Search results for: patients’ related risks in the current home hemodialysis practices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25473

Search results for: patients’ related risks in the current home hemodialysis practices

273 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 361
272 Impact of Anthropogenic Stresses on Plankton Biodiversity in Indian Sundarban Megadelta: An Approach towards Ecosystem Conservation and Sustainability

Authors: Dibyendu Rakshit, Santosh K. Sarkar

Abstract:

The study illustrates a comprehensive account of large-scale changes plankton community structure in relevance to water quality characteristics due to anthropogenic stresses, mainly concerned for Annual Gangasagar Festival (AGF) at the southern tip of Sagar Island of Indian Sundarban wetland for 3-year duration (2012-2014; n=36). This prograding, vulnerable and tide-dominated megadelta has been formed in the estuarine phase of the Hooghly Estuary infested by largest continuous tract of luxurious mangrove forest, enriched with high native flora and fauna. The sampling strategy was designed to characterize the changes in plankton community and water quality considering three diverse phases, namely during festival period (January) and its pre - (December) as well as post (February) events. Surface water samples were collected for estimation of different environmental variables as well as for phytoplankton and microzooplankton biodiversity measurement. The preservation and identification techniques of both biotic and abiotic parameters were carried out by standard chemical and biological methods. The intensive human activities lead to sharp ecological changes in the context of poor water quality index (WQI) due to high turbidity (14.02±2.34 NTU) coupled with low chlorophyll a (1.02±0.21 mg m-3) and dissolved oxygen (3.94±1.1 mg l-1), comparing to pre- and post-festival periods. Sharp reduction in abundance (4140 to 2997 cells l-1) and diversity (H′=2.72 to 1.33) of phytoplankton and microzooplankton tintinnids (450 to 328 ind l-1; H′=4.31 to 2.21) was very much pronounced. The small size tintinnid (average lorica length=29.4 µm; average LOD=10.5 µm) composed of Tintinnopsis minuta, T. lobiancoi, T. nucula, T. gracilis are predominant and reached some of the greatest abundances during the festival period. Results of ANOVA revealed a significant variation in different festival periods with phytoplankton (F= 1.77; p=0.006) and tintinnid abundance (F= 2.41; P=0.022). RELATE analyses revealed a significant correlation between the variations of planktonic communities with the environmental data (R= 0.107; p= 0.005). Three distinct groups were delineated from principal component analysis, in which a set of hydrological parameters acted as the causative factor(s) for maintaining diversity and distribution of the planktonic organisms. The pronounced adverse impact of anthropogenic stresses on plankton community could lead to environmental deterioration, disrupting the productivity of benthic and pelagic ecosystems as well as fishery potentialities which directly related to livelihood services. The festival can be considered as multiple drivers of changes in relevance to beach erosion, shoreline changes, pollution from discarded plastic and electronic wastes and destruction of natural habitats resulting loss of biodiversity. In addition, deterioration in water quality was also evident from immersion of idols, causing detrimental effects on aquatic biota. The authors strongly recommend for adopting integrated scientific and administrative strategies for resilience, sustainability and conservation of this megadelta.

Keywords: Gangasagar festival, phytoplankton, Sundarban megadelta, tintinnid

Procedia PDF Downloads 206
271 Gendered Water Insecurity: a Structural Equation Approach for Female-Headed Households in South Africa

Authors: Saul Ngarava, Leocadia Zhou, Nomakhaya Monde

Abstract:

Water crises have the fourth most significant societal impact after weapons of mass destruction, climate change, and extreme weather conditions, ahead of natural disasters. Intricacies between women and water are central to achieving the 2030 Sustainable Development Goals (SDGs). The majority of the 1.2 billion poor people worldwide, with two-thirds being women, and mostly located in Sub Sahara Africa (SSA) and South Asia, do not have access to safe and reliable sources of water. There exist gendered differences in water security based on the division of labour associating women with water. Globally, women and girls are responsible for water collection in 80% of the households which have no water on their premises. Women spend 16 million hours a day collecting water, while men and children spend 6 million and 4 million per day, respectively, which is time foregone in the pursuit of other livelihood activities. Due to their proximity and activities concerning water, women are vulnerable to water insecurity through exposures to water-borne diseases, fatigue from physically carrying water, and exposure to sexual and physical harassment, amongst others. Proximity to treated water and their wellbeing also has an effect on their sensitivity and adaptive capacity to water insecurity. The great distances, difficult terrain and heavy lifting expose women to vulnerabilities of water insecurity. However, few studies have quantified the vulnerabilities and burdens on women, with a few taking a phenomenological qualitative approach. Vulnerability studies have also been scanty in the water security realm, with most studies taking linear forms of either quantifying exposures, sensitivities or adaptive capacities in climate change studies. The current study argues for the need for a water insecurity vulnerability assessment, especially for women into research agendas as well as policy interventions, monitoring, and evaluation. The study sought to identify and provide pathways through which female-headed households were water insecure in South Africa, the 30th driest country in the world. This was through linking the drinking water decision as well as the vulnerability frameworks. Secondary data collected during the 2016 General Household Survey (GHS) was utilised, with a sample of 5928 female-headed households. Principal Component Analysis and Structural Equation Modelling were used to analyse the data. The results show dynamic relationships between water characteristics and water treatment. There were also associations between water access and wealth status of the female-headed households. Association was also found between water access and water treatment as well as between wealth status and water treatment. The study concludes that there are dynamic relationships in water insecurity (exposure, sensitivity, and adaptive capacity) for female-headed households in South Africa. The study recommends that a multi-prong approach is required in tackling exposures, sensitivities, and adaptive capacities to water insecurity. This should include capacitating and empowering women for wealth generation, improve access to water treatment equipment as well as prioritising the improvement of infrastructure that brings piped and safe water to female-headed households.

Keywords: gender, principal component analysis, structural equation modelling, vulnerability, water insecurity

Procedia PDF Downloads 96
270 Recycling Biomass of Constructed Wetlands as Precursors of Electrodes for Removing Heavy Metals and Persistent Pollutants

Authors: Álvaro Ramírez Vidal, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero, José Villaseñor Camacho, Javier Llanos López

Abstract:

In recent times, environmental problems have led to the extensive use of biological systems to solve them. Among the different types of biological systems, the use of plants such as aquatic macrophytes in constructed wetlands and terrestrial plant species for treating polluted soils and sludge has gained importance. Though the use of constructed wetlands for wastewater treatment is a well-researched domain, the slowness of pollutant degradation and high biomass production pose some challenges. Plants used in CW participate in different mechanisms for the capture and degradation of pollutants that also can retain some pharmaceutical and personal care products (PPCPs) that are very persistent in the environment. Thus, these systems present advantages in line with the guidelines published for the transition towards friendly and ecological procedures as they are environmentally friendly systems, consume low energy, or capture atmospheric CO₂. However, the use of CW presents some drawbacks, as the slowness of pollutant degradation or the production of important amounts of plant biomass, which need to be harvested and managed periodically. Taking this opportunity in mind, it is important to highlight that this residual biomass (of lignocellulosic nature) could be used as the feedstock for the generation of carbonaceous materials using thermochemical transformations such as slow pyrolysis or hydrothermal carbonization to produce high-value biomass-derived carbons through sustainable processes as adsorbents, catalysts…, thereby improving the circular carbon economy. Thus, this work carried out the analysis of some PPCPs commonly found in urban wastewater, as salicylic acid or ibuprofen, to evaluate the remediation carried out for the Phragmites Australis. Then, after the harvesting, this biomass can be used to synthesize electrodes through hydrothermal carbonization (HTC) and produce high-value biomass-derived carbons with electrocatalytic activity to remove heavy metals and persistent pollutants, promoting circular economy concepts. To do this, it was chosen biomass derived from the natural environment in high environmental risk as the Daimiel Wetlands National Park in the center of Spain, and the rest of the biomass developed in a CW specifically designed to remove pollutants. The research emphasizes the impact of the composition of the biomass waste and the synthetic parameters applied during HTC on the electrocatalytic activity. Additionally, this parameter can be related to the physicochemical properties, as porosity, surface functionalization, conductivity, and mass transfer of the electrodes lytic inks. Data revealed that carbon materials synthesized have good surface properties (good conductivities and high specific surface area) that enhance the electro-oxidants generated and promote the removal of PPCPs and the chemical oxygen demand of polluted waters.

