Search results for: corpus based approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36057

Search results for: corpus based approach

33537 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 244
33536 Personalize E-Learning System Based on Clustering and Sequence Pattern Mining Approach

Authors: H. S. Saini, K. Vijayalakshmi, Rishi Sayal

Abstract:

Network-based education has been growing rapidly in size and quality. Knowledge clustering becomes more important in personalized information retrieval for web-learning. A personalized-Learning service after the learners’ knowledge has been classified with clustering. Through automatic analysis of learners’ behaviors, their partition with similar data level and interests may be discovered so as to produce learners with contents that best match educational needs for collaborative learning. We present a specific mining tool and a recommender engine that we have integrated in the online learning in order to help the teacher to carry out the whole e-learning process. We propose to use sequential pattern mining algorithms to discover the most used path by the students and from this information can recommend links to the new students automatically meanwhile they browse in the course. We have Developed a specific author tool in order to help the teacher to apply all the data mining process. We tend to report on many experiments with real knowledge so as to indicate the quality of using both clustering and sequential pattern mining algorithms together for discovering personalized e-learning systems.

Keywords: e-learning, cluster, personalization, sequence, pattern

Procedia PDF Downloads 429
33535 Embracing Our Scars: Self-Harm 101

Authors: Bree Wiles

Abstract:

Self-harm is still a topic that is not talked about enough, especially with the growing concern for the safety of LGBTQIA+ youth. LGBTQIA+ youth are coming out at earlier ages, thus bringing to attention the added risks for this population. Many LGBTQIA+ youth end up engaging in some form of self-destructive behavior from dealing with the stigma and negative socialization around them. Within the LGBTQIA+ youth population, self-harm alongside depression and suicide is especially common. This disparity shows the importance of providing LGBTQIA+ youth with resources that affirm their identities. As professionals and parents, it is important to understand the types of self-harm, the average age range when it can occur, causes, populations, risk factors, and self-harm in connection with mental health and suicide. It is imperative to provide protective factors for LGBTQIA+ youth in helping to replace self-harming behaviors with positive coping strategies. Helping LGBTQIA+ youth in different contexts, including from a professional, parent, and educator perspective, allows unique ways in which each can assist an LGBTQIA+ youth who is self-harming. The stigma, shame, and many misconceptions about self-harming behaviors are discussed in depth including from the lived experience of this author and professional experiences working with queer youth. Most importantly, it is imperative to know how to approach LGBTQIA+ youth who are self-harming, including how to speak in a compassionate and empathy-based framework. Clear interventions and therapeutic techniques based on evidence-based practices on alternatives to self-harm, lived experience, and previous practices with queer youth who are self-harming are provided and discussed.

Keywords: LGBTQ+, mental health, self-harm, depression

Procedia PDF Downloads 52
33534 Voice of Customer: Mining Customers' Reviews on On-Line Car Community

Authors: Kim Dongwon, Yu Songjin

Abstract:

This study identifies the business value of VOC (Voice of Customer) on the business. Precisely, we intend to demonstrate how much negative and positive sentiment of VOC has an influence on car sales market share in the unites states. We extract 7 emotions such as sadness, shame, anger, fear, frustration, delight and satisfaction from the VOC data, 23,204 pieces of opinions, that had been posted on car-related on-line community from 2007 to 2009(a part of data collection from 2007 to 2015), and intend to clarify the correlation between negative and positive sentimental keywords and contribution to market share. In order to develop a lexicon for each category of negative and positive sentiment, we took advantage of Corpus program, Antconc 3.4.1.w and on-line sentimental data, SentiWordNet and identified the part of speech(POS) information of words in the customers' opinion by using a part-of-speech tagging function provided by TextAnalysisOnline. For the purpose of this present study, a total of 45,741 pieces of customers' opinions of 28 car manufacturing companies had been collected including titles and status information. We conducted an experiment to examine whether the inclusion, frequency and intensity of terms with negative and positive emotions in each category affect the adoption of customer opinions for vehicle organizations' market share. In the experiment, we statistically verified that there is correlation between customer ideas containing negative and positive emotions and variation of marker share. Particularly, "Anger," a domain of negative domains, is significantly influential to car sales market share. The domain "Delight" and "Satisfaction" increased in proportion to growth of market share.

