Search results for: climatic classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2863

Search results for: climatic classification

343 The Role of ICTS in Improving the Quality of Public Spaces in Large Cities of the Third World

Authors: Ayat Ayman Abdelaziz Ibrahim Amayem, Hassan Abdel-Salam, Zeyad El-Sayad

Abstract:

Nowadays, ICTs have spread extensively in everyday life in an unprecedented way. A great attention is paid to the ICTs while ignoring the social aspect. With the immersive invasion of internet as well as smart phones’ applications and digital social networking, people become more socially connected through virtual spaces instead of meeting in physical public spaces. Thus, this paper aims to find the ways of implementing ICTs in public spaces to regain their status as attractive places for people, incite meetings in real life and create sustainable lively city centers. One selected example of urban space in the city center of Alexandria is selected for the study. Alexandria represents a large metropolitan city subjected to rapid transformation. Improving the quality of its public spaces will have great effects on the whole well-being of the city. The major roles that ICTs can play in the public space are: culture and art, education, planning and design, games and entertainment, and information and communication. Based on this classification various examples and proposals of ICTs interventions in public spaces are presented and analyzed to encourage good old fashioned social interaction by creating the New Social Public Place of this Digital Era. The paper will adopt methods such as questionnaire for evaluating the people’s willingness to accept the idea of using ICTs in public spaces, their needs and their proposals for an attractive place; the technique of observation to understand the people behavior and their movement through the space and finally will present an experimental design proposal for the selected urban space. Accordingly, this study will help to find design principles that can be adopted in the design of future public spaces to meet the needs of the digital era’s users with the new concepts of social life respecting the rules of place-making.

Keywords: Alexandria sustainable city center, digital place-making, ICTs, social interaction, social networking, urban places

Procedia PDF Downloads 420
342 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 87
341 Physical and Mechanical Behavior of Compressed Earth Blocks Stabilized with Ca(OH)2 on Sub-Humid Warm Weather

Authors: D. Castillo T., Luis F. Jimenez

Abstract:

The compressed earth blocks (CEBs) constitute an alternative as a constructive element for building homes in regions with high levels of poverty and marginalization. Such is the case of Southeastern Mexico, where the population, predominantly indigene, build their houses with feeble materials like wood and palm, vulnerable to extreme weather in the area, because they do not have the financial resources to acquire concrete blocks. There are several advantages that can provide BTCs compared to traditional vibro-compressed concrete blocks, such as the availability of materials, low manufacturing cost and reduced CO2 emissions to the atmosphere for not be subjected to a burning process. However, to improve its mechanical properties and resistance to adverse weather conditions in terms of humidity and temperature of the sub-humid climate zones, it requires the use of a chemical stabilizer; in this case we chose Ca(OH)2. The stabilization method Eades-Grim was employed, according to ASTM C977-03. This method measures the optimum amount of lime required to stabilize the soil, increasing the pH to 12.4 or higher. The minimum amount of lime required in this experiment was 1% and the maximum was 10%. The employed material was clay unconsolidated low to medium plasticity (CL type according to the Unified Soil Classification System). Based on these results, the CEBs manufacturing process was determined. The obtained blocks were from 10x15x30 cm using a mixture of soil, water and lime in different proportions. Later these blocks were put to dry outdoors and subjected to several physical and mechanical tests, such as compressive strength, absorption and drying shrinkage. The results were compared with the limits established by the Mexican Standard NMX-C-404-ONNCCE-2005 for the construction of housing walls. In this manner an alternative and sustainable material was obtained for the construction of rural households in the region, with better security conditions, comfort and cost.

Keywords: calcium hydroxide, chemical stabilization, compressed earth blocks, sub-humid warm weather

Procedia PDF Downloads 401
340 Urban Dynamics Modelling of Mixed Land Use for Sustainable Urban Development in Indian Context

Authors: Rewati Raman, Uttam K. Roy

Abstract:

One of the main adversaries of city planning in present times is the ever-expanding problem of urbanization and the antagonistic issues accompanying it. The prevalent challenges in urbanization such as population growth, urban sprawl, poverty, inequality, pollution, congestion, etc. call for reforms in the urban fabric as well as in planning theory and practice. One of the various paradigms of city planning, land use planning, has been the major instruments for spatial planning of cities and regions in India. Zoning regulation based land use planning in the form of land use and development control plans (LUDCP) and development control regulations (DCR) have been considered mainstream guiding principles in land use planning for decades. In spite of many advantages of such zoning based regulations, over a period of time, it has been critiqued by scholars for its own limitations of isolation and lack of vitality, inconvenience in business in terms of proximity to residence and low operating cost, unsuitable environment for small investments, higher travel distance for facilities, amenities and thereby higher expenditure, safety issues etc. Mixed land use has been advocated as a tool to avoid such limitations in city planning by researchers. In addition, mixed land use can offer many advantages like housing variety and density, the creation of an economic blend of compatible land use, compact development, stronger neighborhood character, walkability, and generation of jobs, etc. Alternatively, the mixed land use beyond a suitable balance of use can also bring disadvantages like traffic congestion, encroachments, very high-density housing leading to a slum like condition, parking spill out, non-residential uses operating on residential premises paying less tax, chaos hampering residential privacy, pressure on existing infrastructure facilities, etc. This research aims at studying and outlining the various challenges and potentials of mixed land use zoning, through modeling tools, as a competent instrument for city planning in lieu of the present urban scenario. The methodology of research adopted in this paper involves the study of a mixed land use neighborhood in India, identification of indicators and parameters related to its extent and spatial pattern and the subsequent use of system dynamics as a modeling tool for simulation. The findings from this analysis helped in identifying the various advantages and challenges associated with the dynamic nature of a mixed use urban settlement. The results also confirmed the hypothesis that mixed use neighborhoods are catalysts for employment generation, socioeconomic gains while improving vibrancy, health, safety, and security. It is also seen that certain challenges related to chaos, lack of privacy and pollution prevail in mixed use neighborhoods, which can be mitigated by varying the percentage of mixing as per need, ensuring compatibility of adjoining use, institutional interventions in the form of policies, neighborhood micro-climatic interventions, etc. Therefore this paper gives a consolidated and holistic framework and quantified outcome pertaining to the extent and spatial pattern of mixed land use that should be adopted to ensure sustainable urban planning.

Keywords: mixed land use, sustainable development, system dynamics analysis, urban dynamics modelling

Procedia PDF Downloads 176
339 Evaluation of Traumatic Spine by Magnetic Resonance Imaging

Authors: Sarita Magu, Deepak Singh

Abstract:

Study Design: This prospective study was conducted at the department of Radio Diagnosis, at Pt B.D. Sharma PGIMS, Rohtak in 57 patients of spine injury on radiographs or radiographically normal patients with neurological deficits presenting within 72 hours of injury. Aims: Evaluation of the role of Magnetic Resonance Imaging (MRI) in Spinal Trauma Patients and to compare MRI findings with clinical profile and neurological status of the patient and to correlate the MRI findings with neurological recovery of the patient and predict the outcome. Material and Methods: Neurological status of patients was assessed at the time of admission and discharge in all the patients and at long term interval of six months to one year in 27 patients as per American spine injury association classification (ASIA). On MRI cord injury was categorized into cord hemorrhage, cord contusion, cord edema only, and normal cord. Quantitative assessment of injury on MRI was done using mean canal compromise (MCC), mean spinal cord compression (MSCC) and lesion length. Neurological status at admission and neurological recovery at discharge and long term follow up was compared with various qualitative cord findings and quantitative parameters on MRI. Results: Cord edema and normal cord was associated with favorable neurological outcome. Cord contusion show lesser neurological recovery as compared to cord edema. Cord hemorrhage was associated with worst neurological status at admission and poor neurological recovery. Mean MCC, MSCC, and lesion length values were higher in patients presenting with ASIA A grade injury and showed decreasing trends towards ASIA E grade injury. Patients showing neurological recovery over the period of hospital stay and long term follow up had lower mean MCC, MSCC, and lesion length as compared to patients showing no neurological recovery. The data was statistically significant with p value <.05. Conclusion: Cord hemorrhage and higher MCC, MSCC and lesion length has poor prognostic value in spine injury patients.

Keywords: spine injury, cord hemorrhage, cord contusion, MCC, MSCC, lesion length, ASIA grading

Procedia PDF Downloads 355
338 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: canny pruning, hand recognition, machine learning, skin tracking

Procedia PDF Downloads 185
337 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array

Authors: P. Behera, K. K. Singh, D. K. Saini, M. De

Abstract:

Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.

Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂

Procedia PDF Downloads 143
336 Understanding the Heterogeneity of Polycystic Ovarian Syndrome: The Influence of Ethnicity and Body Mass

Authors: Hamza Ikhlaq, Stephen Franks

Abstract:

Background: Polycystic ovarian syndrome (PCOS) is one of the most common endocrine disorders affecting women of reproductive age. The aetiology behind PCOS is poorly understood but influencing ethnic, environmental, and genetic factors have been recognised. However, literature examining the impact of ethnicity is scarce. We hypothesised Body Mass Index (BMI) and ethnicity influence the clinical, metabolic, and biochemical presentations of PCOS, with an interaction between these factors. Methods: A database of 1081 women with PCOS and a control group of 72 women were analysed. BMIs were grouped using the World Health Organisation classification into normal weight, overweight and obese groups. Ethnicities were classified into European, South Asian, and Afro-Caribbean groups. Biochemical and clinical presentations were compared amongst these groups, and statistical analyses were performed to assess significance. Results: This study revealed ethnicity significantly influences biochemical and clinical presentations of PCOS. A greater proportion of South Asian women are impacted by menstrual cycle disturbances and hirsutism than European and Afro-Caribbean women. South Asian and Afro-Caribbean women show greater measures of insulin resistance and weight gain when compared to their European peers. Women with increased BMI are shown to have an increased prevalence of PCOS phenotypes alongside increased levels of insulin resistance and testosterone. Furthermore, significantly different relationships between the waist-hip ratio and measures of insulin and glucose control for Afro-Caribbean women were identified compared to other ethnic groups. Conclusions: The findings of this study show ethnicity significantly influence the phenotypic and biochemical presentations of PCOS, with an interaction between body habitus and ethnicity found. Furthermore, we provide further data on the influences of BMI on the manifestations of PCOS. Therefore, we highlight the need to consider these factors when reviewing diagnostic criteria and delivering clinical care for these groups.

Keywords: PCOS, ethnicity, BMI, clinical

Procedia PDF Downloads 113
335 Innovation in "Low-Tech" Industries: Portuguese Footwear Industry

Authors: Antonio Marques, Graça Guedes

Abstract:

The Portuguese footwear industry had in the last five years a remarkable performance in the exportation values, the trade balance and others economic indicators. After a long period of difficulties and with a strong reduction of companies and employees since 1994 until 2009, the Portuguese footwear industry changed the strategy and is now a success case between the international players of footwear. Only the Italian industry sells footwear with a higher value than the Portuguese and the distance between them is decreasing year by year. This paper analyses how the Portuguese footwear companies innovate and make innovation, according the classification proposed by the Oslo Manual. Also analyses the strategy follow in the innovation process, as suggested by Freeman and Soete, and shows the linkage between the type of innovation and the strategy of innovation. The research methodology was qualitative and the strategy for data collection was the case study. The qualitative data will be analyzed with the MAXQDA software. The economic results of the footwear companies studied shows differences between all of them and these differences are related with the innovation strategy adopted. The companies focused in product and marketing innovation, oriented to their target market, have higher ratios “turnover per worker” than the companies focused in process innovation. However, all the footwear companies in this “low-tech” industry create value and contribute to a positive foreign trade of 1.310 million euros in 2013. The growth strategies implemented has the participation of the sectorial organizations in several innovative projects. And it’s obvious that cooperation between all of them is a critical element to the performance achieved by the companies and the innovation observed. Can conclude that the Portuguese footwear sector has in the last years an excellent performance (economic results, exportation values, trade balance, brands and international image) and his performance is strongly related with the strategy in innovation followed, the type of innovation and the networks in the cluster. A simplified model, called “Ace of Diamonds”, is proposed by the authors and explains the way how this performance was reached by the seven companies that participate in the study (two of them are the leaders in the setor), and if this model can be used in others traditional and “low-tech” industries.

Keywords: footwear, innovation, “low-tech” industry, Oslo manual

Procedia PDF Downloads 379
334 The Effect of the Base Computer Method on Repetitive Behaviors and Communication Skills

Authors: Hoorieh Darvishi, Rezaei

Abstract:

Introduction: This study investigates the efficacy of computer-based interventions for children with Autism Spectrum Disorder , specifically targeting communication deficits and repetitive behaviors. The research evaluates novel software applications designed to enhance narrative capabilities and sensory integration through structured, progressive intervention protocols Method: The study evaluated two intervention software programs designed for children with autism, focusing on narrative speech and sensory integration. Twelve children aged 5-11 participated in the two-month intervention, attending three 45-minute weekly sessions, with pre- and post-tests measuring speech, communication, and behavioral outcomes. The narrative speech software incorporated 14 stories using the Cohen model. It progressively reduced software assistance as children improved their storytelling abilities, ultimately enabling independent narration. The process involved story comprehension questions and guided story completion exercises. The sensory integration software featured approximately 100 exercises progressing from basic classification to complex cognitive tasks. The program included attention exercises, auditory memory training (advancing from single to four-syllable words), problem-solving, decision-making, reasoning, working memory, and emotion recognition activities. Each module was accompanied by frequency and pitch-adjusted music that child enjoys it to enhance learning through multiple sensory channels (visual, auditory, and tactile). Conclusion: The results indicated that the use of these software programs significantly improved communication and narrative speech scores in children, while also reducing scores related to repetitive behaviors. Findings: These findings highlight the positive impact of computer-based interventions on enhancing communication skills and reducing repetitive behaviors in children with autism.