Keywords: constructed wetlands, carbon materials, heavy metals, pharmaceutical and personal care products, hydrothermal carbonization

Procedia PDF Downloads 54
269 Perception of Health Care Providers on the Use of Modern Contraception by Adolescents in Rwanda

Authors: Jocelyne Uwibambe, Ange Thaina Ndizeye, Dinah Ishimwe, Emmanuel Mugabo Byakagaba

Abstract:

Background: In low- and middle-income countries (LMICs), the use of modern contraceptive methods among women, including adolescents, is still low despite the desire to avoid pregnancy. In addition, countries have set a minimum age for marriage, which is 21 years for most countries, including Rwanda. The Rwandan culture, to a certain extent, and religion, to a greater extent, however, limit the freedom of young women to use contraceptive services because it is wrongly perceived as an encouragement for premarital sexual intercourse. In the end, what doesn’t change is that denying access to contraceptives to either male or female adolescents does not translate into preventing them from sexual activities, hence leading to an ever-increasing number of unwanted pregnancies, possible STIs, HIV, Human Papilloma Virus, and subsequent unsafe abortion followed by avoidable expensive complications. The purpose of this study is to evaluate the perception of healthcare providers regarding contraceptive use among adolescents. Methodology: This was a qualitative study. Interviews were done with different healthcare providers, including doctors, nurses, midwives, and pharmacists, through focused group discussions and in-depth interviews, then the audio was transcribed, translated and thematic coding was done. Results: This study explored the perceptions of healthcare workers regarding the provision of modern contraception to adolescents in Rwanda. The findings revealed that while healthcare providers had a good understanding of family planning and contraception, they were hesitant to provide contraception to adolescents. Sociocultural beliefs played a significant role in shaping their attitudes, as many healthcare workers believed that providing contraception to adolescents would encourage promiscuous behavior and go against cultural norms. Religious beliefs also influenced their reluctance, with some healthcare providers considering premarital sex and contraception as sinful. Lack of knowledge among parents and adolescents themselves was identified as a contributing factor to unwanted pregnancies, as inaccurate information from peers and social media influenced risky sexual behavior. Conditional policies, such as the requirement for parental consent, further hindered adolescents' access to contraception. The study suggested several solutions, including comprehensive sexual and reproductive health education, involving multiple stakeholders, ensuring easy access to contraception, and involving adolescents in policymaking. Overall, this research highlights the need for addressing sociocultural beliefs, improving healthcare providers' knowledge, and revisiting policies to ensure adolescents' reproductive health rights are met in Rwanda. Conclusion: The study highlights the importance of enhancing healthcare provider training, expanding access to modern contraception, implementing community-based interventions, and strengthening policy and programmatic support for adolescent contraception. Addressing these challenges is crucial for improving the provision of family planning services to adolescents in Rwanda and achieving the Sustainable Development Goals related to sexual and reproductive health. Collaborative efforts involving various stakeholders and organizations can contribute to overcoming these barriers and promoting the well-being of adolescents in Rwanda.

Keywords: adolescent, health care providers, contraception, reproductive health

Procedia PDF Downloads 24
268 Enhancing Seismic Resilience in Colombia's Informal Housing: A Low-cost Retrofit Strategy with Buckling-restrained Braces to Protect Vulnerable Communities in Earthquake-prone Regions

Authors: Luis F. Caballero-castro, Dirsa Feliciano, Daniela Novoa, Orlando Arroyo, Jesús D. Villalba-morales

Abstract:

Colombia faces a critical challenge in seismic resilience due to the prevalence of informal housing, which constitutes approximately 70% of residential structures. More than 10 million Colombians (20% of the population), live in homes susceptible to collapse in the event of an earthquake. This, combined with the fact that 83% of the population is in intermediate and high seismic hazard areas, has brought serious consequences to the country. These consequences became evident during the 1999 Armenia earthquake, which affected nearly 100,000 properties and represented economic losses equivalent to 1.88% of that year's Gross Domestic Product (GDP). Despite previous efforts to reinforce informal housing through methods like externally reinforced masonry walls, alternatives related to seismic protection systems (SPDs), such as Buckling-Restrained Braces (BRB), have not yet been explored in the country. BRBs are reinforcement elements capable of withstanding both compression and tension, making them effective in enhancing the lateral stiffness of structures. In this study, the use of low-cost and easily installable BRBs for the retrofit of informal housing in Colombia was evaluated, considering the economic limitations of the communities. For this purpose, a case study was selected involving an informally constructed dwelling in the country, from which field information on its structural characteristics and construction materials was collected. Based on the gathered information, nonlinear models with and without BRBs were created, and their seismic performance was analyzed and compared through incremental static (pushover) and nonlinear dynamic analyses. In the first analysis, the capacity curve was identified, showcasing the sequence of failure events occurring from initial yielding to structural collapse. In the second case, the model underwent nonlinear dynamic analyses using a set of seismic records consistent with the country's seismic hazard. Based on the results, fragility curves were calculated to evaluate the probability of failure of the informal housings before and after the intervention with BRBs, providing essential information about their effectiveness in reducing seismic vulnerability. The results indicate that low-cost BRBs can significantly increase the capacity of informal housing to withstand earthquakes. The dynamic analysis revealed that retrofit structures experienced lower displacements and deformations, enhancing the safety of residents and the seismic performance of informally constructed houses. In other words, the use of low-cost BRBs in the retrofit of informal housing in Colombia is a promising strategy for improving structural safety in seismic-prone areas. This study emphasizes the importance of seeking affordable and practical solutions to address seismic risk in vulnerable communities in earthquake-prone regions in Colombia and serves as a model for addressing similar challenges of informal housing worldwide.

Keywords: buckling-restrained braces, fragility curves, informal housing, incremental dynamic analysis, seismic retrofit

Procedia PDF Downloads 66
267 Red Dawn in the Desert: A World-Systems Analysis of the Maritime Silk Road Initiative

Authors: Toufic Sarieddine

Abstract:

The current debate on the hegemonic impact of China’s Belt and Road Initiative (BRI) is of two opposing strands: Resilient and absolute US hegemony on the one hand and various models of multipolar hegemony such as bifurcation on the other. Bifurcation theories illustrate an unprecedented division of hegemonic functions between China and the US, whereby Beijing becomes the world’s economic hegemon, leaving Washington the world’s military hegemon and security guarantor. While consensus points to China being the main driver of unipolarity’s rupturing, the debate among bifurcationists is on the location of the first rupture. In this regard, the Middle East and North Africa (MENA) region has seen increasing Chinese foreign direct investment in recent years while that to other regions has declined, ranking it second in 2018 as part of the financing for the Maritime Silk Road Initiative (MSRI). China has also become the top trade partner of 11 states in the MENA region, as well as its top source of machine imports, surpassing the US and achieving an overall trade surplus almost double that of Washington’s. These are among other features outlined in world-systems analysis (WSA) literature which correspond with the emergence of a new hegemon. WSA is further utilized to gauge other facets of China’s increasing involvement in MENA and assess whether bifurcation is unfolding therein. These features of hegemony include the adoption of China’s modi operandi, economic dominance in production, trade, and finance, military capacity, cultural hegemony in ideology, education, and language, and the promotion of a general interest around which to rally potential peripheries (MENA states in this case). China’s modi operandi has seen some adoption with regards to support against the United Nations Convention on the Law of the Sea, oil bonds denominated in the yuan, and financial institutions such as the Shanghai Gold Exchange enjoying increasing Arab patronage. However, recent elections in Qatar, as well as liberal reforms in Saudi Arabia, demonstrate Washington’s stronger normative influence. Meanwhile, Washington’s economic dominance is challenged by China’s sizable machine exports, increasing overall imports, and widening trade surplus, but retains some clout via dominant arms and transport exports, as well as free-trade deals across the region. Militarily, Washington bests Beijing’s arms exports, has a dominant and well-established presence in the region, and successfully blocked Beijing’s attempt to penetrate through the UAE. Culturally, Beijing enjoys higher favorability in Arab public opinion, and its broadcast networks have found some resonance with Arab audiences. In education, the West remains MENA students’ preferred destination. Further, while Mandarin has become increasingly available in schools across MENA, its usage and availability still lag far behind English. Finally, Beijing’s general interest in infrastructure provision and prioritizing economic development over social justice and democracy provides an avenue for increased incorporation between Beijing and the MENA region. The overall analysis shows solid progress towards bifurcation in MENA.

Keywords: belt and road initiative, hegemony, Middle East and North Africa, world-systems analysis

Procedia PDF Downloads 82
266 Protected Cultivation of Horticultural Crops: Increases Productivity per Unit of Area and Time

Authors: Deepak Loura

Abstract:

The most contemporary method of producing horticulture crops both qualitatively and quantitatively is protected cultivation, or greenhouse cultivation, which has gained widespread acceptance in recent decades. Protected farming, commonly referred to as controlled environment agriculture (CEA), is extremely productive, land- and water-wise, as well as environmentally friendly. The technology entails growing horticulture crops in a controlled environment where variables such as temperature, humidity, light, soil, water, fertilizer, etc. are adjusted to achieve optimal output and enable a consistent supply of them even during the off-season. Over the past ten years, protected cultivation of high-value crops and cut flowers has demonstrated remarkable potential. More and more agricultural and horticultural crop production systems are moving to protected environments as a result of the growing demand for high-quality products by global markets. By covering the crop, it is possible to control the macro- and microenvironments, enhancing plant performance and allowing for longer production times, earlier harvests, and higher yields of higher quality. These shielding features alter the environment of the plant while also offering protection from wind, rain, and insects. Protected farming opens up hitherto unexplored opportunities in agriculture as the liberalised economy and improved agricultural technologies advance. Typically, the revenues from fruit, vegetable, and flower crops are 4 to 8 times higher than those from other crops. If any of these high-value crops are cultivated in protected environments like greenhouses, net houses, tunnels, etc., this profit can be multiplied. Vegetable and cut flower post-harvest losses are extremely high (20–0%), however sheltered growing techniques and year-round cropping can greatly minimize post-harvest losses and enhance yield by 5–10 times. Seasonality and weather have a big impact on the production of vegetables and flowers. The variety of their products results in significant price and quality changes for vegetables. For the application of current technology in crop production, achieving a balance between year-round availability of vegetables and flowers with minimal environmental impact and remaining competitive is a significant problem. The future of agriculture will be protected since population growth is reducing the amount of land that may be held. Protected agriculture is a particularly profitable endeavor for tiny landholdings. Small greenhouses, net houses, nurseries, and low tunnel greenhouses can all be built by farmers to increase their income. Protected agriculture is also aided by the rise in biotic and abiotic stress factors. As a result of the greater productivity levels, these technologies are not only opening up opportunities for producers with larger landholdings, but also for those with smaller holdings. Protected cultivation can be thought of as a kind of precise, forward-thinking, parallel agriculture that covers almost all aspects of farming and is rather subject to additional inspection for technical applicability to circumstances, farmer economics, and market economics.

Keywords: protected cultivation, horticulture, greenhouse, vegetable, controlled environment agriculture

Procedia PDF Downloads 54
265 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results

Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj

Abstract:

Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.

Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters

Procedia PDF Downloads 190
264 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton

Authors: komal verma, V. S. Moholkar

Abstract:

In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity

Procedia PDF Downloads 42
263 Navigating the Future: Evaluating the Market Potential and Drivers for High-Definition Mapping in the Autonomous Vehicle Era

Authors: Loha Hashimy, Isabella Castillo

Abstract:

In today's rapidly evolving technological landscape, the importance of precise navigation and mapping systems cannot be understated. As various sectors undergo transformative changes, the market potential for Advanced Mapping and Management Systems (AMMS) emerges as a critical focus area. The Galileo/GNSS-Based Autonomous Mobile Mapping System (GAMMS) project, specifically targeted toward high-definition mapping (HDM), endeavours to provide insights into this market within the broader context of the geomatics and navigation fields. With the growing integration of Autonomous Vehicles (AVs) into our transportation systems, the relevance and demand for sophisticated mapping solutions like HDM have become increasingly pertinent. The research employed a meticulous, lean, stepwise, and interconnected methodology to ensure a comprehensive assessment. Beginning with the identification of pivotal project results, the study progressed into a systematic market screening. This was complemented by an exhaustive desk research phase that delved into existing literature, data, and trends. To ensure the holistic validity of the findings, extensive consultations were conducted. Academia and industry experts provided invaluable insights through interviews, questionnaires, and surveys. This multi-faceted approach facilitated a layered analysis, juxtaposing secondary data with primary inputs, ensuring that the conclusions were both accurate and actionable. Our investigation unearthed a plethora of drivers steering the HD maps landscape. These ranged from technological leaps, nuanced market demands, and influential economic factors to overarching socio-political shifts. The meteoric rise of Autonomous Vehicles (AVs) and the shift towards app-based transportation solutions, such as Uber, stood out as significant market pull factors. A nuanced PESTEL analysis further enriched our understanding, shedding light on political, economic, social, technological, environmental, and legal facets influencing the HD maps market trajectory. Simultaneously, potential roadblocks were identified. Notable among these were barriers related to high initial costs, concerns around data quality, and the challenges posed by a fragmented and evolving regulatory landscape. The GAMMS project serves as a beacon, illuminating the vast opportunities that lie ahead for the HD mapping sector. It underscores the indispensable role of HDM in enhancing navigation, ensuring safety, and providing pinpoint, accurate location services. As our world becomes more interconnected and reliant on technology, HD maps emerge as a linchpin, bridging gaps and enabling seamless experiences. The research findings accentuate the imperative for stakeholders across industries to recognize and harness the potential of HD mapping, especially as we stand on the cusp of a transportation revolution heralded by Autonomous Vehicles and advanced geomatic solutions.

