the experimental method, which hypothesize that guided instruction will be more effective in teaching writing compositions than usual instruction in which students are left to compose by their own without any help. In the test, students of one section are asked to write an essay on the given topic without guidance and another section are asked to write the same but with the assistance of guided instruction in which students have been provided with a few vocabulary and sentence structure. This process is repeated in few more schools to get generalize data. The study shows the difference on students’ performance using both the instructions; guided and unguided. The conclusion of the study is followed by the finding that writing skill of the students is quite poor but with the help of guided instruction they perform better. The students are in need of better teaching instruction to develop their writing skills.

Keywords: composition, essay, guided instruction, writing skill

Procedia PDF Downloads 279
5327 Effectiveness of Simulation Resuscitation Training to Improve Self-Efficacy of Physicians and Nurses at Aga Khan University Hospital in Advanced Cardiac Life Support Courses Quasi-Experimental Study Design

Authors: Salima R. Rajwani, Tazeen Ali, Rubina Barolia, Yasmin Parpio, Nasreen Alwani, Salima B. Virani

Abstract:

Introduction: Nurses and physicians have a critical role in initiating lifesaving interventions during cardiac arrest. It is important that timely delivery of high quality Cardio Pulmonary Resuscitation (CPR) with advanced resuscitation skills and management of cardiac arrhythmias is a key dimension of code during cardiac arrest. It will decrease the chances of patient survival if the healthcare professionals are unable to initiate CPR timely. Moreover, traditional training will not prepare physicians and nurses at a competent level and their knowledge level declines over a period of time. In this regard, simulation training has been proven to be effective in promoting resuscitation skills. Simulation teaching learning strategy improves knowledge level, and skills performance during resuscitation through experiential learning without compromising patient safety in real clinical situations. The purpose of the study is to evaluate the effectiveness of simulation training in Advanced Cardiac Life Support Courses by using the selfefficacy tool. Methods: The study design is a quantitative research design and non-randomized quasi-experimental study design. The study examined the effectiveness of simulation through self-efficacy in two instructional methods; one is Medium Fidelity Simulation (MFS) and second is Traditional Training Method (TTM). The sample size was 220. Data was compiled by using the SPSS tool. The standardized simulation based training increases self-efficacy, knowledge, and skills and improves the management of patients in actual resuscitation. Results: 153 students participated in study; CG: n = 77 and EG: n = 77. The comparison was done between arms in pre and post-test. (F value was 1.69, p value is <0.195 and df was 1). There was no significant difference between arms in the pre and post-test. The interaction between arms was observed and there was no significant difference in interaction between arms in the pre and post-test. (F value was 0.298, p value is <0.586 and df is 1. However, the results showed self-efficacy scores were significantly higher within experimental group in post-test in advanced cardiac life support resuscitation courses as compared to Traditional Training Method (TTM) and had overall (p <0.0001) and F value was 143.316 (mean score was 45.01 and SD was 9.29) verses pre-test result showed (mean score was 31.15 and SD was 12.76) as compared to TTM in post-test (mean score was 29.68 and SD was 14.12) verses pre-test result showed (mean score was 42.33 and SD was 11.39). Conclusion: The standardized simulation-based training was conducted in the safe learning environment in Advanced Cardiac Life Suport Courses and physicians and nurses benefited from self-confidence, early identification of life-threatening scenarios, early initiation of CPR, and provides high-quality CPR, timely administration of medication and defibrillation, appropriate airway management, rhythm analysis and interpretation, and Return of Spontaneous Circulation (ROSC), team dynamics, debriefing, and teaching and learning strategies that will improve the patient survival in actual resuscitation.

Keywords: advanced cardiac life support, cardio pulmonary resuscitation, return of spontaneous circulation, simulation

Procedia PDF Downloads 80
5326 Applying the Eye Tracking Technique for the Evaluation of Oculomotor System in Patients Survived after Cerebellar Tumors

Authors: Marina Shurupova, Victor Anisimov, Alexander Latanov

Abstract:

Background: The cerebellar lesions inevitably provoke oculomotor impairments in patients of different age. Symptoms of subtentorial tumors, particularly medulloblastomas, include static and dynamic coordination disorders (ataxia, asynergia, imbalance), hypo-muscle tonus, disruption of the cranial nerves, and within the oculomotor system - nystagmus (fine or gross). Subtentorial tumors can also affect the areas of cerebellum that control the oculomotor system. The noninvasive eye-tracking technology allows obtaining multiple oculomotor characteristics such as the number of fixations and their duration, amplitude, latency and velocity of saccades, trajectory and scan path of gaze during the process of the visual field navigation. Eye tracking could be very useful in clinical studies serving as convenient and effective tool for diagnostics. The aim: We studied the dynamics of oculomotor system functioning in patients undergoing remission from cerebellar tumors removal surgeries and following neurocognitive rehabilitation. Methods: 38 children (23 boys, 15 girls, 9-17 years old) that have recovered from the cerebellar tumor-removal surgeries, radiation therapy and chemotherapy and were undergoing course of neurocognitive rehabilitation participated in the study. Two tests were carried out to evaluate oculomotor performance - gaze stability test and counting test. The monocular eye movements were recorded with eye tracker ArringtonResearch (60 Hz). Two experimental sessions with both tests were conducted before and after rehabilitation courses. Results: Within the final session of both tests we observed remarkable improvement in oculomotor performance: 1) in the gaze stability test the spread of gaze positions significantly declined compared to the first session, and 2) the visual path in counting test significantly shortened both compared to the first session. Thus, neurocognitive rehabilitation improved the functioning of the oculomotor system in patients following the cerebellar tumor removal surgeries and subsequent therapy. Conclusions: The experimental data support the effectiveness of the utilization of the eye tracking technique as diagnostic tool in the field of neurooncology.

Keywords: eye tracking, rehabilitation, cerebellar tumors, oculomotor system

Procedia PDF Downloads 161