Keywords: autism, communication_skills, repetitive_behaviors, sensory_integration

Procedia PDF Downloads 9
333 History of Pediatric Renal Pathology

Authors: Mostafa Elbaba

Abstract:

Because childhood renal diseases are grossly different compared to adult diseases, pediatric nephrology was founded as a specialty in 1965. Renal pathology specialty was introduced at the London Ciba Symposium in 1961. The history of renal pathology can be divided into two eras: one starting in the 1650s with the invention of the microscope, the second in the 1950s with the implementation of renal biopsy, and the presence of electron microscopy and immunofluorescence study. Prior to the 1950s, the study of diseased human kidneys was restricted to postmortem examination by gross pathology. In 1827, Richard Bright first described his triad of kidney disease, which was confirmed by morbid kidney changes at autopsy. In 1905 Friedrich Mueller coined the term “nephrosis” describing the inflammatory form of “degenerative” diseases, and later F. Munk added the term “lipoid nephrosis”. The most profound influence on renal diseases’ classification came from the publication of Volhard and Fahr in 1914. In 1899, Carl Max Wilhelm Wilms described Wilms' tumor of the kidneys in children. Chronic pyelonephritis was a popular renal diagnosis and the most common cause of uremia until the 1960s. Although kidney biopsy had been used early in the 1930s for renal tumors, the earliest reports of its use in the diagnosis of medical kidney disease were by Iversen and Brun in 1951, followed by Alwall in 1952, then by Pardo in 1953. The earliest intentional renal biopsies were done in 1944 by Nils Alwall, while the procedure was abandoned after the death of one of his 13 patients who biopsied. In 1950, Antonino Perez-Ara attempted renal biopsies, but his results were missed because of an unpopular journal publication. In the year 1951, Claus Brun and Poul Iverson developed the biopsy procedure using an aspiration technique. Popularizing renal biopsy practice is accredited to Robert Kark, who published his distinct work in 1954. He perfected the technique of renal biopsy in the prone position using the Vim-Silverman needle and used intravenous pyelography to improve the localization of the kidney.

Keywords: history, medicine, nephrology, pediatrics, pathology

Procedia PDF Downloads 59
332 The Effect of the Base Computer Method on Repetitive Behaviors and Communication Skills

Authors: Hoorieh Darvishi, Rezaei

Abstract:

Introduction: This study investigates the efficacy of computer-based interventions for children with Autism Spectrum Disorder , specifically targeting communication deficits and repetitive behaviors. The research evaluates novel software applications designed to enhance narrative capabilities and sensory integration through structured, progressive intervention protocols Method: The study evaluated two intervention software programs designed for children with autism, focusing on narrative speech and sensory integration. Twelve children aged 5-11 participated in the two-month intervention, attending three 45-minute weekly sessions, with pre- and post-tests measuring speech, communication, and behavioral outcomes. The narrative speech software incorporated 14 stories using the Cohen model. It progressively reduced software assistance as children improved their storytelling abilities, ultimately enabling independent narration. The process involved story comprehension questions and guided story completion exercises. The sensory integration software featured approximately 100 exercises progressing from basic classification to complex cognitive tasks. The program included attention exercises, auditory memory training (advancing from single to four-syllable words), problem-solving, decision-making, reasoning, working memory, and emotion recognition activities. Each module was accompanied by frequency and pitch-adjusted music that child enjoys it to enhance learning through multiple sensory channels (visual, auditory, and tactile). Conclusion: The results indicated that the use of these software programs significantly improved communication and narrative speech scores in children, while also reducing scores related to repetitive behaviors. Findings: These findings highlight the positive impact of computer-based interventions on enhancing communication skills and reducing repetitive behaviors in children with autism.

