Search results for: shooting accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3789

Search results for: shooting accuracy

1299 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network

Authors: Sandesh Achar

Abstract:

Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.

Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.

Procedia PDF Downloads 41
1298 The Map of Cassini: An Accurate View of Current Border Between Spain and France

Authors: Barbara Polo Martin

Abstract:

During the 18th century, the border between Spain and France underwent various changes, primarily due to territorial agreements, wars, and treaties between the two nations and other European powers. For studying these changes, the Cassini maps remain valuable historical documents, offering a glimpse into the landscape and geography of 18th-century France and its neighboring regions, including the border between Spain and France. However, it's essential to recognize that these maps may not reflect modern political boundaries or territorial changes that have occurred since their creation. The project was initiated by King Louis XV in 1744 and continued by his successor, Louis XVI. The primary objective was to produce accurate maps of France, which would serve various purposes, including military, administrative, and scientific. The Cassini maps were groundbreaking for their time, as they were among the earliest attempts to create topographic maps on a national scale. They covered the entirety of France and were based on meticulous surveying and cartographic techniques. The maps featured precise geographic details, including elevation contours, rivers, roads, forests, and settlements. This study aims to analyze this rich and unknown cartography of France, study the rich place names it offers, as well as the accuracy of delimitations created over time between both empires in a historical way but also through a Geographical Information System. This study will offer a deeper knowledge about the cartography that supposes the beginning of topography in Europe.

Keywords: cartography, engineering, borders, Spain, France, Cassini

Procedia PDF Downloads 60
1297 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness

Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki

Abstract:

Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.

Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation

Procedia PDF Downloads 464
1296 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 257
1295 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines

Authors: Arun Goel

Abstract:

The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free over-fall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, support vector machine (Polynomial and rbf) models, and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free over-fall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.

Keywords: air entrainment rate, dissolved oxygen, weir, SVM, regression

Procedia PDF Downloads 434
1294 A New Family of Integration Methods for Nonlinear Dynamic Analysis

Authors: Shuenn-Yih Chang, Chiu-LI Huang, Ngoc-Cuong Tran

Abstract:

A new family of structure-dependent integration methods, whose coefficients of the difference equation for displacement increment are functions of the initial structural properties and the step size for time integration, is proposed in this work. This family method can simultaneously integrate the controllable numerical dissipation, explicit formulation and unconditional stability together. In general, its numerical dissipation can be continuously controlled by a parameter and it is possible to achieve zero damping. In addition, it can have high-frequency damping to suppress or even remove the spurious oscillations high frequency modes. Whereas, the low frequency modes can be very accurately integrated due to the almost zero damping for these low frequency modes. It is shown herein that the proposed family method can have exactly the same numerical properties as those of HHT-α method for linear elastic systems. In addition, it still preserves the most important property of a structure-dependent integration method, which is an explicit formulation for each time step. Consequently, it can save a huge computational efforts in solving inertial problems when compared to the HHT-α method. In fact, it is revealed by numerical experiments that the CPU time consumed by the proposed family method is only about 1.6% of that consumed by the HHT-α method for the 125-DOF system while it reduces to be 0.16% for the 1000-DOF system. Apparently, the saving of computational efforts is very significant.

Keywords: structure-dependent integration method, nonlinear dynamic analysis, unconditional stability, numerical dissipation, accuracy

Procedia PDF Downloads 637
1293 Impacts on the Modification of a Two-Blade Mobile on the Agitation of Newtonian Fluids

Authors: Abderrahim Sidi Mohammed Nekrouf, Sarra Youcefi

Abstract:

Fluid mixing plays a crucial role in numerous industries as it has a significant impact on the final product quality and performance. In certain cases, the circulation of viscous fluids presents challenges, leading to the formation of stagnant zones. To overcome this issue, stirring devices are employed for fluid mixing. This study focuses on a numerical analysis aimed at understanding the behavior of Newtonian fluids when agitated by a two-blade agitator in a cylindrical vessel. We investigate the influence of the agitator shape on fluid motion. Bi-blade agitators of this type are commonly used in the food, cosmetic, and chemical industries to agitate both viscous and non-viscous liquids. Numerical simulations were conducted using Computational Fluid Dynamics (CFD) software to obtain velocity profiles, streamlines, velocity contours, and the associated power number. The obtained results were compared with experimental data available in the literature, validating the accuracy of our numerical approach. The results clearly demonstrate that modifying the agitator shape has a significant impact on fluid motion. This modification generates an axial flow that enhances the efficiency of the fluid flow. The various velocity results convincingly reveal that the fluid is more uniformly agitated with this modification, resulting in improved circulation and a substantial reduction in stagnant zones.

