Search results for: solar power systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15161

Search results for: solar power systems

12671 Detection of Nutrients Using Honeybee-Mimic Bioelectronic Tongue Systems

Authors: Soo Ho Lim, Minju Lee, Dong In Kim, Gi Youn Han, Seunghun Hong, Hyung Wook Kwon

Abstract:

We report a floating electrode-based bioelectronic tongue mimicking honeybee taste systems for the detection and discrimination of various nutrients. Here, carbon nanotube field effect transistors with floating electrodes (CNT-FET) were hybridized with nanovesicles containing honeybee nutrient receptors, gustatory receptors of Apis mellifera. This strategy enables us to detect nutrient substance with a high sensitivity and selectivity. It could also be utilized for the detection of nutrients in liquid food. This floating electrode-based bioelectronic tongue mimicking insect taste systems can be a simple, but highly effective strategy in many different basic research areas about sensory systems. Moreover, our research provides opportunities to develop various applications such as food screening, and it also can provide valuable insights on insect taste systems.

Keywords: taste system, CNT-FET, insect gustatory receptor, biolelectronic tongue

Procedia PDF Downloads 218
12670 Proactive Approach to Innovation Management

Authors: Andrus Pedai, Igor Astrov

Abstract:

The focus of this paper is to compare common approaches for Systems of Innovation (SI) and identify proactive alternatives for driving the innovation. Proactive approaches will also consider short and medium term perspectives with developments in the field of Computer Technology and Artificial Intelligence. Concerning computer technology and large connected information systems, it is reasonable to predict that during current or the next century, intelligence and innovation will be separated from the constraints of human-driven management. After this happens, humans will no longer be driving the innovation and there is possibility that SI for new intelligent systems will set its own targets and exclude humans. Over long time scale, these developments could result in a scenario, which will lead to the development of larger, cross galactic (universal) proactive SI and Intelligence.

Keywords: artificial intelligence, DARPA, Moore’s law, proactive innovation, singularity, systems of innovation

Procedia PDF Downloads 478
12669 Technical and Economic Environment in the Polish Power System as the Basis for Distributed Generation and Renewable Energy Sources Development

Authors: Pawel Sowa, Joachim Bargiel, Bogdan Mol, Katarzyna Luszcz

Abstract:

The article raises the issue of the development of local renewable energy sources and the production of distributed energy in context of improving the reliability of the Polish Power System and the beneficial impact on local and national energy security. The paper refers to the current problems of local governments in the process of investment in the area of distributed energy projects, and discusses the issues of the future role and cooperation within the local power plants and distributed energy. Attention is paid to the local communities the chance to raise their own resources and management of energy fuels (biomass, wind, gas mining) and improving the local energy balance. The material presented takes the issue of the development of the energy potential of municipalities and future cooperation with professional energy. As an example, practical solutions used in one of the communes in Silesia.

Keywords: distributed generation, mini centers energy, renewable energy sources, reliability of supply of rural commune

Procedia PDF Downloads 600
12668 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: disturbance automation, electric power grid, smart grid, smart switches

Procedia PDF Downloads 309
12667 Towards the Enhancement of Thermoelectric Properties by Controlling the Thermoelectrical Nature of Grain Boundaries in Polycrystalline Materials

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Waste heat occurs in many areas of daily life because world’s energy consumption is inefficient. In general, generating 1 watt of power requires about 3 watt of energy input and involves dumping into the environment the equivalent of about 2 watts of power in the form of heat. Therefore, an attractive and sustainable solution to the energy problem would be the development of highly efficient thermoelectric devices which could help to recover this waste heat. This work presents the influence on the thermoelectric properties of metallic, semiconducting, and dielectric nanoparticles added into the grain boundaries of polycrystalline antimony (Sb) and bismuth (Bi) matrixes in order to obtain p- and n-type thermoelectric materials, respectively, by hot pressing methods. Results show that thermoelectric properties are significantly affected by the electrical and thermal nature as well as concentration of nanoparticles. Nevertheless, by optimizing the amount of the nanoparticles on the grain boundaries, an oscillatory behavior in ZT as function of the concentration of the nanoscale constituents is present. This effect is due to energy filtering mechanism which module the quantity of charge transport in the system and affects thermoelectric properties. Accordingly, a ZTmax can be accomplished through the addition of the appropriate amount of nanoparticles into the grain boundaries region. In this case, till three orders of amelioration on ZT is reached in both systems compared with the reference sample of each one. This approach paves the way to pursuit high performance thermoelectric materials in a simple way and opens a new route towards the enhancement of the thermoelectric figure of merit.