Keywords: autism, narrative speech, persian, SI, repetitive behaviors, communication

Procedia PDF Downloads 8
331 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chlef

Authors: Messaoudi Mohammed Amin

Abstract:

The reduction of available land resources and the increased cout associated with the use of hight quality materials have led to the need for local soils to be used in geotecgnical construction however, poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in oyher works unsuitable soils with low bearing capacity, high plasticity coupled with high insatbility are frequently encountered hense, there is a need to improve the physical and mechanical charateristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for quite sometime bu mixing additives, such us cement, lime and fly ash to the soil to increase its strength. The aim of this project is to study the effect of using lime, natural pozzolana or combination of both on the geotecgnical cherateristics of clayey soil. Test specimen were subjected to atterberg limits test, compaction test, box shear test and uncomfined compression test Lime or natural pozzolana was added to clayey soil at rangs of 0-8% and 0-20% respectively. In addition combinations of lime –natural pozzolana were added to clayey soil at the same ranges specimen were cured for 1-7, and 28 days after which they were tested for uncofined compression tests. Based on the experimental results, it was concluded that an important decrease of plasticity index was observed for thr samples stabilized with the combinition lime-natural pozzolana in addition, the use of the combination lime-natural pozzolana modifies the clayey soil classification according to casagrand plasiticity chart. Moreover, based on the favourable results of shear and compression strength obtained, it can be concluded that clayey soil can be successfuly stabilized by combined action of lime and natural pozzolana also this combination showed an appreciable improvement of the shear parameters. Finally, since natural pozzolana is much cheaper than lime ,the addition of natural pozzolana in lime soil mix may particulary become attractive and can result in cost reduction of construction.

Keywords: clay, soil stabilization, natural pozzolana, atterberg limits, compaction, compressive strength shear strength, curing

Procedia PDF Downloads 301
330 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint

Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar

Abstract:

Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.

Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine

Procedia PDF Downloads 82
329 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data

Authors: Nicola Colaninno, Eugenio Morello

Abstract:

The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.

Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing

Procedia PDF Downloads 194
328 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan

Authors: Basit Aftab, Zhichao Wang, Feng Zhongke

Abstract:

Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.

Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.

Procedia PDF Downloads 33
327 Observing Sustainability: Case Studies of Chandigarh Boutiques and Their Textile Waste Reuse

Authors: Prabhdip Brar

Abstract:

Since the ancient times recycling, reusing and upcycling has been strongly practiced in India. However, previously reprocess was common due to lack of resources and availability of free time, especially with women who were homemakers. The upward strategy of design philosophy and drift of sustainability is sustainable fashion which is also termed eco fashion, the aspiration of which is to craft a classification which can be supported ad infinitum in terms of environmentalism and social responsibility. The viable approach of sustaining fashion is part of the larger trend of justifiable design where a product is generated and produced while considering its social impact to the environment. The purpose of this qualitative research paper is to find out if the apparel design boutiques in Chandigarh, (an educated fashion-conscious city) are contributing towards making conscious efforts with the re-use of environmentally responsive materials to rethink about eco-conscious traditional techniques and socially responsible approaches of the invention. Observation method and case studies of ten renowned boutiques of Chandigarh were conducted to find out about the creativity of their waste management and social contribution. Owners were interviewed with open-ended questions to find out their understanding of sustainability. This paper concludes that there are many sustainable ideas existing within India from olden times that can be incorporated into modern manufacturing techniques. The results showed all the designers are aware of sustainability as a concept. In all practical purposes, a patch of fabric is being used for bindings or one over the other as surface ornamentation techniques. Plain Fabrics and traditional prints and fabrics are valued more by the owners for using on other garments. Few of them sort their leftover pieces according to basic colors. Few boutique owners preferred donating it to Non-Government organizations. Still, they have enough waste which is not utilized because of lack of time and labor. This paper discusses how the Indian traditional techniques still derive influences though design and techniques, making India one of the contributing countries to the sustainability of fashion and textiles.

Keywords: eco-fashion textile, sustainable textiles, sustainability in india, waste management

Procedia PDF Downloads 107
326 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
325 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 361
324 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 70
323 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture

Authors: Zakia Hbellaq

Abstract:

The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.

Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants

Procedia PDF Downloads 160
322 From Poverty to Progress: A Comparative Analysis of Mongolia with PEER Countries

Authors: Yude Wu

Abstract:

Mongolia, grappling with significant socio-economic challenges, faces pressing issues of inequality and poverty, as evidenced by a high Gini coefficient and the highest poverty rate among the top 20 largest Asian countries. Despite government efforts, Mongolia's poverty rate experienced only a slight reduction from 29.6 percent in 2016 to 27.8 percent in 2020. PEER countries, such as South Africa, Botswana, Kazakhstan, and Peru, share characteristics with Mongolia, including reliance on the mining industry and classification as lower middle-income countries. Successful transitions of these countries to upper middle-income status between 1994 and the 2010s provide valuable insights. Drawing on secondary analyses of existing research and PEER country profiles, the study evaluates past policies, identifies gaps in current approaches, and proposes recommendations to combat poverty sustainably. The hypothesis includes a reliance on the mining industry and a transition from lower to upper middle-income status. Policies from these countries, such as the GEAR policy in South Africa and economic diversification in Botswana, offer insights into Mongolia's development. This essay aims to illuminate the multidimensional nature of underdevelopment in Mongolia through a secondary analysis of existing research and PEER country profiles, evaluating past policies, identifying gaps in current approaches, and providing recommendations for sustainable progress. Drawing inspiration from PEER countries, Mongolia can implement policies such as economic diversification to reduce vulnerability and create stable job opportunities. Emphasis on infrastructure, human capital, and strategic partnerships for Foreign Direct Investment (FDI) aligns with successful strategies implemented by PEER countries, providing a roadmap for Mongolia's development objectives.

Keywords: inequality, PEER countries, comparative analysis, nomadic animal husbandry, sustainable growth

Procedia PDF Downloads 63
321 The Roots of Amazonia’s Droughts and Floods: Complex Interactions of Pacific and Atlantic Sea-Surface Temperatures

Authors: Rosimeire Araújo Silva, Philip Martin Fearnside

Abstract:

Extreme droughts and floods in the Amazon have serious consequences for natural ecosystems and the human population in the region. The frequency of these events has increased in recent years, and projections of climate change predict greater frequency and intensity of these events. Understanding the links between these extreme events and different patterns of sea surface temperature in the Atlantic and Pacific Oceans is essential, both to improve the modeling of climate change and its consequences and to support efforts of adaptation in the region. The relationship between sea temperatures and events in the Amazon is much more complex than is usually assumed in climatic models. Warming and cooling of different parts of the oceans, as well as the interaction between simultaneous temperature changes in different parts of each ocean and between the two oceans, have specific consequences for the Amazon, with effects on precipitation that vary in different parts of the region. Simplistic generalities, such as the association between El Niño events and droughts in the Amazon, do not capture this complexity. We investigated the variability of Sea Surface Temperature (SST) in the Tropical Pacific Ocean during the period 1950-2022, using Empirical Orthogonal Functions (FOE), spectral analysis coherence and wavelet phase. The two were identified as the main modes of variability, which explain about 53,9% and 13,3%, respectively, of the total variance of the data. The spectral and coherence analysis and wavelets phase showed that the first selected mode represents the warming in the central part of the Pacific Ocean (the “Central El Niño”), while the second mode represents warming in the eastern part of the Pacific (the “Eastern El Niño The effects of the 1982-1983 and 1976-1977 El Niño events in the Amazon, although both events were characterized by an increase in sea surface temperatures in the Equatorial Pacific, the impact on rainfall in the Amazon was distinct. In the rainy season, from December to March, the sub-basins of the Japurá, Jutaí, Jatapu, Tapajós, Trombetas and Xingu rivers were the regions that showed the greatest reductions in rainfall associated with El Niño Central (1982-1983), while the sub-basins of the Javari, Purus, Negro and Madeira rivers had the most pronounced reductions in the year of Eastern El Niño (1976-1977). In the transition to the dry season, in April, the greatest reductions were associated with the Eastern El Niño year for the majority of the study region, with the exception only of the sub-basins of the Madeira, Trombetas and Xingu rivers, which had their associated reductions to Central El Niño. In the dry season from July to September, the sub-basins of the Japurá Jutaí Jatapu Javari Trombetas and Madeira rivers were the rivers that showed the greatest reductions in rainfall associated with El Niño Central, while the sub-basins of the Tapajós Purus Negro and Xingu rivers had the most pronounced reductions. In the Eastern El Niño year this season. In this way, it is possible to conclude that the Central (Eastern) El Niño controlled the reductions in soil moisture in the dry (rainy) season for all sub-basins shown in this study. Extreme drought events associated with these meteorological phenomena can lead to a significant increase in the occurrence of forest fires. These fires have a devastating impact on Amazonian vegetation, resulting in the irreparable loss of biodiversity and the release of large amounts of carbon stored in the forest, contributing to the increase in the greenhouse effect and global climate change.