Keywords: data mining, opinion mining, sentiment analysis, VOC

Procedia PDF Downloads 214
33533 Artificial Intelligance Features in Canva

Authors: Amira Masood, Zainah Alshouri, Noor Bantan, Samira Kutbi

Abstract:

Artificial intelligence is continuously becoming more advanced and more widespread and is present in many of our day-to-day lives as a means of assistance in numerous different fields. A growing number of people, companies, and corporations are utilizing Canva and its AI tools as a method of quick and easy media production. Hence, in order to test the integrity of the rapid growth of AI, this paper will explore the usefulness of Canva's advanced design features as well as their accuracy by determining user satisfaction through a survey-based research approach and by investigating whether or not AI is successful enough that it eliminates the need for human alterations.

Keywords: artificial intelligence, canva, features, users, satisfaction

Procedia PDF Downloads 106
33532 Biosensor Design through Molecular Dynamics Simulation

Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang

Abstract:

The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structure-process-property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.

Keywords: biosensor, DNA, biomarker, molecular dynamics simulation

Procedia PDF Downloads 463
33531 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem

Authors: Ebrahim Asadi-Gangraj

Abstract:

Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.

Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan

Procedia PDF Downloads 189
33530 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload

Authors: V. Vicente E. Mujica, Gustavo Gonzalez

Abstract:

The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.

Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation

Procedia PDF Downloads 271
33529 Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology

Authors: S. Mat Radzi, N. J. Abd Rahman, H. Mohd Noor, N. Ariffin

Abstract:

Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%.

Keywords: ferulic acid, enzymatic synthesis, esters, RSM

Procedia PDF Downloads 332
33528 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 82
33527 Design of Collection and Transportation System of Municipal Solid Waste in Meshkinshahr City

Authors: Ebrahim Fataei, Seyed Ali Hosseini, Zahra Arabi, Habib farhadi, Mehdi Aalipour Erdi, Seiied Taghi Seiied Safavian

Abstract:

Solid waste production is an integral part of human life and management of waste require full scientific approach and essential planning. The allocation of most management cost to collection and transportation and also the necessity of operational efficiency in this system, by limiting time consumption, and on the other hand optimum collection system and transportation is the base of waste design and management. This study was done to optimize the exits collection and transportation system of solid waste in Meshkinshahr city. So based on the analyzed data of municipal solid waste components in seven zones of Meshkinshahr city, and GIS software, applied to design storage place based on origin recycling and a route to collect and transport. It was attempted to represent an appropriate model to store, collect and transport municipal solid waste. The result shows that GIS can be applied to locate the waste container and determine a waste collection direction in an appropriate way.

Keywords: municipal solid waste management, transportation, optimizing, GIS, Iran

Procedia PDF Downloads 534
33526 Behavior Adoption on Marine Habitat Conservation in Indonesia

Authors: Muhammad Yayat Afianto, Darmawan, Agung Putra Utama, Hari Kushardanto

Abstract:

Fish Forever, Rare’s innovative coastal fisheries program, combined community-based conservation management approach with spatial management to restore and protect Indonesia’s small-scale fisheries by establishing Fishing Managed Access Area. A ‘TURF-Reserve’ is a fishery management approach that positions fishers at the center of fisheries management, empowering them to take care of and make decisions about the future of their fishery. After two years of the program, social marketing campaigns succeeded in changing their behavior by adopting the new conservation behavior. The Pride-TURF-R campaigns developed an overarching hypothesis of impact that captured the knowledge, attitude and behavior changes needed to reduce threats and achieve conservation results. Rare help Batu Belah fishers to develop their group, developed with their roles, sustainable fisheries plan, and the budget plan. On 12th February 2017, the Head of Loka Kawasan Konservasi Perairan Nasional (LKKPN) which is a Technical Implementation Unit for National Marine Conservation Areas directly responsible to the Directorate General for Marine Spatial Management in the Ministry of Marine Affairs and Fisheries had signed a Partnership Agreement with the Head of Batu Belah Village to manage a TURF+Reserve area as wide as 909 hectares. The fishers group have been collecting the catch and submitting the report monthly, initiated the installation of the buoy markers for the No Take Zone, and formed the Pokmaswas (community-based surveillance group). Prior to this behavior adoption, they don’t have any fisheries data, no group of fishers, and they have still fishing inside the No Take Zone. This is really a new behavior adoption for them. This paper will show the process and success story of the social marketing campaign to conserve marine habitat in Anambas through Pride-TURF-R program.

Keywords: behavior adoption, community participation, no take zone, pride-TURF-R

Procedia PDF Downloads 271
33525 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement

Authors: Sai Sankalp Vemavarapu

Abstract:

This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.

Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation

Procedia PDF Downloads 164
33524 A Machine Learning Approach for Assessment of Tremor: A Neurological Movement Disorder

Authors: Rajesh Ranjan, Marimuthu Palaniswami, A. A. Hashmi

Abstract:

With the changing lifestyle and environment around us, the prevalence of the critical and incurable disease has proliferated. One such condition is the neurological disorder which is rampant among the old age population and is increasing at an unstoppable rate. Most of the neurological disorder patients suffer from some movement disorder affecting the movement of their body parts. Tremor is the most common movement disorder which is prevalent in such patients that infect the upper or lower limbs or both extremities. The tremor symptoms are commonly visible in Parkinson’s disease patient, and it can also be a pure tremor (essential tremor). The patients suffering from tremor face enormous trouble in performing the daily activity, and they always need a caretaker for assistance. In the clinics, the assessment of tremor is done through a manual clinical rating task such as Unified Parkinson’s disease rating scale which is time taking and cumbersome. Neurologists have also affirmed a challenge in differentiating a Parkinsonian tremor with the pure tremor which is essential in providing an accurate diagnosis. Therefore, there is a need to develop a monitoring and assistive tool for the tremor patient that keep on checking their health condition by coordinating them with the clinicians and caretakers for early diagnosis and assistance in performing the daily activity. In our research, we focus on developing a system for automatic classification of tremor which can accurately differentiate the pure tremor from the Parkinsonian tremor using a wearable accelerometer-based device, so that adequate diagnosis can be provided to the correct patient. In this research, a study was conducted in the neuro-clinic to assess the upper wrist movement of the patient suffering from Pure (Essential) tremor and Parkinsonian tremor using a wearable accelerometer-based device. Four tasks were designed in accordance with Unified Parkinson’s disease motor rating scale which is used to assess the rest, postural, intentional and action tremor in such patient. Various features such as time-frequency domain, wavelet-based and fast-Fourier transform based cross-correlation were extracted from the tri-axial signal which was used as input feature vector space for the different supervised and unsupervised learning tools for quantification of severity of tremor. A minimum covariance maximum correlation energy comparison index was also developed which was used as the input feature for various classification tools for distinguishing the PT and ET tremor types. An automatic system for efficient classification of tremor was developed using feature extraction methods, and superior performance was achieved using K-nearest neighbors and Support Vector Machine classifiers respectively.

Keywords: machine learning approach for neurological disorder assessment, automatic classification of tremor types, feature extraction method for tremor classification, neurological movement disorder, parkinsonian tremor, essential tremor

Procedia PDF Downloads 154
33523 Implementation of Maqasid Sharia in Islamic Financial Institution in Indonesia

Authors: Deden Misbahudin Muayyad, Lavlimatria Esya

Abstract:

Up to the month of June 2015, Indonesia has 12 Islamic Commercial Banks, 22 Islamic Business Unit, 327 offices in 33 provinces. The initial purpose of the establishment of Islamic financial institutions is to achieve and the welfare of the people in this world and in the hereafter. To realize these goals, the Islamic financial institutions in every kind of aspect of product development and in terms of operations should be based on maqashid sharia, namely keeping the faith, keep the soul, keep the sense, maintain the property, keeping the offspring. To see whether Islamic banking grounded in maqasid sharia, the Islamic banking performance measurements based on the principles of maqasid sharia. Banking performance measurement is not only focusing on profit and other financial measures, but put other values of banks reflects the size of the benefit of non-profit in accordance with the bank's objectives. The measurement using the measurement of financial performance called maqasid sharia index. Maqasid syariah index is a model of Islamic banking performance measurement in accordance with the objectives and characteristics of Islamic banking. Maqasid syariah index was developed based on three main factors, namely the education of individuals, the creation of justice, the achievement of well-being, where the three factors were in accordance with the common goal of maqasid sharia is achieving prosperity and avoid evil. Maqasid syariah index shows that maqasid sharia approach can be a strategic alternative approach to describe how good the performance of the banking system and it can be implemented in the comprehensive policy strategy. This study uses a model of performance measurement framework based on maqasid syariah, in addition to financial performance measures that already exist. Methods to develop the idea of a performance measurement framework of Islamic banking by maqasid sharia is the Sekaran method. Operationally, the methods have now able to describe the elements that will be measured by this study. This is done by observing the behavior of the dimensions illustrated through a concept that has been set. These dimensions translate into derivative elements that can be observed and more scalable, so it can establish measurement indices. This research is descriptive quantitative. Techniques are being made to collect data in this paper is by using purposive sampling method, with 12 Islamic Commercial Banks that qualify as research samples. The financial data taken at 12 banks was sourced from the annual financial statements the period 2008 to 2012 with consideration of the database and ease of access to data. The ratio measured in this study only 7 ratio used in determining the performance of Islamic banking, namely: four ratio refers to the sharia objectives related to education. three ratio while again referring to sharia objectives related to the achievement of welfare. While other ratios associated with justice can not be used in this study because of the limited data used. Total overall calculation of performance indicators and performance ratios on each goal for each bank describes the maqasid syariah index.

Keywords: Islamic banking, Maslahah, maqashid syariah, maqashid syariah index

Procedia PDF Downloads 268
33522 Psychophysiological Adaptive Automation Based on Fuzzy Controller

Authors: Liliana Villavicencio, Yohn Garcia, Pallavi Singh, Luis Fernando Cruz, Wilfrido Moreno

Abstract:

Psychophysiological adaptive automation is a concept that combines human physiological data and computer algorithms to create personalized interfaces and experiences for users. This approach aims to enhance human learning by adapting to individual needs and preferences and optimizing the interaction between humans and machines. According to neurosciences, the working memory demand during the student learning process is modified when the student is learning a new subject or topic, managing and/or fulfilling a specific task goal. A sudden increase in working memory demand modifies the level of students’ attention, engagement, and cognitive load. The proposed psychophysiological adaptive automation system will adapt the task requirements to optimize cognitive load, the process output variable, by monitoring the student's brain activity. Cognitive load changes according to the student’s previous knowledge, the type of task, the difficulty level of the task, and the overall psychophysiological state of the student. Scaling the measured cognitive load as low, medium, or high; the system will assign a task difficulty level to the next task according to the ratio between the previous-task difficulty level and student stress. For instance, if a student becomes stressed or overwhelmed during a particular task, the system detects this through signal measurements such as brain waves, heart rate variability, or any other psychophysiological variables analyzed to adjust the task difficulty level. The control of engagement and stress are considered internal variables for the hypermedia system which selects between three different types of instructional material. This work assesses the feasibility of a fuzzy controller to track a student's physiological responses and adjust the learning content and pace accordingly. Using an industrial automation approach, the proposed fuzzy logic controller is based on linguistic rules that complement the instrumentation of the system to monitor and control the delivery of instructional material to the students. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the delivery of academic content based on the working memory demand without compromising students’ health. This work has a potential application in the instructional design of virtual reality environments for training and education.