Keywords: high-definition mapping (HDM), autonomous vehicles, PESTEL analysis, market drivers

Procedia PDF Downloads 52
262 Tertiary Training of Future Health Educators and Health Professionals Involved in Childhood Obesity Prevention and Treatment Strategies

Authors: Thea Werkhoven, Wayne Cotton

Abstract:

Adult and childhood rates of obesity in Australia are health concerns of high national priority, retaining epidemic status in the populations affected. Attempts to prevent further increases in prevalence of childhood obesity in the population aged below eighteen years have had varied success. A multidisciplinary approach has been used, employing strategies in schools, through established health care system usage and public health campaigns. Over the last decade a plateau in prevalence has been reached in the youth population afflicted by obesity and interest has peaked in school based strategies to prevent and treat overweight and obesity. Of interest to this study is the importance of the tertiary training of future health educators or health professionals destined to be involved in obesity prevention and treatment strategies. Health educators and health professionals are considered instrumental to the success of prevention and treatment strategies, required to possess sufficient and accurate knowledge in order to be effective in their positions. A common influence on the success of school based health promoting activities are the weight based attitudes possessed by health educators, known to be negative and biased towards overweight or obese children during training and practice. Whilst the tertiary training of future health professionals includes minimal nutrition education, there is no mandatory training in health education or nutrition for pre-service health educators in Australian tertiary institutions. This study aimed to assess the impact of a pedagogical intervention on pre-service health educators and health professionals enrolled in a health and wellbeing elective. The intervention aimed to increase nutrition knowledge and decrease weight bias and was embedded in the twelve week elective. Participants (n=98) were tertiary students at a major Australian University who were enrolled in health (47%) and non-health related degrees (53%). A quantitative survey using four valid and reliable instruments was conducted to measured nutrition knowledge, antifat attitudes and weight stereotyping attitudes at baseline and post-intervention. Scores on each instrument were compared between time points to check if they had significantly changed and to determine the effect of the intervention on attitudes and knowledge. Antifat attitudes at baseline were considered low and decreased further over the course of the intervention. Scores representing weight bias did decrease but the change was not significant. Fat stereotyping attitudes became stronger over the course of the intervention and this change was significant. Nutrition knowledge significantly improved from baseline to post-intervention. The design of the nutrition knowledge and attitude amelioration content of the intervention was semi-successful in achieving its outcomes. While the level of nutrition knowledge was improved over the course of the intervention, an unintentional increase was observed in weight based prejudice which is known to occur in interventions that employ stigma reduction methodologies. Further research is required into a structured methodology that increases level of nutrition knowledge and ameliorates weight bias at the tertiary level. In this way training provided would help prepare future health educators with the knowledge, skills and attitudes required to be effective and bias free in their practice.

Keywords: education, intervention, nutrition, obesity

Procedia PDF Downloads 176
261 Surveying Adolescent Males in India Regarding Mobile Phone Use and Sexual and Reproductive Health Education

Authors: Rohan M. Dalal, Elena Pirondini, Shanu Somvanshi

Abstract:

Introduction: The current state of reproductive health outcomes in lower-income countries is poor, with inadequate knowledge and culture among adolescent boys. Moreover, boys have traditionally not been a priority target. To explore the opportunity to educate adolescent boys in the developing world regarding accurate reproductive health information, the purpose of this study is to investigate how adolescent boys in the developing world engage and use technology, utilizing cell phones. This electronic survey and video interview study were conducted to determine the feasibility of a mobile phone platform for an educational video game specifically designed for boys that will improve health knowledge, influence behavior, and change health outcomes, namely teen pregnancies. Methods: With the assistance of Plan India, a subsidiary of Plan International, informed consent was obtained from parents of adolescent males who participated in an electronic survey and video interviews via Microsoft Teams. An electronic survey was created with 27 questions, including topics of mobile phone usage, gaming preferences, and sexual and reproductive health, with a sample size of 181 adolescents, ages 11-25, near New Delhi, India. The interview questions were written to explore more in-depth topics after the completion of the electronic survey. Eight boys, aged 15, were interviewed for 40 minutes about gaming and usage of mobile phones as well as sexual and reproductive health. Data/Results. 154 boys and 27 girls completed the survey. They rated their English fluency as relatively high. 97% of boys (149/154) had access to mobile phones. The majority of phones were smartphones (97%, 143/148). 48% (71/149) of boys borrowed cell phones. The most popular phone platform was Samsung (22%, 33/148). 36% (54/148) of adolescent males looked at their phones 1-10 times per day for 1-2 hours. 55% (81/149) of the boys had parental restrictions. 51% (76/148) had 32 GB of storage on their phone. 78% (117/150) of the boys had wifi access. 80% (120/150) of respondents reported ease in downloading apps. 97% (145/150) of male adolescents had social media, including WhatsApp, Facebook, and YouTube. 58% (87/150) played video games. Favorite video games included Free Fire, PubG, and other shooting games. In the video interviews, the boys revealed what made games fun and engaging, including customized avatars, progression to higher levels, realistic interactive platforms, shooting/guns, the ability to perform multiple actions, and a variety of worlds/settings/adventures. Ideas to improve engagement in sexual and reproductive health classes included open discussions in the community, enhanced access to information, and posting on social media. Conclusion: This study involving an electronic survey and video interviews provides an initial foray into understanding mobile phone usage among adolescent males and understanding sexual and reproductive health education in New Delhi, India. The data gathered from this study support using mobile phone platforms, and this will be used to create a serious video game to educate adolescent males about sexual and reproductive health in an attempt to lower the rate of unwanted pregnancies in the world.

Keywords: adolescent males, India, mobile phone, sexual and reproductive health

Procedia PDF Downloads 104
260 Synthesis and Luminescent Properties of Barium-Europium (III) Silicate Systems

Authors: A. Isahakyan, A. Terzyan, V. Stepanyan, N. Zulumyan, H. Beglaryan

Abstract:

Previous studies have shown that the involvement of silica hydrogel derived from serpentine minerals (Mg(Fe))₆ [Si₄O₁₀](OH)₈ as a source of silicon dioxide in SiO₂–NaOH–BaCl₂–H₂O system results in precipitating via one-hour stirring of boiling suspension such intermediates that on heating up to the temperature of 800  °C crystallize into the product composed of barium ortho- Ba₂SiO₄ and metasilicates BaSiO₃. Taking into account the fact that the suggested precipitation method based on the silica hydrogel mentioned allowed avoiding a number of drawbacks related with tetraethoxysilane Si(OC₂H₅)₄ frequently used in sol-gel routes, this approach has been decided to be adapted to inserting europium (III) Eu³+ ions into the structure of the synthesized compounds. A series of experiments was performed for the investigation of optical properties evolution observable in the final samples. Intermediates previously precipitated in SiO₂·H₂O (silica hydrogel)–NaOH–BaCl₂–Eu(NO₃)₃ system via stirring for 60 min at room temperature underwent one-hour heat-treatment at different temperatures (6001200 °C). When the silica hydrogel was metered, SiO₂ content in the silica hydrogel that is 5.8 % was taken into consideration in order to guaranty the molar ratios of both SiO₂ to BaO and SiO₂ to Na₂O equal to 1:2. BaCl₂ and Eu(NO₃)₃ reagents were weighted so that the formation of appropriate compositions was guaranteed. A number of samples including various concentrations of Eu³+ ions (1.25, 2.5, 3.75, 5, 6.35, 8.65, 10, 17.5, 18.75 and 20 mol%) has been synthesized by the described method. Luminescence excitation, emission spectra of the final products were recorded on the Agilent Cary Eclipes fluorescence spectrophotometer (scanning rate = 30 nm/min, slit width = 5 nm, and Voltage = 800 V) as the excitation source. X-ray powder diffraction (XRPD) measurements were made on the SmartLab SE diffractometer. Emission spectra recorded for all the samples at an excitation wavelength of 394 nm exhibit peaks centered at around 536, 555, 587, 614, 653, 690 and 702.5 nm. The most intensive emission peak is observed at 614 nm due to 5D0 →7F2 of europium (III) ions transition. Luminescence intensity achieves its maximum for Eu³+17.5 mol% and heat-treatment at 1200 °C. The XRPD patterns revealed that the diffraction peaks recorded for this sample are identical to NaBa₆Nd(SiO₄)₄ reflections. As Nd-containing reagents were not involved into the synthesis, the maximum luminescent intensity is most likely to be conditioned by NaBa₆Eu(SiO₄)₄ formation whose reflections are not available in the ICDD-JCPDS database of crystallographic 2024. Up to Eu3+2.5 mol% the samples demonstrate the phases corresponding to Ba₂SiO₄ and BaSiO₃ standards. Subsequent increasing of europium (III) concentration in the system leads to NaBa₆Eu(SiO₄)₄ formation along with Ba₂SiO4 and BaSiO3. NaBa₆Eu(SiO₄)₄ share gradually increases and starting from 17.5 mol% and more NaBa₆Eu(SiO₄)₄ phase is only registered. Thus, the variation of europium (III) concentration in silica hydrogel–NaOH–BaCl₂–Eu(NO₃)₃ system allows producing by the precipitation method the products composed of europium (III)-doped Ba₂SiO₄ and BaSiO₃ and/or NaBa₆Eu(SiO₄)₄ distinguished by different luminescent properties. The work was supported by the Science Committee of RA, in the frames of the research project № 21T-1D131.