Keywords: sea surface temperature, variability, climate, Amazon

Procedia PDF Downloads 63
320 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: computational analysis, gendered grammar, misogynistic language, neural networks

Procedia PDF Downloads 119
319 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 50
318 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 135
317 Two Houses in the Arabian Desert: Assessing the Built Work of RCR Architects in the UAE

Authors: Igor Peraza Curiel, Suzanne Strum

Abstract:

Today, when many foreign architects are receiving commissions in the United Arab Emirates, it is essential to analyze how their designs are influenced by the region's culture, environment, and building traditions. This study examines the approach to siting, geometry, construction methods, and material choices in two private homes for a family in Dubai, a project being constructed on adjacent sites by the acclaimed Spanish team of RCR Architects. Their third project in Dubai, the houses mark a turning point in their design approach to the desert. The Pritzker Prize-winning architects of RCR gained renown for building works deeply responsive to the history, landscape, and customs of their hometown in a volcanic area of the Catalonia region of Spain. Key formative projects and their entry to practice in UAE will be analyzed according to the concepts of place identity, the poetics of construction, and material imagination. The poetics of construction, a theoretical position with a long practical tradition, was revived by the British critic Kenneth Frampton. The idea of architecture as a constructional craft is related to the concepts of material imagination and place identity--phenomenological concerns with the creative engagement with local matter and topography that are at the very essence of RCR's way of designing, detailing, and making. Our study situates RCR within the challenges of building in the region, where western forms and means have largely replaced the ingenious responsiveness of indigenous architecture to the climate and material scarcity. The dwellings, iterations of the same steel and concrete vaulting system, highlight the conceptual framework of RCR's design approach to offer a study in contemporary critical regionalism. The Kama House evokes Bedouin tents, while the Alwah House takes the form of desert dunes in response to the temporality of the winds. Metal mesh screens designed to capture the shifting sands will complete the forms. The original research draws on interviews with the architects and unique documentation provided by them and collected by the authors during on-site visits. By examining the two houses in-depth, this paper foregrounds a series of timely questions: 1) What is the impact of the local climatic, cultural, and material conditions on their project in the UAE? 2) How does this work further their experiences in the region? 3) How has RCR adapted their construction techniques as their work expands beyond familiar settings? The investigation seeks to understand how the design methodology developed for more than 20 years and enmeshed in the regional milieu of their hometown can transform as the architects encounter unique characteristics and values in the Middle East. By focusing on the contemporary interpretation of Arabic geometry and elements, the houses reveal the role of geometry, tectonics, and material specificity in the realization from conceptual sketches to built form. In emphasizing the importance of regional responsiveness, the dynamics of international construction practice, and detailing this study highlights essential issues for professionals and students looking to practice in an increasingly global market.

Keywords: material imagination, regional responsiveness, place identity, poetics of construction

Procedia PDF Downloads 145
316 Morphological and Molecular Characterization of Accessions of Black Fonio Millet (Digitaria Iburua Stapf) Grown in Selected Regions in Nigeria

Authors: Nwogiji Cletus Olando, Oselebe Happiness Ogba, Enoch Achigan-Dako

Abstract:

Digitaria iburua, commonly known as black fonio, is a cereal crop native to Africa and extensively cultivated by smallholder farmers in Northern Benin, Togo, and Nigeria. This crop holds immense nutritional and socio-cultural value. Unfortunately, limited knowledge about its genetic diversity exists due to a lack of scientific attention. As a result, its potential for improvement in food and agriculture remains largely untapped. To address this gap, a study was conducted using 41 accessions of D. iburua stored in the genebank of the Laboratory of Genetics, Biotechnology, and Seed Science at Abomey-Calavi University, Benin. The study employed both morphological and simple sequence repeat (SSR) markers to evaluate the genetic variability of the accessions. Agro-morphological assessments were carried out during the 2020 cropping season, utilizing an alpha lattice design with three replications. The collected data encompassed qualitative and quantitative traits. Additionally, molecular variability was assessed using eleven SSR markers. The results revealed significant phenotypic variability among the evaluated accessions, leading to their classification into three main clusters. Furthermore, the eleven SSR markers identified a total of 50 alleles, averaging 4.55 alleles per locus. The primers exhibited an average polymorphic information content value of 0.43, with the DE-ARC019 primer displaying the highest value (0.59). These findings suggest a substantial degree of genetic heterogeneity within the evaluated accessions, and the SSR markers employed in the study proved highly effective in detecting and characterizing this genetic variability. In conclusion, this study highlights the presence of significant genetic diversity in black fonio and provides valuable insights for future efforts aimed at its genetic improvement and conservation.