Keywords: Newtonian fluids, numerical modeling, two blade., CFD

Procedia PDF Downloads 75
1292 A Numerical Investigation of Total Temperature Probes Measurement Performance

Authors: Erdem Meriç

Abstract:

Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.

Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes

Procedia PDF Downloads 132
1291 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint

Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu

Abstract:

With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.

Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning

Procedia PDF Downloads 76
1290 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 77
1289 Experimental Modeling and Simulation of Zero-Surface Temperature of Controlled Water Jet Impingement Cooling System for Hot-Rolled Steel Plates

Authors: Thomas Okechukwu Onah, Onyekachi Marcel Egwuagu

Abstract:

Zero-surface temperature, which controlled the cooling profile, was modeled and used to investigate the effect of process parameters on the hot-rolled steel plates. The parameters include impingement gaps of 40mm to 70mm; pipe diameters of 20mm to 45mm feeding jet nozzle with 30 holes of 8mm diameters each; and flow rates within 2.896x10-⁶m³/s and 3.13x10-⁵m³/s. The developed simulation model of the Zero-Surface Temperature, upon validation, showed 99% prediction accuracy with dimensional homogeneity established. The evaluated Zero-Surface temperature of Controlled Water Jet Impingement Steel plates showed a high cooling rate of 36.31 Celsius degree/sec at an optimal cooling nozzle diameter of 20mm, impingement gap of 70mm and a flow rate of 1.77x10-⁵m³/s resulting in Reynold's number 2758.586, in the turbulent regime was obtained. It was also deduced that as the nozzle diameter was increasing, the impingement gap was reducing. This achieved a faster rate of cooling to an optimum temperature of 300oC irrespective of the starting surface cooling temperature. The results additionally showed that with a tested-plate initial temperature of 550oC, a controlled cooling temperature of about 160oC produced a film and nucleated boiling heat extraction that was particularly beneficial at the end of controlled cooling and influenced the microstructural properties of the test plates.

Keywords: temperature, mechanistic-model, plates, impingements, dimensionless-numbers

Procedia PDF Downloads 43
1288 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton

Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna

Abstract:

A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.

Keywords: backstepping control, iterative control, Rehabilitation, ETS-MARSE

Procedia PDF Downloads 284
1287 Effects of Pore-Water Pressure on the Motion of Debris Flow

Authors: Meng-Yu Lin, Wan-Ju Lee

Abstract:

Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge.

Keywords: debris flow, diffusion, Lagrangian particle method, pore-pressure diffusivity, pore-water pressure

Procedia PDF Downloads 141
1286 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model

Procedia PDF Downloads 224
1285 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore

Authors: Ronal Muresano, Andrea Pagano

Abstract:

Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.

Keywords: algorithm optimization, bank failures, OpenMP, parallel techniques, statistical tool

Procedia PDF Downloads 366
1284 Numerical Determination of Transition of Cup Height between Hydroforming Processes

Authors: H. Selcuk Halkacı, Mevlüt Türköz, Ekrem Öztürk, Murat Dilmec

Abstract:

Various attempts concerning the low formability issue for lightweight materials like aluminium and magnesium alloys are being investigated in many studies. Advanced forming processes such as hydroforming is one of these attempts. In last decades sheet hydroforming process has an increasing interest, particularly in the automotive and aerospace industries. This process has many advantages such as enhanced formability, the capability to form complex parts, higher dimensional accuracy and surface quality, reduction of tool costs and reduced die wear compared to the conventional sheet metal forming processes. There are two types of sheet hydroforming. One of them is hydromechanical deep drawing (HDD) that is a special drawing process in which pressurized fluid medium is used instead of one of the die half compared to the conventional deep drawing (CDD) process. Another one is sheet hydroforming with die (SHF-D) in which blank is formed with the act of fluid pressure and it takes the shape of die half. In this study, transition of cup height according to cup diameter between the processes was determined by performing simulation of the processes in Finite Element Analysis. Firstly SHF-D process was simulated for 40 mm cup diameter at different cup heights chancing from 10 mm to 30 mm and the cup height to diameter ratio value in which it is not possible to obtain a successful forming was determined. Then the same ratio was checked for a different cup diameter of 60 mm. Then thickness distributions of the cups formed by SHF-D and HDD processes were compared for the cup heights. Consequently, it was found that the thickness distribution in HDD process in the analyses was more uniform.