Keywords: fuzzy logic controller, hypermedia control system, personalized education, psychophysiological adaptive automation

Procedia PDF Downloads 81
33521 Effectiveness with Respect to Time-To-Market and the Impacts of Late-Stage Design Changes in Rapid Development Life Cycles

Authors: Parth Shah

Abstract:

The author examines the recent trend where business organizations are significantly reducing their developmental cycle times to stay competitive in today’s global marketspace. The author proposes a rapid systems engineering framework to address late design changes and allow for flexibility (i.e. to react to unexpected or late changes and its impacts) during the product development cycle using a Systems Engineering approach. A System Engineering approach is crucial in today’s product development to deliver complex products into the marketplace. Design changes can occur due to shortened timelines and also based on initial consumer feedback once a product or service is in the marketplace. The ability to react to change and address customer expectations in a responsive and cost-efficient manner is crucial for any organization to succeed. Past literature, research, and methods such as concurrent development, simultaneous engineering, knowledge management, component sharing, rapid product integration, tailored systems engineering processes, and studies on reducing product development cycles all suggest a research gap exist in specifically addressing late design changes due to the shortening of life cycle environments in increasingly competitive markets. The author’s research suggests that 1) product development cycles time scales are now measured in months instead of years, 2) more and more products have interdepended systems and environments that are fast-paced and resource critical, 3) product obsolesce is higher and more organizations are releasing products and services frequently, and 4) increasingly competitive markets are leading to customization based on consumer feedback. The author will quantify effectiveness with respect to success factors such as time-to-market, return-of-investment, life cycle time and flexibility in late design changes by complexity of product or service, number of late changes and ability to react and reduce late design changes.

Keywords: product development, rapid systems engineering, scalability, systems engineering, systems integration, systems life cycle

Procedia PDF Downloads 204
33520 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 157
33519 Teacher’s Perception of Dalcroze Method Course as Teacher’s Enhancement Course: A Case Study in Hong Kong

Authors: Ka Lei Au

Abstract:

The Dalcroze method has been emerging in music classrooms, and music teachers are encouraged to integrate music and movement in their teaching. Music programs in colleges in Hong Kong have been introducing method courses such as Orff and Dalcroze method in music teaching as teacher’s education program. Since the targeted students of the course are music teachers who are making the decision of what approach to use in their classroom, their perception is significantly valued to identify how this approach is applicable in their teaching in regards to the teaching and learning culture and environment. This qualitative study aims to explore how the Dalcroze method as a teacher’s education course is perceived by music teachers from three aspects: 1) application in music teaching, 2) self-enhancement, 3) expectation. Through the lens of music teachers, data were collected from 30 music teachers who are taking the Dalcroze method course in music teaching in Hong Kong by the survey. The findings reveal the value and their intention of the Dalcroze method in Hong Kong. It also provides a significant reference for better development of such courses in the future in adaption to the culture, teaching and learning environment and teacher’s, student’s and parent’s perception of this approach.

Keywords: Dalcroze method, music teaching, perception, self-enhancement, teacher’s education

Procedia PDF Downloads 405
33518 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference, supervised learning

Procedia PDF Downloads 67
33517 Comparative Analysis of Effecting Factors on Fertility by Birth Order: A Hierarchical Approach

Authors: Ali Hesari, Arezoo Esmaeeli

Abstract:

Regarding to dramatic changes of fertility and higher order births during recent decades in Iran, access to knowledge about affecting factors on different birth orders has crucial importance. In this study, According to hierarchical structure of many of social sciences data and the effect of variables of different levels of social phenomena that determine different birth orders in 365 days ending to 1390 census have been explored by multilevel approach. In this paper, 2% individual row data for 1390 census is analyzed by HLM software. Three different hierarchical linear regression models are estimated for data analysis of the first and second, third, fourth and more birth order. Research results displays different outcomes for three models. Individual level variables entered in equation are; region of residence (rural/urban), age, educational level and labor participation status and province level variable is GDP per capita. Results show that individual level variables have different effects in these three models and in second level we have different random and fixed effects in these models.