Keywords: energy filtering, grain boundaries, thermoelectric, nanostructured materials

Procedia PDF Downloads 255
12666 Parallel Magnetic Field Effect on Copper Cementation onto Rotating Iron Rod

Authors: Hamouda M. Mousa, M. Obaid, Chan Hee Park, Cheol Sang Kim

Abstract:

The rate of copper cementation on iron rod was investigated. The study was mainly dedicated to illustrate the effect of application of electromagnetic field (EMF) on the rate of cementation. The magnetic flux was placed parallel to the iron rod and different magnetic field strength was studied. The results showed that without EMF, the rate of mass transfer was correlated by the equation: Sh= 1.36 Re0. 098 Sc0.33. The application of EMF enhanced the time required to reach high percentage copper cementation by 50%. The rate of mass transfer was correlated by the equation: Sh= 2.29 Re0. 95 Sc0.33, with applying EMF. This work illustrates that the enhancement of copper recovery in presence of EMF is due to the induced motion of Fe+n in the solution which is limited in the range of rod rotation speed of 300~900 rpm. The calculation of power consumption of EMF showed that although the application of EMF partially reduced the cementation time, the reduction of power consumption due to utilization of magnetic field is comparable to the increase in power consumed by introducing magnetic field of 2462 A T/m.

Keywords: copper cementation, electromagnetic field, copper ions, iron cylinder

Procedia PDF Downloads 489
12665 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt

Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar

Abstract:

Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.

Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt

Procedia PDF Downloads 573
12664 Data, Digital Identity and Antitrust Law: An Exploratory Study of Facebook’s Novi Digital Wallet

Authors: Wanjiku Karanja

Abstract:

Facebook has monopoly power in the social networking market. It has grown and entrenched its monopoly power through the capture of its users’ data value chains. However, antitrust law’s consumer welfare roots have prevented it from effectively addressing the role of data capture in Facebook’s market dominance. These regulatory blind spots are augmented in Facebook’s proposed Diem cryptocurrency project and its Novi Digital wallet. Novi, which is Diem’s digital identity component, shall enable Facebook to collect an unprecedented volume of consumer data. Consequently, Novi has seismic implications on internet identity as the network effects of Facebook’s large user base could establish it as the de facto internet identity layer. Moreover, the large tracts of data Facebook shall collect through Novi shall further entrench Facebook's market power. As such, the attendant lock-in effects of this project shall be very difficult to reverse. Urgent regulatory action is therefore required to prevent this expansion of Facebook’s data resources and monopoly power. This research thus highlights the importance of data capture to competition and market health in the social networking industry. It utilizes interviews with key experts to empirically interrogate the impact of Facebook’s data capture and control of its users’ data value chains on its market power. This inquiry is contextualized against Novi’s expansive effect on Facebook’s data value chains. It thus addresses the novel antitrust issues arising at the nexus of Facebook’s monopoly power and the privacy of its users’ data. It also explores the impact of platform design principles, specifically data portability and data portability, in mitigating Facebook’s anti-competitive practices. As such, this study finds that Facebook is a powerful monopoly that dominates the social media industry to the detriment of potential competitors. Facebook derives its power from its size, annexure of the consumer data value chain, and control of its users’ social graphs. Additionally, the platform design principles of data interoperability and data portability are not a panacea to restoring competition in the social networking market. Their success depends on the establishment of robust technical standards and regulatory frameworks.

Keywords: antitrust law, data protection law, data portability, data interoperability, digital identity, Facebook

Procedia PDF Downloads 123
12663 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage

Authors: J.Das, Gyan Wrat

Abstract:

Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.

Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit

Procedia PDF Downloads 400
12662 A Conceptual Framework for Assessing the Development of Health Information Systems Enterprise Architecture Interoperability

Authors: Prosper Tafadzwa Denhere, Ephias Ruhode, Munyaradzi Zhou

Abstract:

Health Information Systems (HISs) interoperability is emerging to be the future of modern healthcare systems Enterprise Architecture (EA), where healthcare entities are seamlessly interconnected to share healthcare data. The reality that the healthcare industry has been characterised by an influx of fragmented stand-alone e-Health systems, which present challenges of healthcare information sharing across platforms, desires much attention for systems integration efforts. The lack of an EA conceptual framework resultantly crates the need for investigating an ideal solution to the objective of Health Information Systems interoperability development assessment. The study takes a qualitative exploratory approach through a design science research context. The research aims to study the various themes withdrawn from the literature that can help in the assessment of interoperable HISs development through a literature study. Themes derived from the study include HIS needs, HIS readiness, HIS constraints, and HIS technology integration elements and standards tied to the EA development architectural layers of The Open Group Architecture Framework (TOGAF) as an EA development methodology. Eventually, the themes were conceptualised into a framework reviewed by two experts. The essence of the study was to provide a framework within which interoperable EA of HISs should be developed.

Keywords: enterprise architecture, eHealth, health information systems, interoperability

Procedia PDF Downloads 105
12661 A New Converter Topology for Wind Energy Conversion System

Authors: Mahmoud Khamaira, Ahmed Abu-Siada, Yasser Alharbi

Abstract:

Doubly Fed Induction Generators (DFIGs) are currently extensively used in variable speed wind power plants due to their superior advantages that include reduced converter rating, low cost, reduced losses, easy implementation of power factor correction schemes, variable speed operation and four quadrants active and reactive power control capabilities. On the other hand, DFIG sensitivity to grid disturbances, especially for voltage sags represents the main disadvantage of the equipment. In this paper, a coil is proposed to be integrated within the DFIG converters to improve the overall performance of a DFIG-based wind energy conversion system (WECS). The charging and discharging of the coil are controlled by controlling the duty cycle of the switches of the dc-dc chopper. Simulation results reveal the effectiveness of the proposed topology in improving the overall performance of the WECS system under study.

Keywords: doubly fed induction generator, coil, wind energy conversion system, converter topology

Procedia PDF Downloads 661
12660 India’s Strategy toward Afghanistan since 9\11

Authors: Saifurahman Fayiz

Abstract:

overall, India had friendly relation with different governments in Afghanistan except for the Taliban regime amongst the years 1996 to 2001. The terrorist attack in the United States provided India a chance to follow its strategy in Afghanistan. India support Afghanistan since 9\11. The objectives of this study to study India’s strategy towards Afghanistan and its implication to neighbor countries. The research method conducted based on qualitative research method with descriptive. The research findings propose that; India has chosen a soft power policy to implement its strategy in Afghanistan.

Keywords: strategy, policy, soft power, Afghanistan

Procedia PDF Downloads 256
12659 Sound Noise Control of a Steam Ejector in a Typical Power Plant: Design, Manufacturing, and Testing a Silencer-Muffler

Authors: Ali Siami, Masoud Asayesh, Asghar Najafi, Amirhosein Hamedanian

Abstract:

There are so many noise sources in power generation units that these sources can produce high-level sound noise. Therefore, sound noise reduction methods can assist these industries, especially in these days that laws related to environmental issues become more strict. In a typical power plant, so many machines and devices with high-level sound noise are arranged beside of each others. Therefore, the sound source identification and reducing the noise level can be very vital. In this paper, the procedure for designing, manufacturing and testing of a silencer-muffler used for a power plant steam vent is mentioned. This unit is placed near the residential area and so it is very important to reduce the noise emission. For this purpose, in the first step, measurements have done to identify the sound source and the frequency content of noise. The overall level of noise was so high and it was more than 120dB. Then, the appropriate noise control device is designed according to the measurement results and operational conditions. In the next step, the designed silencer-muffler has been manufactured and installed on the steam discharge of the ejector. For validation of the silencer-muffler effect, the acoustic test was done again in operating mode. Finally, the measurement results before and after the installation are compared. The results have confirmed a considerable reduction in noise level resultant of using silencer-muffler in the designed frequency range.