Keywords: finite element analysis, HDD, hydroforming sheet metal forming, SHF-D

Procedia PDF Downloads 427
1283 The Attentional Focus Impact on the Decision Making in Three-Game Situations in Tennis

Authors: Marina Tsetseli, Eleni Zetou, Maria Michalopoulou, Nikos Vernadakis

Abstract:

Game performance, besides the accuracy and the quality skills execution, depends heavily on where the athletes will focus their attention while performing a skill. The purpose of the present study was to examine and compare the effect of internal and external focus of attention instructions on the decision making in tennis at players 8-9 years old (M=8.4, SD=0.49). The participants (N=40) were divided into two groups and followed an intervention training program that lasted 4 weeks; first group (N=20) under internal focus of attention instructions and the second group (N=20) under external focus of attention instructions. Three measurements took place (pre-test, post-test, and retention test) in which the participants were video recorded while playing matches in real scoring conditions. GPAI (Game Performance Assessment Instrument) was used to evaluate decision making in three game situations; service, return of the service, baseline game. ANOVA repeated measures (2 groups x 3 measurements) revealed a significant interaction between groups and measurements. Specifically, the data analysis showed superiority of the group that was instructed to focus externally. The high scores of the external attention group were maintained at the same level at the third measurement as well, which indicates that the impact was concerning not only performance but also learning. Thus, cues that lead to an external focus of attention enhance the decision-making skill and therefore the game performance of the young tennis players.

Keywords: decision making, evaluation, focus of attention, game performance, tennis

Procedia PDF Downloads 348
1282 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department

Authors: Chaiyaporn Yuksen

Abstract:

Backgroud: Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). Method: The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. Result: 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times Conclusion: The clinical predictive score of > 6 was associated with recurrence PSVT in ED.

Keywords: clinical prediction score, SVT, recurrence, emergency department

Procedia PDF Downloads 154
1281 BeamGA Median: A Hybrid Heuristic Search Approach

Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte

Abstract:

The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.

Keywords: median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance

Procedia PDF Downloads 264
1280 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 187
1279 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification

Authors: Sharon Li, Zhonghang Xia

Abstract:

Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.

Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine

Procedia PDF Downloads 21
1278 Resilience Assessment for Power Distribution Systems

Authors: Berna Eren Tokgoz, Mahdi Safa, Seokyon Hwang

Abstract:

Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology.  

Keywords: photogrammetry, power distribution systems, resilience metric, system resilience, wind-related disasters

Procedia PDF Downloads 220
1277 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization

Procedia PDF Downloads 120
1276 Context-Aware Alert Method in Hajj Pilgrim Location-Based Tracking System

Authors: Syarif Hidayat

Abstract:

As millions of people with different backgrounds perform hajj every year in Saudi Arabia, it brings out several problems. Missing people is among many crucial problems need to be encountered. Some people might have had insufficient knowledge of using tracking system equipment. Other might become a victim of an accident, lose consciousness, or even died, prohibiting them to perform certain activity. For those reasons, people could not send proper SOS message. The major contribution of this paper is the application of the diverse alert method in pilgrims tracking system. It offers a simple yet robust solution to send SOS message by pilgrims during Hajj. Knowledge of context aware computing is assumed herein. This study presents four methods that could be utilized by pilgrims to send SOS. The first method is simple mobile application contains only a button. The second method is based on behavior analysis based off GPS location movement anomaly. The third method is by introducing pressing pattern to smartwatch physical button as a panic button. The fourth method is by identifying certain accelerometer pattern recognition as a sign of emergency situations. Presented method in this paper would be an important part of pilgrims tracking system. The discussion provided here includes easy to use design whilst maintaining tracking accuracy, privacy, and security of its users.