Keywords: fertility, birth order, hierarchical approach, fixe effects, random effects

Procedia PDF Downloads 339
33516 Human Centred Design Approach for Public Transportation

Authors: Jo Kuys, Kirsten Day

Abstract:

Improving urban transportation systems requires an emphasis on users’ end-to-end journey experience, from the moment the user steps out of their home to when they arrive at their destination. In considering such end-to-end experiences, human centred design (HCD) must be integrated from the very beginning to generate viable outcomes for the public. An HCD approach will encourage innovative outcomes while acknowledging all factors that need to be understood along the journey. We provide evidence to show that when designing for public transportation, it is not just about the physical manifestation of a particular outcome; moreover, it’s about the context and human behaviours that need to be considered throughout the design process. Humans and their behavioural factors are vitally important to successful implementation of sustainable public transport systems. Through an in-depth literature review of HCD approaches for urban transportation systems, we provide a base to exploit the benefits and highlight the importance of including HCD in public transportation projects for greater patronage, resulting in more sustainable cities. An HCD approach is critical to all public transportation projects to understand different levels of transportation design, from the setting of transport policy to implementation to infrastructure, vehicle, and interface design.

Keywords: human centred design, public transportation, urban planning, user experience

Procedia PDF Downloads 187
33515 Towards Update a Road Map Solution: Use of Information Obtained by the Extraction of Road Network and Its Nodes from a Satellite Image

Authors: Z. Nougrara, J. Meunier

Abstract:

In this paper, we present a new approach for extracting roads, there road network and its nodes from satellite image representing regions in Algeria. Our approach is related to our previous research work. It is founded on the information theory and the mathematical morphology. We therefore have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. The main interest of this study is to solve the problem of the automatic mapping from satellite images. This study is thus applied for that the geographical representation of the images is as near as possible to the reality.

Keywords: nodes, road network, satellite image, updating a road map

Procedia PDF Downloads 425
33514 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 73
33513 Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis

Authors: Deng Zengming, Wang Mingjiang

Abstract:

As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of –the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05.

Keywords: fusion method, Gaussian mixture model, hybrid framework, view synthesis

Procedia PDF Downloads 250
33512 Feasibility of an Extreme Wind Risk Assessment Software for Industrial Applications

Authors: Francesco Pandolfi, Georgios Baltzopoulos, Iunio Iervolino

Abstract:

The impact of extreme winds on industrial assets and the built environment is gaining increasing attention from stakeholders, including the corporate insurance industry. This has led to a progressively more in-depth study of building vulnerability and fragility to wind. Wind vulnerability models are used in probabilistic risk assessment to relate a loss metric to an intensity measure of the natural event, usually a gust or a mean wind speed. In fact, vulnerability models can be integrated with the wind hazard, which consists of associating a probability to each intensity level in a time interval (e.g., by means of return periods) to provide an assessment of future losses due to extreme wind. This has also given impulse to the world- and regional-scale wind hazard studies.Another approach often adopted for the probabilistic description of building vulnerability to the wind is the use of fragility functions, which provide the conditional probability that selected building components will exceed certain damage states, given wind intensity. In fact, in wind engineering literature, it is more common to find structural system- or component-level fragility functions rather than wind vulnerability models for an entire building. Loss assessment based on component fragilities requires some logical combination rules that define the building’s damage state given the damage state of each component and the availability of a consequence model that provides the losses associated with each damage state. When risk calculations are based on numerical simulation of a structure’s behavior during extreme wind scenarios, the interaction of component fragilities is intertwined with the computational procedure. However, simulation-based approaches are usually computationally demanding and case-specific. In this context, the present work introduces the ExtReMe wind risk assESsment prototype Software, ERMESS, which is being developed at the University of Naples Federico II. ERMESS is a wind risk assessment tool for insurance applications to industrial facilities, collecting a wide assortment of available wind vulnerability models and fragility functions to facilitate their incorporation into risk calculations based on in-built or user-defined wind hazard data. This software implements an alternative method for building-specific risk assessment based on existing component-level fragility functions and on a number of simplifying assumptions for their interactions. The applicability of this alternative procedure is explored by means of an illustrative proof-of-concept example, which considers four main building components, namely: the roof covering, roof structure, envelope wall and envelope openings. The application shows that, despite the simplifying assumptions, the procedure can yield risk evaluations that are comparable to those obtained via more rigorous building-level simulation-based methods, at least in the considered example. The advantage of this approach is shown to lie in the fact that a database of building component fragility curves can be put to use for the development of new wind vulnerability models to cover building typologies not yet adequately covered by existing works and whose rigorous development is usually beyond the budget of portfolio-related industrial applications.