Keywords: silencer-muffler, sound noise control, sound measurement, steam ejector

Procedia PDF Downloads 384
12658 Optimization of Wind Off-Grid System for Remote Area: Egyptian Application

Authors: Marwa M. Ibrahim

Abstract:

The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) off-grid system supplying a small remote gathering of four families using the HOMER software package. The second objective is to study the effect of wind energy system on the cost of generated electricity considering the cost of reducing CO₂ emissions as external benefit of wind turbines, no pollutant emission through the operational phase. The system consists of a small wind turbine, battery storage, and diesel generator. The electrical energy is to cater to the basic needs for which the daily load pattern is estimated at 8 kW peak. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for the selected site in Egypt. Using HOMER software, the simulation results shows that W/D/B systems are economical for the assumed community site as the price of generated electricity is about 0.285 $/kWh, without taking external benefits into considerations and 0.221 if CO₂ emissions taken into consideration W/D/B systems are more economical than alone diesel system as the COE is 0.432 $/kWh for diesel alone.

Keywords: renewable energy, hybrid energy system, on-off grid system, simulation, optimization and environmental impacts

Procedia PDF Downloads 102
12657 Measurement of Thermal Protrusion Profile in Magnetic Recording Heads via Wyko Interferometry

Authors: Joseph Christopher R. Ragasa, Paolo Gabriel P. Casas, Nemesio S. Mangila, Maria Emma C. Villamin, Myra G. Bungag

Abstract:

A procedure in measuring the thermal protrusion profiles of magnetic recording heads was developed using a Wyko HD-8100 optical interference-based instrument. The protrusions in the heads were made by the application of a constant power through the thermal flying height controller pads. It was found that the thermally-induced bubble is confined to form in the same head locations, primarily in the reader and writer regions, regardless of the direction of approach of temperature. An application of power to the thermal flying height control pads ranging from 0 to 50 milliWatts showed that the protrusions demonstrate a linear dependence with the supplied power. The efficiencies calculated using this method were compared to that obtained through Guzik and found to be 19.57% greater due to the static testing environment used in the testing.

Keywords: thermal protrusion profile, magnetic recording heads, wyko interferometry, thermal flying height control

Procedia PDF Downloads 469
12656 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters

Authors: Young-Tae Lee, Hee-Chang Lim

Abstract:

This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.

Keywords: darrieus wind turbine, VAWT, NACA airfoil, performance

Procedia PDF Downloads 373
12655 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forword, membrane, solar, water treatment

Procedia PDF Downloads 81
12654 Wear Behavior and Microstructure of Eutectic Al - Si Alloys Manufactured by Selective Laser Melting

Authors: Nan KANG, Pierre Coddet, Hanlin Liao, Christian Coddet

Abstract:

In this study, the almost dense eutectic Al-12Si alloys were fabricated by selective laser melting (SLM) from the powder mixture of pure Aluminum and pure Silicon, which show the mean particle sizes of 30 μm and 5μm respectively, under the argon environment. The image analysis shows that the highest value of relative density (95 %) was measured for the part obtained at the laser power of 280 W. X ray diffraction (XRD), Optical microscope (OM) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectroscopy (EDS) were employed to determine the microstructures of the SLM-processed Al-Si alloy, which illustrate that the SLM samples present the ultra-fine microstructure. The XRD results indicate that no clearly phase transformation happened during the SLM process. Additionally, the vaporization behavior of Aluminum was detected for the parts obtained at high laser power. Besides, the maximum microhardness value, about 95 Hv, was measured for the samples obtained at laser power of 280 W, and which shows the highest wear resistance.