Keywords: europium (III)-doped barium ortho- Ba2SiO4 and metasilicates BaSiO₃, NaBa₆Eu(SiO₄)₄, luminescence, precipitation method

Procedia PDF Downloads 2
259 Effect of Resistance Exercise on Hypothalamic-Pituitary-Gonadal Axis

Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi

Abstract:

Abstract: Introduction: Physical activity may be related to male reproductive function by affecting on thehypothalamic-pituitary-gonadal(HPG) axis. Our aim was to determine the effects of 6 weeks resistance exercise on reproductive hormones, HPG axis. The hypothalamic-pituitary-gonadal (HPG) axis refers tothe effects of endocrine glands in three-level including (i) the hypothalamic releasing hormone GnRH, which is synthesized in in a small heterogenous neuronal population and released in a pulsatile fashion, (ii) the anterior pituitary hormones, follicle-stimulating hormone(FSH) and luteinizing hormone (LH) and (iii) the gonadal hormones, which include both steroid such as testosterone (T), estradiol and progesterone and peptide hormones (such as inhibin). Hormonal changes that create a more anabolic environment have been suggested to contribute to the adaptation to strength exercise. Physical activity has an extensive impact on male reproductive function depending upon the intensity and duration of the exercise and the fitness level of the individual. However, strenuous exercise represents a physical stress and inflammation changed that challenges homeostasis. Materials and methods: Sixteen male volunteered were included in a 6-week control period followed by 6 weeks of resistance training (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. intensity of training loading was 60%-75% of one maximum repetition. Participants performed 3 sets of 10 repetitions. Rest periods were two min between exercises and sets. Start with warm up exercises include: The muscles relax and stretch the body, which was for 10 minutes. Body composition, VO2max and the circulating level of free testosterone (fT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), sex hormone binding globulin (SHBG) and inhibin B measured prior and post 6-week intervention. The hormonal levels of each serum sample were measured using commercially available ELISA kits. Analysis of anthropometrical data and hormonal level were compared using the independent samples t- test in both groups and using SPSS (version 19). P ≤ 0.05 was considered statistically significant. Results: For muscle strength, both lower- and upper-body strength were increased significantly. Aerobic fitness level improved in trained participant from 39.4 ± 5.6 to 41.9 ± 5.3 (P = 0.002). fT concentration rise progressively in the trained group and was significantly greater than those in the control group (P = 0.000). By the end of the 6-week resistance training, serum SHBG significantly increased in the trained group compared with the control group (P = 0.013). In response to resistance training, LH, FSH and inhibin B were not significantly changed. Discussion: According to our finfings, 6 weeks of resistance training induce fat loss without any changes in body weight and BMI. A decline of 25.3% in percentage of body fat with statiscally same weight was due to increase in muscle mass that happened during resistance exercise periods . Six weeks of resistance training resulted in significant improvement in BF%, VO2max and increasing strength and the level of fT and SHBG.

Keywords: resistance, hypothalamic, pituitary, gonadal axis

Procedia PDF Downloads 379
258 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models

Authors: Hadush Kidane Meresa

Abstract:

The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.

Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland

Procedia PDF Downloads 571
257 Inverse Problem Method for Microwave Intrabody Medical Imaging

Authors: J. Chamorro-Servent, S. Tassani, M. A. Gonzalez-Ballester, L. J. Roca, J. Romeu, O. Camara

Abstract:

Electromagnetic and microwave imaging (MWI) have been used in medical imaging in the last years, being the most common applications of breast cancer and stroke detection or monitoring. In those applications, the subject or zone to observe is surrounded by a number of antennas, and the Nyquist criterium can be satisfied. Additionally, the space between the antennas (transmitting and receiving the electromagnetic fields) and the zone to study can be prepared in a homogeneous scenario. However, this may differ in other cases as could be intracardiac catheters, stomach monitoring devices, pelvic organ systems, liver ablation monitoring devices, or uterine fibroids’ ablation systems. In this work, we analyzed different MWI algorithms to find the most suitable method for dealing with an intrabody scenario. Due to the space limitations usually confronted on those applications, the device would have a cylindrical configuration of a maximum of eight transmitters and eight receiver antennas. This together with the positioning of the supposed device inside a body tract impose additional constraints in order to choose a reconstruction method; for instance, it inhabitants the use of well-known algorithms such as filtered backpropagation for diffraction tomography (due to the unusual configuration with probes enclosed by the imaging region). Finally, the difficulty of simulating a realistic non-homogeneous background inside the body (due to the incomplete knowledge of the dielectric properties of other tissues between the antennas’ position and the zone to observe), also prevents the use of Born and Rytov algorithms due to their limitations with a heterogeneous background. Instead, we decided to use a time-reversed algorithm (mostly used in geophysics) due to its characteristics of ignoring heterogeneities in the background medium, and of focusing its generated field onto the scatters. Therefore, a 2D time-reversed finite difference time domain was developed based on the time-reversed approach for microwave breast cancer detection. Simultaneously an in-silico testbed was also developed to compare ground-truth dielectric properties with corresponding microwave imaging reconstruction. Forward and inverse problems were computed varying: the frequency used related to a small zone to observe (7, 7.5 and 8 GHz); a small polyp diameter (5, 7 and 10 mm); two polyp positions with respect to the closest antenna (aligned or disaligned); and the (transmitters-to-receivers) antenna combination used for the reconstruction (1-1, 8-1, 8-8 or 8-3). Results indicate that when using the existent time-reversed method for breast cancer here for the different combinations of transmitters and receivers, we found false positives due to the high degrees of freedom and unusual configuration (and the possible violation of Nyquist criterium). Those false positives founded in 8-1 and 8-8 combinations, highly reduced with the 1-1 and 8-3 combination, being the 8-3 configuration de most suitable (three neighboring receivers at each time). The 8-3 configuration creates a region-of-interest reduced problem, decreasing the ill-posedness of the inverse problem. To conclude, the proposed algorithm solves the main limitations of the described intrabody application, successfully detecting the angular position of targets inside the body tract.