Keywords: genetic diversity, digitaria iburua, genetic improvement, simple sequence repeat markers, Nigeria, conservation

Procedia PDF Downloads 86
315 Understanding Rural Teachers’ Perceived Intention of Using Play in ECCE Mathematics Classroom: Strength-Based Approach

Authors: Nyamela M. ‘Masekhohola, Khanare P. Fumane

Abstract:

The Lesotho downward trend in mathematics attainment at all levels is compounded by the absence of innovative approaches to teaching and learning in Early Childhood. However, studies have shown that play pedagogy can be used to mitigate the challenges of mathematics education. Despite the benefits of play pedagogy to rural learners, its full potential has not been realized in early childhood care and education classrooms to improve children’s performance in mathematics because the adoption of play pedagogy depends on a strength-based approach. The study explores the potential of play pedagogy to improve mathematics education in early childhood care and education in Lesotho. Strength-based approach is known for its advocacy of recognizing and utilizing children’s strengths, capacities and interests. However, this approach and its promisingattributes is not well-known in Lesotho. In particular, little is known about the attributes of play pedagogy that are essential to improve mathematic education in ECCE programs in Lesotho. To identify such attributes and strengthen mathematics education, this systematic review examines evidence published on the strengths of play pedagogy that supports the teaching and learning of mathematics education in ECCE. The purpose of this review is, therefore, to identify and define the strengths of play pedagogy that supports mathematics education. Moreover, the study intends to understand the rural teachers’ perceived intention of using play in ECCE math classrooms through a strength-based approach. Eight key strengths were found (cues for reflection, edutainment, mathematics language development, creativity and imagination, cognitive promotion, exploration, classification, and skills development). This study is the first to identify and define the strength-based attributes of play pedagogy to improve the teaching and learning of mathematics in ECCE centers in Lesotho. The findings reveal which opportunities teachers find important for improving the teaching of mathematics as early as in ECCE programs. We conclude by discussing the implications of the literature for stimulating dialogues towards formulating strength-based approaches to teaching mathematics, as well as reflecting on the broader contributions of play pedagogy as an asset to improve mathematics in Lesotho and beyond.

Keywords: early childhood education, mathematics education, lesotho, play pedagogy, strength-based approach.

Procedia PDF Downloads 142
314 Religion and Risk: Unmasking Noah's Narratives in the Pacific Islands

Authors: A. Kolendo

Abstract:

Pacific Islands are one of the most vulnerable areas to climate change. Sea level rise and accelerating storm surge continuously threaten the communities' habitats on low-lying atolls. With scientific predictions of encroaching tides on their land, the Islanders have been informed about the need for future relocation planning. However, some communities oppose such retreat strategies through the reasoning that comprehends current climatic changes through the lenses of the biblical ark of Noah. This parable states God's promise never to flood the Earth again and never deprive people of their land and habitats. Several interpretations of this parable emerged in Oceania, prompting either climate action or denial. Resistance to relocation planning expressed through Christian thoughts led religion to be perceived as a barrier to dialogue between the Islanders and scientists. Since climate change concerns natural processes, the attitudes towards environmental stewardship prompt the communities' responses to it; some Christian teachings indicate humanity's responsibility over the environment, whereas others ascertain the people's dominion, which prompts resistance and sometimes denial. With church denominations and their various environmental standpoints, competing responses to climate change emerged in Oceania. Before miss-ionization, traditional knowledge had guided the environmental sphere, influencing current Christian teachings. Each atoll characterizes a distinctive manner of traditional knowledge; however, the unique relationship with nature unites all islands. The interconnectedness between the land, sea and people indicates the integrity between the communities and their environments. Such a factor influences the comprehension of Noah's story in the context of climate change that threatens their habitats. Pacific Islanders experience climate change through the slow disappearance of their homelands. However, the Western world perceives it as a global issue that will affect the population in the long-term perspective. Therefore, the Islanders seek to comprehend this global phenomenon in a local context that reads climate change as the Great Deluge. Accordingly, the safety measures that this parable promotes compensate for the danger of climate change. The rainbow covenant gives hope in God's promise never to flood the Earth again. At the same time, Noah's survival relates to the Islanders' current situation. Since these communities have the lowest carbon emissions rate, their contribution to anthropogenic climate change is scarce. Therefore, the lack of environmental sin would contextualize them as contemporary Noah with the ultimate survival of sea level rise. This study aims to defy religion constituting a barrier through secondary data analysis from a risk compensation perspective. Instead, religion is portrayed as a source of knowledge that enables comprehension of the communities' situation. By demonstrating that the Pacific Islanders utilize Noah's story as a vessel for coping with the danger of climate change, the study argues that religion provides safety measures that compensate for the future projections of land's disappearance. The purpose is to build a bridge between religious communities and scientific bodies and ultimately bring an understanding of two diverse perspectives. By addressing the practical challenges of interdisciplinary research with faith-based systems, this study uplifts the voices of communities and portrays their experiences expressed through Christian thoughts.

Keywords: Christianity, climate change, existential threat, Pacific Islands, story of Noah

Procedia PDF Downloads 95