Keywords: al-Si alloy, selective laser melting, wear behavior, microstructure

Procedia PDF Downloads 401
12653 Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability

Authors: Mohsen Bagheri, Ahmad Afifi

Abstract:

This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on instrumentation amplifier and it is useful for reducing offset in Wheatstone bridge. The obtained gain is 645 with 1 μv/°c equivalent drift and 1.58 mw power consumption. A Schmitt trigger and multiplexer circuit control output node. A high speed counter is designed in this work. The proposed circuit is designed and simulated in 0.18 μm CMOS technology with 1.8 v power supply.

Keywords: piezoresistive accelerometer, zero offset, Schmitt trigger, bidirectional reversible counter

Procedia PDF Downloads 312
12652 Calibration Methods of Direct and Indirect Reading Pressure Sensor and Uncertainty Determination

Authors: Sinem O. Aktan, Musa Y. Akkurt

Abstract:

Experimental pressure calibration methods can be classified into three areas: (1) measurements in liquid or gas systems, (2) measurements in static-solid media systems, and (3) measurements in dynamic shock systems. Fluid (liquid and gas) systems high accuracies can be obtainable and commonly used for the calibration method of a pressure sensor. Pressure calibrations can be performed for metrological traceability in two ways, which are on-site (field) and in the laboratory. Laboratory and on-site calibration procedures and the requirements of the DKD-R-6-1 and Euramet cg-17 guidelines will also be addressed. In this study, calibration methods of direct and indirect reading pressure sensor and measurement uncertainty contributions will be explained.

Keywords: pressure metrology, pressure calibration, dead-weight tester, pressure uncertainty

Procedia PDF Downloads 150
12651 Effects of Plyometric Exercises on Agility, Power and Speed Improvement of U-17 Female Sprinters in Case of Burayu Athletics Project, Oromia, Ethiopia

Authors: Abdeta Bayissa Mekessa

Abstract:

The purpose of this study was to examine the effects of plyometric exercises on agility, power, and speed and improvement of U-17 female sprinters in the case of the Burayu Athletics project. The true experimental research design was employed for conducting this study. The total populations of the study were 14 U-17 female sprinters from Burayu athletics project. The populations were small in numbers; therefore, the researcher took all as a sample by using comprehensive sampling techniques. These subjects were classified into the Experimental group (N=7) and the Control group (N=7) by using simple random sampling techniques. The Experimental group participated in plyometric training for 8 weeks, 3 days per week and 60 minutes duration per day in addition to their regular training. But, the control groups were following their only regular training program. The variables selected for the purpose of this study were agility, power and speed. The tests were the Illinois agility test, standing long jump test, and 30m sprint test, respectively. Both groups were tested before (pre-test) and after (post-test) 8 weeks of plyometric training. For data analysis, the researcher used SPSS version 26.0 software. The collected data was analyzed using a paired sample t-test to observe the difference between the pre-test and post-test results of the plyometric exercises of the study. The significant level of p<0.05 was considered. The result of the study shows that after 8 weeks of plyometric training, significant improvements were found in Agility (MD=0.45, p<0.05), power (MD=-1.157, P<0.05) and speed (MD=0.37, P<0.05) for experimental group subjects. On the other hand, there was no significant change (P>0.05) in those variables in the control groups. Finally, the findings of the study showed that eight (8) weeks of plyometric exercises had a positive effect on agility, power and speed improvement of female sprinters. Therefore, Athletics coaches and athletes are highly recommended to include plyometric exercise in their training program.

Keywords: ploymetric exercise, speed power, aglity, female sprinter

Procedia PDF Downloads 39
12650 Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction

Authors: Samah Laalej, Abdelfattah Bouatem

Abstract:

In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges.

Keywords: blade element momentum, aerodynamic forces, wind turbine blades, computational fluid dynamics approach

Procedia PDF Downloads 64
12649 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi

Abstract:

The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, energy harvesting, thermal harvesting

Procedia PDF Downloads 263
12648 Leverage Effect for Volatility with Generalized Laplace Error

Authors: Farrukh Javed, Krzysztof Podgórski

Abstract:

We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.

Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models

Procedia PDF Downloads 385
12647 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques

Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai

Abstract:

In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.

Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor

Procedia PDF Downloads 269
12646 Perception Study on the Environmental Ramifications of Inadequate Drainage Systems in Jere Local Government Area, Borno State, Nigeria

Authors: Mohammed Bukar Maina, Mohammed Alhaji Bukar

Abstract:

Flooding is a significant threat to human lives, particularly in low- and middle-income nations. This study focuses on the environmental implications of inadequate drainage systems in the Jere Local Government Area of Borno State, Nigeria. By examining community awareness, understanding, and perceived impacts of the absence of drainage systems, as well as exploring potential solutions, this research aims to address the existing knowledge gap. The study focuses on the Fori and 202/303 Quarters, chosen for their lack of drainage infrastructure and environmental challenges. Primary data was collected through questionnaires and observations supplemented by secondary sources. The findings highlight the need for increased awareness of drainage systems and the consequences of inadequate infrastructure. The community faces challenges like flooding, water-logging, contamination of drinking water, waterborne diseases, and property damage, necessitating the implementation of proper drainage systems. Recommendations include prioritizing new drainage systems, awareness campaigns, community participation, involvement of local government and leaders, and regular maintenance. Long-term planning is crucial for integrating drainage infrastructure into future development. Implementing these recommendations will establish sustainable and resilient drainage systems, mitigating environmental hazards. This research provides valuable insights for policymakers, stakeholders, and communities in addressing insufficient drainage systems and safeguarding the community's well-being.

Keywords: environment, drainage systems, flooding, lack

Procedia PDF Downloads 26
12645 Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis

Authors: Saleem Z. Ramadan

Abstract:

In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce.

Keywords: masking, bathtub model, reliability, non-parametric analysis, useful life

Procedia PDF Downloads 562
12644 A Distribution Free Test for Censored Matched Pairs

Authors: Ayman Baklizi

Abstract:

This paper discusses the problem of testing hypotheses about the lifetime distributions of a matched pair based on censored data. A distribution free test based on a runs statistic is proposed. Its null distribution and power function are found in a simple convenient form. Some properties of the test statistic and its power function are studied.

Keywords: censored data, distribution free, matched pair, runs statistics

Procedia PDF Downloads 287
12643 Rethinking The Residential Paradigm: Regenerative Design and the Contemporary Housing Industry

Authors: Gabriela Lucas Sanchez

Abstract:

The contemporary housing industry is dominated by tract houses, which prioritize uniformity and cost-efficiency over environmental and ecological considerations. However, as the world faces the growing challenges of climate change and resource depletion, there is an urgent need to rethink the residential paradigm. This essay explores how regenerative practices can be integrated into standard residential designs to create a shift that reduces the environmental impact of housing and actively contributes to ecological health. Passive sustainable practices, such as passive solar design, natural ventilation, and the use of energy-efficient materials, aim to maximize resource use efficiency, minimize waste, and create healthy living environments. Regenerative practices, on the other hand, go beyond sustainability to work in harmony with natural systems, actively restoring and enriching the environment. Integrating these two approaches can redefine the residential paradigm, creating homes that reduce harm and positively impact the local ecosystem. The essay begins by exploring the principles and benefits of passive sustainable practices, discussing how they can reduce energy consumption and improve indoor environmental quality in standardized housing. Passive sustainability minimizes energy consumption through strategic design choices, such as optimizing building orientation, utilizing natural ventilation, and incorporating high-performance insulation and glazing. However, while sustainability efforts have been important steps in the right direction, a more holistic, regenerative approach is needed to address the root causes of environmental degradation. Regenerative development and design seek to go beyond simply reducing negative impacts, instead aiming to create built environments that actively contribute to restoring and enhancing natural systems. This shift in perspective is critical, as it recognizes the interdependence between human settlements and the natural world and the potential for buildings to serve as catalysts for positive change.

Keywords: passive sustainability, regenerative architecture, residential architecture, community

Procedia PDF Downloads 35
12642 Logical-Probabilistic Modeling of the Reliability of Complex Systems

Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia

Abstract:

The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out.

Keywords: Complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability, weight of element

Procedia PDF Downloads 73