Keywords: FDTD, time-reversed, medical imaging, microwave imaging

Procedia PDF Downloads 101
256 Improving Junior Doctor Induction Through the Use of Simple In-House Mobile Application

Authors: Dmitriy Chernov, Maria Karavassilis, Suhyoun Youn, Amna Izhar, Devasenan Devendra

Abstract:

Introduction and Background: A well-structured and comprehensive departmental induction improves patient safety and job satisfaction amongst doctors. The aims of our Project were as follows: 1. Assess the perceived preparedness of junior doctors starting their rotation in Acute Medicine at Watford General Hospital. 2. Develop a supplemental Induction Guide and Pocket reference in the form of an iOS mobile application. 3. To collect feedback after implementing the mobile application following a trial period of 8 weeks with a small cohort of junior doctors. Materials and Methods: A questionnaire was distributed to all new junior trainees starting in the department of Acute Medicine to assess their experience of current induction. A mobile Induction application was developed and trialled over a period of 8 weeks, distributed in addition to the existing didactic induction session. After the trial period, the same questionnaire was distributed to assess improvement in induction experience. Analytics data were collected with users’ consent to gauge user engagement and identify areas of improvement of the application. A feedback survey about the app was also distributed. Results: A total of 32 doctors used the application during the 8-week trial period. The application was accessed 7259 times in total, with the average user spending a cumulative of 37 minutes 22 seconds on the app. The most used section was Clinical Guidelines, accessed 1490 times. The App Feedback survey revealed positive reviews: 100% of participants (n=15/15) responded that the app improved their overall induction experience compared to other placements; 93% (n=14/15) responded that the app improved overall efficiency in completing daily ward jobs compared to previous rotations; and 93% (n=14/15) responded that the app improved patient safety overall. In the Pre-App and Post-App Induction Surveys, participants reported: a 48% improvement in awareness of practical aspects of the job; a 26% improvement of awareness on locating pathways and clinical guidelines; a 40% reduction of feelings of overwhelmingness. Conclusions and recommendations: This study demonstrates the importance of technology in Medical Education and Clinical Induction. The mobile application average engagement time equates to over 20 cumulative hours of on-the-job training delivered to each user, within an 8-week period. The most used and referred to section was clinical guidelines. This shows that there is high demand for an accessible pocket guide for this type of material. This simple mobile application resulted in a significant improvement in feedback about induction in our Department of Acute Medicine, and will likely impact workplace satisfaction. Limitations of the application include: post-app surveys had a small number of participants; the app is currently only available for iPhone users; some useful sections are nested deep within the app, lacks deep search functionality across all sections; lacks real time user feedback; and requires regular review and updates. Future steps for the app include: developing a web app, with an admin dashboard to simplify uploading and editing content; a comprehensive search functionality; and a user feedback and peer ratings system.

Keywords: mobile app, doctor induction, medical education, acute medicine

Procedia PDF Downloads 63
255 Application of 3D Apparel CAD for Costume Reproduction

Authors: Zi Y. Kang, Tracy D. Cassidy, Tom Cassidy

Abstract:

3D apparel CAD is one of the remarkable products in advanced technology which enables intuitive design, visualisation and evaluation of garments through stereoscopic drape simulation. The progressive improvements of 3D apparel CAD have led to the creation of more realistic clothing simulation which is used not only in design development but also in presentation, promotion and communication for fashion as well as other industries such as film, game and social network services. As a result, 3D clothing technology is becoming more ubiquitous in human culture and lives today. This study considers that such phenomenon implies that the technology has reached maturity and it is time to inspect the status of current technology and to explore its potential uses in ways to create cultural values to further move forward. For this reason, this study aims to generate virtual costumes as culturally significant objects using 3D apparel CAD and to assess its capability, applicability and attitudes of the audience towards clothing simulation through comparison with physical counterparts. Since the access to costume collection is often limited due to the conservative issues, the technology may make valuable contribution by democratization of culture and knowledge for museums and its audience. This study is expected to provide foundation knowledge for development of clothing technology and for expanding its boundary of practical uses. To prevent any potential damage, two replicas of the costumes in the 1860s and 1920s at the Museum of London were chosen as samples. Their structural, visual and physical characteristics were measured and collected using patterns, scanned images of fabrics and objective fabric measurements with scale, KES-F (Kawabata Evaluation System of Fabrics) and Titan. Commercial software, DC Suite 5.0 was utilised to create virtual costumes applying collected data and the following outcomes were produced for the evaluation: Images of virtual costumes and video clips showing static and dynamic simulation. Focus groups were arranged with fashion design students and the public for evaluation which exposed the outcomes together with physical samples, fabrics swatches and photographs. The similarities, application and acceptance of virtual costumes were estimated through discussion and a questionnaire. The findings show that the technology has the capability to produce realistic or plausible simulation but expression of some factors such as details and capability of light material requires improvements. While the use of virtual costumes was viewed as more interesting and futuristic replacements to physical objects by the public group, the fashion student group noted more differences in detail and preferred physical garments highlighting the absence of tangibility. However, the advantages and potential of virtual costumes as effective and useful visual references for educational and exhibitory purposes were underlined by both groups. Although 3D apparel CAD has sufficient capacity to assist garment design process, it has limits in identical replication and more study on accurate reproduction of details and drape is needed for its technical improvements. Nevertheless, the virtual costumes in this study demonstrated the possibility of the technology to contribute to cultural and knowledgeable value creation through its applicability and as an interesting way to offer 3D visual information.

Keywords: digital clothing technology, garment simulation, 3D Apparel CAD, virtual costume

Procedia PDF Downloads 187
254 Defining a Framework for Holistic Life Cycle Assessment of Building Components by Considering Parameters Such as Circularity, Material Health, Biodiversity, Pollution Control, Cost, Social Impacts, and Uncertainty

Authors: Naomi Grigoryan, Alexandros Loutsioli Daskalakis, Anna Elisse Uy, Yihe Huang, Aude Laurent (Webanck)

Abstract:

In response to the building and construction sectors accounting for a third of all energy demand and emissions, the European Union has placed new laws and regulations in the construction sector that emphasize material circularity, energy efficiency, biodiversity, and social impact. Existing design tools assess sustainability in early-stage design for products or buildings; however, there is no standardized methodology for measuring the circularity performance of building components. Existing assessment methods for building components focus primarily on carbon footprint but lack the comprehensive analysis required to design for circularity. The research conducted in this paper covers the parameters needed to assess sustainability in the design process of architectural products such as doors, windows, and facades. It maps a framework for a tool that assists designers with real-time sustainability metrics. Considering the life cycle of building components such as façades, windows, and doors involves the life cycle stages applied to product design and many of the methods used in the life cycle analysis of buildings. The current industry standards of sustainability assessment for metal building components follow cradle-to-grave life cycle assessment (LCA), track Global Warming Potential (GWP), and document the parameters used for an Environmental Product Declaration (EPD). Developed by the Ellen Macarthur Foundation, the Material Circularity Indicator (MCI) is a methodology utilizing the data from LCA and EPDs to rate circularity, with a "value between 0 and 1 where higher values indicate a higher circularity+". Expanding on the MCI with additional indicators such as the Water Circularity Index (WCI), the Energy Circularity Index (ECI), the Social Circularity Index (SCI), Life Cycle Economic Value (EV), and calculating biodiversity risk and uncertainty, the assessment methodology of an architectural product's impact can be targeted more specifically based on product requirements, performance, and lifespan. Broadening the scope of LCA calculation for products to incorporate aspects of building design allows product designers to account for the disassembly of architectural components. For example, the Material Circularity Indicator for architectural products such as windows and facades is typically low due to the impact of glass, as 70% of glass ends up in landfills due to damage in the disassembly process. The low MCI can be combatted by expanding beyond cradle-to-grave assessment and focusing the design process on disassembly, recycling, and repurposing with the help of real-time assessment tools. Design for Disassembly and Urban Mining has been integrated within the construction field on small scales as project-based exercises, not addressing the entire supply chain of architectural products. By adopting more comprehensive sustainability metrics and incorporating uncertainty calculations, the sustainability assessment of building components can be more accurately assessed with decarbonization and disassembly in mind, addressing the large-scale commercial markets within construction, some of the most significant contributors to climate change.