Keywords: context aware computing, emergency alert system, GPS, hajj pilgrim tracking, location-based services

Procedia PDF Downloads 214
1275 Mathematical Modeling of the Operating Process and a Method to Determine the Design Parameters in an Electromagnetic Hammer Using Solenoid Electromagnets

Authors: Song Hyok Choe

Abstract:

This study presented a method to determine the optimum design parameters based on a mathematical model of the operating process in a manual electromagnetic hammer using solenoid electromagnets. The operating process of the electromagnetic hammer depends on the circuit scheme of the power controller. Mathematical modeling of the operating process was carried out by considering the energy transfer process in the forward and reverse windings and the electromagnetic force acting on the impact and brake pistons. Using the developed mathematical model, the initial design data of a manual electromagnetic hammer proposed in this paper are encoded and analyzed in Matlab. On the other hand, a measuring experiment was carried out by using a measurement device to check the accuracy of the developed mathematical model. The relative errors of the analytical results for measured stroke distance of the impact piston, peak value of forward stroke current and peak value of reverse stroke current were −4.65%, 9.08% and 9.35%, respectively. Finally, it was shown that the mathematical model of the operating process of an electromagnetic hammer is relatively accurate, and it can be used to determine the design parameters of the electromagnetic hammer. Therefore, the design parameters that can provide the required impact energy in the manual electromagnetic hammer were determined using a mathematical model developed. The proposed method will be used for the further design and development of the various types of percussion rock drills.

Keywords: solenoid electromagnet, electromagnetic hammer, stone processing, mathematical modeling

Procedia PDF Downloads 44
1274 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.

Keywords: injection molding, shrinkage, six sigma, Taguchi parameter design

Procedia PDF Downloads 178
1273 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 95
1272 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study

Authors: Colin Smith, Linsey S Passarella

Abstract:

Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.

Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy

Procedia PDF Downloads 132
1271 Assessing the Utility of Unmanned Aerial Vehicle-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping

Authors: Qiaosi Li, Frankie Kwan Kit Wong, Tung Fung

Abstract:

Lightweight unmanned aerial vehicle (UAV) loading with novel sensors offers a low cost approach for data acquisition in complex environment. This study established a framework for applying UAV system in complex environment quick mapping and assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area Mai Po Inner Deep Bay Ramsar Site, Hong Kong. The study area was part of shallow bay with flat terrain and the major species including reedbed and four mangroves: Kandelia obovata, Aegiceras corniculatum, Acrostichum auerum and Acanthus ilicifolius. Other species involved in various graminaceous plants, tarbor, shrub and invasive species Mikania micrantha. In particular, invasive species climbed up to the mangrove canopy caused damage and morphology change which might increase species distinguishing difficulty. Hyperspectral images were acquired by Headwall Nano sensor with spectral range from 400nm to 1000nm and 0.06m spatial resolution image. A sequence of multi-view RGB images was captured with 0.02m spatial resolution and 75% overlap. Hyperspectral image was corrected for radiative and geometric distortion while high resolution RGB images were matched to generate maximum dense point clouds. Furtherly, a 5 cm grid digital surface model (DSM) was derived from dense point clouds. Multiple feature reduction methods were compared to identify the efficient method and to explore the significant spectral bands in distinguishing different species. Examined methods including stepwise discriminant analysis (DA), support vector machine (SVM) and minimum noise fraction (MNF) transformation. Subsequently, spectral subsets composed of the first 20 most importance bands extracted by SVM, DA and MNF, and multi-source subsets adding extra DSM to 20 spectrum bands were served as input in maximum likelihood classifier (MLC) and SVM classifier to compare the classification result. Classification results showed that feature reduction methods from best to worst are MNF transformation, DA and SVM. MNF transformation accuracy was even higher than all bands input result. Selected bands frequently laid along the green peak, red edge and near infrared. Additionally, DA found that chlorophyll absorption red band and yellow band were also important for species classification. In terms of 3D data, DSM enhanced the discriminant capacity among low plants, arbor and mangrove. Meanwhile, DSM largely reduced misclassification due to the shadow effect and morphological variation of inter-species. In respect to classifier, nonparametric SVM outperformed than MLC for high dimension and multi-source data in this study. SVM classifier tended to produce higher overall accuracy and reduce scattered patches although it costs more time than MLC. The best result was obtained by combining MNF components and DSM in SVM classifier. This study offered a precision species distribution survey solution for inaccessible wetland area with low cost of time and labour. In addition, findings relevant to the positive effect of DSM as well as spectral feature identification indicated that the utility of UAV-borne hyperspectral and photogrammetry deriving 3D data is promising in further research on wetland species such as bio-parameters modelling and biological invasion monitoring.

Keywords: digital surface model (DSM), feature reduction, hyperspectral, photogrammetric point cloud, species mapping, unmanned aerial vehicle (UAV)

Procedia PDF Downloads 255
1270 3D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM

Authors: Clement Leroy, Guillaume Boitel

Abstract:

This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.

Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery

Procedia PDF Downloads 203