Keywords: component wind fragility, probabilistic risk assessment, vulnerability model, wind-induced losses

Procedia PDF Downloads 181
33511 Critical Design Futures: A Foresight 3.0 Approach to Business Transformation and Innovation

Authors: Nadya Patel, Jawn Lim

Abstract:

Foresight 3.0 is a synergistic methodology that encompasses systems analysis, future studies, capacity building, and forward planning. These components are interconnected, fostering a collective anticipatory intelligence that promotes societal resilience (Ravetz, 2020). However, traditional applications of these strands can often fall short, leading to missed opportunities and narrow perspectives. Therefore, Foresight 3.0 champions a holistic approach to tackling complex issues, focusing on systemic transformations and power dynamics. Businesses are pivotal in preparing the workforce for an increasingly uncertain and complex world. This necessitates the adoption of innovative tools and methodologies, such as Foresight 3.0, that can better equip young employees to anticipate and navigate future challenges. Firstly, the incorporation of its methodology into workplace training can foster a holistic perspective among employees. This approach encourages employees to think beyond the present and consider wider social, economic, and environmental contexts, thereby enhancing their problem-solving skills and resilience. This paper discusses our research on integrating Foresight 3.0's transformative principles with a newly developed Critical Design Futures (CDF) framework to equip organisations with the ability to innovate for the world's most complex social problems. This approach is grounded in 'collective forward intelligence,' enabling mutual learning, co-innovation, and co-production among a diverse stakeholder community, where business transformation and innovation are achieved.

Keywords: business transformation, innovation, foresight, critical design

Procedia PDF Downloads 81
33510 Dynamic Modeling of the Exchange Rate in Tunisia: Theoretical and Empirical Study

Authors: Chokri Slim

Abstract:

The relative failure of simultaneous equation models in the seventies has led researchers to turn to other approaches that take into account the dynamics of economic and financial systems. In this paper, we use an approach based on vector autoregressive model that is widely used in recent years. Their popularity is due to their flexible nature and ease of use to produce models with useful descriptive characteristics. It is also easy to use them to test economic hypotheses. The standard econometric techniques assume that the series studied are stable over time (stationary hypothesis). Most economic series do not verify this hypothesis, which assumes, when one wishes to study the relationships that bind them to implement specific techniques. This is cointegration which characterizes non-stationary series (integrated) with a linear combination is stationary, will also be presented in this paper. Since the work of Johansen, this approach is generally presented as part of a multivariate analysis and to specify long-term stable relationships while at the same time analyzing the short-term dynamics of the variables considered. In the empirical part, we have applied these concepts to study the dynamics of of the exchange rate in Tunisia, which is one of the most important economic policy of a country open to the outside. According to the results of the empirical study by the cointegration method, there is a cointegration relationship between the exchange rate and its determinants. This relationship shows that the variables have a significant influence in determining the exchange rate in Tunisia.

