Search results for: DARPA
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: DARPA

4 Proactive Approach to Innovation Management

Authors: Andrus Pedai, Igor Astrov

Abstract:

The focus of this paper is to compare common approaches for Systems of Innovation (SI) and identify proactive alternatives for driving the innovation. Proactive approaches will also consider short and medium term perspectives with developments in the field of Computer Technology and Artificial Intelligence. Concerning computer technology and large connected information systems, it is reasonable to predict that during current or the next century, intelligence and innovation will be separated from the constraints of human-driven management. After this happens, humans will no longer be driving the innovation and there is possibility that SI for new intelligent systems will set its own targets and exclude humans. Over long time scale, these developments could result in a scenario, which will lead to the development of larger, cross galactic (universal) proactive SI and Intelligence.

Keywords: artificial intelligence, DARPA, Moore’s law, proactive innovation, singularity, systems of innovation

Procedia PDF Downloads 478
3 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 157
2 Towards a Strategic Framework for State-Level Epistemological Functions

Authors: Mark Darius Juszczak

Abstract:

While epistemology, as a sub-field of philosophy, is generally concerned with theoretical questions about the nature of knowledge, the explosion in digital media technologies has resulted in an exponential increase in the storage and transmission of human information. That increase has resulted in a particular non-linear dynamic – digital epistemological functions are radically altering how and what we know. Neither the rate of that change nor the consequences of it have been well studied or taken into account in developing state-level strategies for epistemological functions. At the current time, US Federal policy, like that of virtually all other countries, maintains, at the national state level, clearly defined boundaries between various epistemological agencies - agencies that, in one way or another, mediate the functional use of knowledge. These agencies can take the form of patent and trademark offices, national library and archive systems, departments of education, departments such as the FTC, university systems and regulations, military research systems such as DARPA, federal scientific research agencies, medical and pharmaceutical accreditation agencies, federal funding for scientific research and legislative committees and subcommittees that attempt to alter the laws that govern epistemological functions. All of these agencies are in the constant process of creating, analyzing, and regulating knowledge. Those processes are, at the most general level, epistemological functions – they act upon and define what knowledge is. At the same time, however, there are no high-level strategic epistemological directives or frameworks that define those functions. The only time in US history where a proxy state-level epistemological strategy existed was between 1961 and 1969 when the Kennedy Administration committed the United States to the Apollo program. While that program had a singular technical objective as its outcome, that objective was so technologically advanced for its day and so complex so that it required a massive redirection of state-level epistemological functions – in essence, a broad and diverse set of state-level agencies suddenly found themselves working together towards a common epistemological goal. This paper does not call for a repeat of the Apollo program. Rather, its purpose is to investigate the minimum structural requirements for a national state-level epistemological strategy in the United States. In addition, this paper also seeks to analyze how the epistemological work of the multitude of national agencies within the United States would be affected by such a high-level framework. This paper is an exploratory study of this type of framework. The primary hypothesis of the author is that such a function is possible but would require extensive re-framing and reclassification of traditional epistemological functions at the respective agency level. In much the same way that, for example, DHS (Department of Homeland Security) evolved to respond to a new type of security threat in the world for the United States, it is theorized that a lack of coordination and alignment in epistemological functions will equally result in a strategic threat to the United States.

Keywords: strategic security, epistemological functions, epistemological agencies, Apollo program

Procedia PDF Downloads 76
1 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 328