Keywords: architectural products, early-stage design, life cycle assessment, material circularity indicator

Procedia PDF Downloads 52
253 Analyzing the Heat Transfer Mechanism in a Tube Bundle Air-PCM Heat Exchanger: An Empirical Study

Authors: Maria De Los Angeles Ortega, Denis Bruneau, Patrick Sebastian, Jean-Pierre Nadeau, Alain Sommier, Saed Raji

Abstract:

Phase change materials (PCM) present attractive features that made them a passive solution for thermal comfort assessment in buildings during summer time. They show a large storage capacity per volume unit in comparison with other structural materials like bricks or concrete. If their use is matched with the peak load periods, they can contribute to the reduction of the primary energy consumption related to cooling applications. Despite these promising characteristics, they present some drawbacks. Commercial PCMs, as paraffines, offer a low thermal conductivity affecting the overall performance of the system. In some cases, the material can be enhanced, adding other elements that improve the conductivity, but in general, a design of the unit that optimizes the thermal performance is sought. The material selection is the departing point during the designing stage, and it does not leave plenty of room for optimization. The PCM melting point depends highly on the atmospheric characteristics of the building location. The selection must relay within the maximum, and the minimum temperature reached during the day. The geometry of the PCM container and the geometrical distribution of these containers are designing parameters, as well. They significantly affect the heat transfer, and therefore its phenomena must be studied exhaustively. During its lifetime, an air-PCM unit in a building must cool down the place during daytime, while the melting of the PCM occurs. At night, the PCM must be regenerated to be ready for next uses. When the system is not in service, a minimal amount of thermal exchanges is desired. The aforementioned functions result in the presence of sensible and latent heat storage and release. Hence different types of mechanisms drive the heat transfer phenomena. An experimental test was designed to study the heat transfer phenomena occurring in a circular tube bundle air-PCM exchanger. An in-line arrangement was selected as the geometrical distribution of the containers. With the aim of visual identification, the containers material and a section of the test bench were transparent. Some instruments were placed on the bench for measuring temperature and velocity. The PCM properties were also available through differential scanning calorimeter (DSC) tests. An evolution of the temperature during both cycles, melting and solidification were obtained. The results showed some phenomena at a local level (tubes) and on an overall level (exchanger). Conduction and convection appeared as the main heat transfer mechanisms. From these results, two approaches to analyze the heat transfer were followed. The first approach described the phenomena in a single tube as a series of thermal resistances, where a pure conduction controlled heat transfer was assumed in the PCM. For the second approach, the temperature measurements were used to find some significant dimensionless numbers and parameters as Stefan, Fourier and Rayleigh numbers, and the melting fraction. These approaches allowed us to identify the heat transfer phenomena during both cycles. The presence of natural convection during melting might have been stated from the influence of the Rayleigh number on the correlations obtained.

Keywords: phase change materials, air-PCM exchangers, convection, conduction

Procedia PDF Downloads 154
252 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel

Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin

Abstract:

Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.

Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive

Procedia PDF Downloads 221
251 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress

Authors: Faheema Khan

Abstract:

To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.

Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability

Procedia PDF Downloads 395
250 Disaster Preparedness for People with Disabilities through EPPO's Educational Awareness Initiative

Authors: A. Kourou, A. Ioakeimidou, E. Pelli, M. Panoutsopoulou, V. Abramea

Abstract:

Worldwide there is a growing recognition that education is a critical component of any disaster impacts reduction effort and a great challenge too. Given this challenge, a broad range of awareness raising projects at all levels are implemented and are continuously evaluated by Earthquake Planning and Protection Organization (EPPO). This paper presents an overview of EPPO educational initiative (seminars, lectures, workshops, campaigns and educational material) and its evaluation results. The abovementioned initiative is focused to aware the public, train teachers and civil protection staff, inform students and educate people with disabilities on subjects related to earthquake reduction issues. The better understating of how human activity can link to disaster and what can be done at the individual, family or workplace level to contribute to seismic reduction are the main issues of EPPO projects. Survey results revealed that a high percentage of teachers (included the ones of special schools) from all over the country have taken the appropriate preparedness measures at schools. On the other hand, the implementation of earthquake preparedness measures at various workplaces (kindergartens, banks, utilities etc.) has still significant room for improvement. Results show that the employees in banks and public utilities have substantially higher rates in preventive and preparedness actions in their workplaces than workers in kindergartens and other workplaces. One of the EPPO educational priorities is to enhance earthquake preparedness of people with disabilities. Booklets, posters and applications have been created with the financial support of the Council of Europe, addressed to people who have mobility impairments, learning difficulties or cognitive disability (ή intellectual disabilities). Part of the educational material was developed using the «easy-to-read» method and Makaton language program with the collaboration of experts on special needs education and teams of people with cognitive disability. Furthermore, earthquake safety seminars and earthquake drills have been implemented in order to develop children’s, parents’ and teachers abilities and skills on earthquake impacts reduction. To enhance the abovementioned efforts, EPPO is a partner at prevention and preparedness projects supported by EU Civil Protection Financial Instrument. One of them is E-PreS’ project (Monitoring and Evaluation of Natural Hazard Preparedness at School Environment). The main objectives of E-PreS project are: 1) to create smart tools which define, simulate and evaluate drills procedure at schools, centers of vocational training of people with disabilities or other workplaces, and 2) to involve students or adults with disabilities in the E-PreS system evacuation procedure in case of earthquake, flood, or volcanic occurrence. Two other EU projects (RACCE educational kit and EVANDE educational platform) are also with the aim of contributing to raising awareness among people with disabilities, students, teachers, volunteers etc. It is worth mentioning that even though in Greece many efforts have been done till now to build awareness towards earthquakes and establish preparedness status for prospective earthquakes, there are still actions to be taken.

Keywords: earthquake, emergency plans, E-PreS project, people with disabilities, special needs education

Procedia PDF Downloads 240
249 Cyber-Victimization among Higher Education Students as Related to Academic and Personal Factors

Authors: T. Heiman, D. Olenik-Shemesh

Abstract:

Over the past decade, with the rapid growth of electronic communication, the internet and, in particular, social networking has become an inseparable part of people's daily lives. Along with its benefits, a new type of online aggression has emerged, defined as cyber bullying, a form of interpersonal aggressive behavior that takes place through electronic means. Cyber-bullying is characterized by repetitive behavior over time of maladaptive authority and power usage using computers and cell phones via sending insulting messages and hurtful pictures. Preliminary findings suggest that the prevalence of involvement in cyber-bullying among higher education students varies between 10 and 35%. As to date, universities are facing an uphill effort in trying to restrain online misbehavior. As no studies examined the relationships between cyber-bullying involvement with personal aspects, and its impacts on academic achievement and work functioning, this present study examined the nature of cyber-bullying involvement among 1,052 undergraduate students (mean age = 27.25, S.D = 4.81; 66.2% female), coping with, as well as the effects of social support, perceived self-efficacy, well-being, and body-perception, in relation to cyber-victimization. We assume that students in higher education are a vulnerable population and at high risk of being cyber-victims. We hypothesize that social support might serve as a protective factor and will moderate the relationships between the socio-emotional variables and the occurrence of cyber- victimization. The findings of this study will present the relationships between cyber-victimization and the social-emotional aspects, which constitute risk and protective factors. After receiving approval from the Ethics Committee of the University, a Google Drive questionnaire was sent to a random sample of students, studying in the various University study centers. Students' participation was voluntary, and they completed the five questionnaires anonymously: Cyber-bullying, perceived self-efficacy, subjective well-being, social support and body perception. Results revealed that 11.6% of the students reported being cyber-victims during last year. Examining the emotional and behavioral reactions to cyber-victimization revealed that female emotional and behavioral reactions were significantly greater than the male reactions (p < .001). Moreover, females reported on a significant higher social support compared to men; male reported significantly on a lower social capability than female; and men's body perception was significantly more positive than women's scores. No gender differences were observed for subjective well-being scale. Significant positive correlations were found between cyber-victimization and fewer friends, lower grades, and work ineffectiveness (r = 0.37- .40, p < 0 .001). The results of the Hierarchical regression indicated significantly that cyber-victimization can be predicted by lower social support, lower body perception, and gender (female), that explained 5.6% of the variance (R2 = 0.056, F(5,1047) = 12.47, p < 0.001). The findings deepen our understanding of the students' involvement in cyber-bullying, and present the relationships of the social-emotional and academic aspects on cyber-victim students. In view of our findings, higher education policy could help facilitate coping with cyber-bullying incidents, and student support units could develop intervention programs aimed at reducing cyber-bullying and its impacts.

Keywords: academic and personal factors, cyber-victimization, social support, higher education

Procedia PDF Downloads 267
248 Using Low-Calorie Gas to Generate Heat and Electricity

Authors: Аndrey Marchenko, Oleg Linkov, Alexander Osetrov, Sergiy Kravchenko

Abstract:

The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat.

Keywords: gas engine, low-calorie gas, methane, pre-combustion chamber, utilization

Procedia PDF Downloads 241
247 Effect of Long Term Orientation and Indulgence on Earnings Management: The Moderating Role of Legal Tradition

Authors: I. Martinez-Conesa, E. Garcia-Meca, M. Barradas-Quiroz

Abstract:

The objective of this study is to assess the impact on earnings management of latest two Hofstede cultural dimensions: long-term orientation and indulgence. Long-term orientation represents the alignment of a society towards the future and indulgence expresses the extent to which a society exhibits willingness, or restrain, to realise their impulses. Additionally, this paper tests if there are relevant differences by testing the moderating role of the legal tradition, Continental versus Anglo-Saxon. Our sample comprises 15 countries: Belgium, Canada, Germany, Spain, France, Great Britain, Hong Kong, India, Japan, Korea, Netherlands, Philippines, Portugal, Sweden, and Thailand, with a total of 12,936 observations from 2003 to 2013. Our results show that managers in countries with high levels of long-term orientation reduce their levels of discretionary accruals. The findings do not confirm the effect of indulgence on earnings management. In addition, our results confirm previous literature regarding the effect of individualism, noting that firms in countries with high levels of collectivism might be more inclined to use earnings discretion to protect the welfare of the collective group of firm stakeholders. Uncertainty avoidance results in downwards earnings management as well as high disclosure, suggesting that less manipulation takes place when transparency is higher. Indulgence is the cultural dimension that confronts wellbeing versus survival; dimension is formulated including happiness, the perception of live control and the importance of leisure. Indulgence shows a weak negative correlation with power distance indicating a slight tendency for more hierarchical societies to be less indulgent. Anglo-Saxon countries are a positive effect of individualism and a negative effect of masculinity, uncertainty avoidance, and disclosure. With respect to continental countries, we can see a significant and positive effect of individualism and a significant and negative effect of masculinity, long-term orientation, and indulgence. Therefore, we observe the negative effect on earnings management provoked by higher disclosure and uncertainty avoidance only happens in Anglo-Saxon countries. Meanwhile, the improvement in reporting quality motivated by higher long-term orientation and higher indulgence is dominant in Continental countries. Our results confirm that there is a moderating effect of the legal system in the association between culture and earnings management. This effect is especially relevant in the dimensions related to uncertainty avoidance, long term orientation, indulgence, and disclosure. The negative effect of long-term orientation on earnings management only happens in those countries set in continental legal systems because of the Anglo-Saxon legal systems is supported by the decisions of the courts and the traditions, so it already has long-term orientation. That does not occur in continental systems, depending mainly of contend of the law. Sensitivity analysis used with Jones modified CP model, Jones Standard model and Jones Standard CP model confirm the robustness of these results. This paper collaborates towards a better understanding on how earnings management, culture and legal systems relate to each other, and contribute to previous literature by examining the influence of the two latest Hofstede’s dimensions not previously studied in papers.

Keywords: Hofstede, long-term-orientation, earnings management, indulgence

Procedia PDF Downloads 207
246 Evaluation of Airborne Particulate Matter Early Biological Effects in Children with Micronucleus Cytome Assay: The MAPEC_LIFE Project

Authors: E. Carraro, Sa. Bonetta, Si. Bonetta, E. Ceretti, G. C. V. Viola, C. Pignata, S. Levorato, T. Salvatori, S. Vannini, V. Romanazzi, A. Carducci, G. Donzelli, T. Schilirò, A. De Donno, T. Grassi, S. Bonizzoni, A. Bonetti, G. Gilli, U. Gelatti

Abstract:

In 2013, air pollution and particulate matter were classified as carcinogenic to human by the IARC. At present, PM is Europe's most problematic pollutant in terms of harm to health, as reported by European Environmental Agency (EEA) in the EEA Technical Report on Air quality in Europe, 2015. A percentage between 17-30 of the EU urban population lives in areas where the EU air quality 24-hour limit value for PM10 is exceeded. Many studies have found a consistent association between exposure to PM and the incidence and mortality for some chronic diseases (i.e. lung cancer, cardiovascular diseases). Among the mechanisms responsible for these adverse effects, genotoxic damage is of particular concern. Children are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme (LIFE12 ENV/IT/000614) which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. This work is focused on the micronuclei frequency in child buccal cells in association with airborne PM levels taking into account the influence of other factors associated with the lifestyle of children. The micronucleus test was performed in exfoliated buccal cells of 6–8 years old children from 5 Italian towns with different air pollution levels. Data on air quality during the study period were obtained from the Regional Agency for Environmental Protection. A questionnaire administered to children’s parents was used to obtain details on family socio-economic status, children health condition, exposures to other indoor and outdoor pollutants (i.e. passive smoke) and life-style, with particular reference to eating habits. During the first sampling campaign (winter 2014-15) 1315 children were recruited and sampled for Micronuclei test in buccal cells. In the sampling period the levels of the main pollutants and PM10 were, as expected, higher in the North of Italy (PM10 mean values 62 μg/m3 in Torino and 40 μg/m3 in Brescia) than in the other towns (Pisa, Perugia, Lecce). A higher Micronucleus frequency in buccal cells of children was found in Brescia (0.6/1000 cells) than in the other towns (range 0.3-0.5/1000 cells). The statistical analysis underlines a relation of the micronuclei frequency with PM concentrations, traffic level near child residence, and level of education of parents. The results suggest that, in addition to air pollution exposure, some other factors, related to lifestyle or further exposures, may influence micronucleus frequency and cellular response to air pollutants.

Keywords: air pollution, buccal cells, children, micronucleus cytome assay

Procedia PDF Downloads 229
245 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.

Keywords: bio-economy, biomass energy, financing, metrics

Procedia PDF Downloads 135
244 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults

Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer

Abstract:

This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.

Keywords: communication, cooperation, development, interaction, neuroscience

Procedia PDF Downloads 229