Keywords: stationarity, cointegration, dynamic models, causality, VECM models

Procedia PDF Downloads 364
33509 Design Flood Estimation in Satluj Basin-Challenges for Sunni Dam Hydro Electric Project, Himachal Pradesh-India

Authors: Navneet Kalia, Lalit Mohan Verma, Vinay Guleria

Abstract:

Introduction: Design Flood studies are essential for effective planning and functioning of water resource projects. Design flood estimation for Sunni Dam Hydro Electric Project located in State of Himachal Pradesh, India, on the river Satluj, was a big challenge in view of the river flowing in the Himalayan region from Tibet to India, having a large catchment area of varying topography, climate, and vegetation. No Discharge data was available for the part of the river in Tibet, whereas, for India, it was available only at Khab, Rampur, and Luhri. The estimation of Design Flood using standard methods was not possible. This challenge was met using two different approaches for upper (snow-fed) and lower (rainfed) catchment using Flood Frequency Approach and Hydro-metrological approach. i) For catchment up to Khab Gauging site (Sub-Catchment, C1), Flood Frequency approach was used. Around 90% of the catchment area (46300 sqkm) up to Khab is snow-fed which lies above 4200m. In view of the predominant area being snow-fed area, 1 in 10000 years return period flood estimated using Flood Frequency analysis at Khab was considered as Probable Maximum Flood (PMF). The flood peaks were taken from daily observed discharges at Khab, which were increased by 10% to make them instantaneous. Design Flood of 4184 cumec thus obtained was considered as PMF at Khab. ii) For catchment between Khab and Sunni Dam (Sub-Catchment, C2), Hydro-metrological approach was used. This method is based upon the catchment response to the rainfall pattern observed (Probable Maximum Precipitation - PMP) in a particular catchment area. The design flood computation mainly involves the estimation of a design storm hyetograph and derivation of the catchment response function. A unit hydrograph is assumed to represent the response of the entire catchment area to a unit rainfall. The main advantage of the hydro-metrological approach is that it gives a complete flood hydrograph which allows us to make a realistic determination of its moderation effect while passing through a reservoir or a river reach. These studies were carried out to derive PMF for the catchment area between Khab and Sunni Dam site using a 1-day and 2-day PMP values of 232 and 416 cm respectively. The PMF so obtained was 12920.60 cumec. Final Result: As the Catchment area up to Sunni Dam has been divided into 2 sub-catchments, the Flood Hydrograph for the Catchment C1 has been routed through the connecting channel reach (River Satluj) using Muskingum method and accordingly, the Design Flood was computed after adding the routed flood ordinates with flood ordinates of catchment C2. The total Design Flood (i.e. 2-Day PMF) with a peak of 15473 cumec was obtained. Conclusion: Even though, several factors are relevant while deciding the method to be used for design flood estimation, data availability and the purpose of study are the most important factors. Since, generally, we cannot wait for the hydrological data of adequate quality and quantity to be available, flood estimation has to be done using whatever data is available. Depending upon the type of data available for a particular catchment, the method to be used is to be selected.

Keywords: design flood, design storm, flood frequency, PMF, PMP, unit hydrograph

Procedia PDF Downloads 327
33508 Implementation of Student-Centered Learning Approach in Building Surveying Course

Authors: Amal A. Abdel-Sattar

Abstract:

The curriculum of architecture department in Prince Sultan University includes ‘Building Surveying’ course which is usually a part of civil engineering courses. As a fundamental requirement of the course, it requires a strong background in mathematics and physics, which are not usually preferred subjects to the architecture students and many of them are not giving the required and necessary attention to these courses during their preparation year before commencing their architectural study. This paper introduces the concept and the methodology of the student-centered learning approach in the course of building surveying for architects. One of the major outcomes is the improvement in the students’ involvement in the course and how this will cover and strength their analytical weak points and improve their mathematical skills. The study is conducted through three semesters with a total number of 99 students. The effectiveness of the student-centered learning approach is studied using the student survey at the end of each semester and teacher observations. This survey showed great acceptance of the students for these methods. Also, the teachers observed a great improvement in the students’ mathematical abilities and how keener they became in attending the classes which were clearly reflected on the low absence record.

Keywords: architecture, building surveying, student-centered learning, teaching and learning

Procedia PDF Downloads 252