Search results for: perturb and observe algorithm
1894 Proactive SoC Balancing of Li-ion Batteries for Automotive Application
Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas weyh
Abstract:
The demand for battery electric vehicles (BEV) is steadily increasing, and it can be assumed that electric mobility will dominate the market for individual transportation in the future. Regarding BEVs, the focus of state-of-the-art research and development is on vehicle batteries since their properties primarily determine vehicles' characteristic parameters, such as price, driving range, charging time, and lifetime. State-of-the-art battery packs consist of invariable configurations of battery cells, connected in series and parallel. A promising alternative is battery systems based on multilevel inverters, which can alter the configuration of the battery cells during operation via semiconductor switches. The main benefit of such topologies is that a three-phase AC voltage can be directly generated from the battery pack, and no separate power inverters are required. Therefore, modular battery systems based on different multilevel inverter topologies and reconfigurable battery systems are currently under investigation. Another advantage of the multilevel concept is that the possibility to reconfigure the battery pack allows battery cells with different states of charge (SoC) to be connected in parallel, and thus low-loss balancing can take place between such cells. In contrast, in conventional battery systems, parallel connected (hard-wired) battery cells are discharged via bleeder resistors to keep the individual SoCs of the parallel battery strands balanced, ultimately reducing the vehicle range. Different multilevel inverter topologies and reconfigurable batteries have been described in the available literature that makes the before-mentioned advantages possible. However, what has not yet been described is how an intelligent operating algorithm needs to look like to keep the SoCs of the individual battery strands of a modular battery system with integrated power electronics balanced. Therefore, this paper suggests an SoC balancing approach for Battery Modular Multilevel Management (BM3) converter systems, which can be similarly used for reconfigurable battery systems or other multilevel inverter topologies with parallel connectivity. The here suggested approach attempts to simultaneously utilize all converter modules (bypassing individual modules should be avoided) because the parallel connection of adjacent modules reduces the phase-strand's battery impedance. Furthermore, the presented approach tries to reduce the number of switching events when changing the switching state combination. Thereby, the ohmic battery losses and switching losses are kept as low as possible. Since no power is dissipated in any designated bleeder resistors and no designated active balancing circuitry is required, the suggested approach can be categorized as a proactive balancing approach. To verify the algorithm's validity, simulations are used.Keywords: battery management system, BEV, battery modular multilevel management (BM3), SoC balancing
Procedia PDF Downloads 1191893 The Use of AI to Measure Gross National Happiness
Authors: Riona Dighe
Abstract:
This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness
Procedia PDF Downloads 1151892 Brainbow Image Segmentation Using Bayesian Sequential Partitioning
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning
Procedia PDF Downloads 4841891 Determination of Elasticity Constants of Isotropic Thin Films Using Impulse Excitation Technique
Authors: M. F. Slim, A. Alhussein, F. Sanchette, M. François
Abstract:
Thin films are widely used in various applications to enhance the surface properties and characteristics of materials. They are used in many domains such as: biomedical, automotive, aeronautics, military, electronics and energy. Depending on the elaboration technique, the elastic behavior of thin films may be different from this of bulk materials. This dependence on the elaboration techniques and their parameters makes the control of the elasticity constants of coated components necessary. Our work is focused on the characterization of the elasticity constants of isotropic thin films by means of Impulse Excitation Techniques. The tests rely on the measurement of the sample resonance frequency before and after deposition. In this work, a finite element model was performed with ABAQUS software. This model was then compared with the analytical approaches used to determine the Young’s and shear moduli. The best model to determine the film Young’s modulus was identified and a relation allowing the determination of the shear modulus of thin films of any thickness was developed. In order to confirm the model experimentally, Tungsten films were deposited on glass substrates by DC magnetron sputtering of a 99.99% purity tungsten target. The choice of tungsten was done because it is well known that its elastic behavior at crystal scale is ideally isotropic. The macroscopic elasticity constants, Young’s and shear moduli and Poisson’s ratio of the deposited film were determined by means of Impulse Excitation Technique. The Young’s modulus obtained from IET was compared with measurements by the nano-indentation technique. We did not observe any significant difference and the value is in accordance with the one reported in the literature. This work presents a new methodology on the determination of the elasticity constants of thin films using Impulse Excitation Technique. A formulation allowing the determination of the shear modulus of a coating, whatever the thickness, was developed and used to determine the macroscopic elasticity constants of tungsten films. The developed model was validated numerically and experimentally.Keywords: characterization, coating, dynamical resonant method, Poisson's ratio, PVD, shear modulus, Young's modulus
Procedia PDF Downloads 3621890 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City
Authors: Khadija Raissi, Bechir Ben Gouissem
Abstract:
In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3
Procedia PDF Downloads 2951889 Evaluating the Performance of Color Constancy Algorithm
Authors: Damanjit Kaur, Avani Bhatia
Abstract:
Color constancy is significant for human vision since color is a pictorial cue that helps in solving different visions tasks such as tracking, object recognition, or categorization. Therefore, several computational methods have tried to simulate human color constancy abilities to stabilize machine color representations. Two different kinds of methods have been used, i.e., normalization and constancy. While color normalization creates a new representation of the image by canceling illuminant effects, color constancy directly estimates the color of the illuminant in order to map the image colors to a canonical version. Color constancy is the capability to determine colors of objects independent of the color of the light source. This research work studies the most of the well-known color constancy algorithms like white point and gray world.Keywords: color constancy, gray world, white patch, modified white patch
Procedia PDF Downloads 3151888 Electromagnetic Source Direction of Arrival Estimation via Virtual Antenna Array
Authors: Meiling Yang, Shuguo Xie, Yilong Zhu
Abstract:
Nowadays, due to diverse electric products and complex electromagnetic environment, the localization and troubleshooting of the electromagnetic radiation source is urgent and necessary especially on the condition of far field. However, based on the existing DOA positioning method, the system or devices are complex, bulky and expensive. To address this issue, this paper proposes a single antenna radiation source localization method. A single antenna moves to form a virtual antenna array combined with DOA and MUSIC algorithm to position accurately, meanwhile reducing the cost and simplify the equipment. As shown in the results of simulations and experiments, the virtual antenna array DOA estimation modeling is correct and its positioning is credible.Keywords: virtual antenna array, DOA, localization, far field
Procedia PDF Downloads 3701887 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6531886 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm
Authors: Vahid Bayrami Rad
Abstract:
Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.Keywords: arduino board, artificial intelligence, image processing, solenoid lock
Procedia PDF Downloads 661885 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System
Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes
Abstract:
The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models
Procedia PDF Downloads 801884 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 4091883 Structural Evolution of Na6Mn(SO4)4 from High-Pressure Synchrotron Powder X-ray Diffraction
Authors: Monalisa Pradhan, Ajana Dutta, Irshad Kariyattuparamb Abbas, Boby Joseph, T. N. Guru Row, Diptikanta Swain, Gopal K. Pradhan
Abstract:
Compounds with the Vanthoffite crystal structure having general formula Na6M(SO₄)₄ (M= Mg, Mn, Ni , Co, Fe, Cu and Zn) display a variety of intriguing physical properties intimately related to their structural arrangements. The compound Na6Mn(SO4)4 shows antiferromagnetic ordering at low temperature where the in-plane Mn-O•••O-Mn interactions facilitates antiferromagnetic ordering via a super-exchange interaction between the Mn atoms through the oxygen atoms . The inter-atomic bond distances and angles can easily be tuned by applying external pressure and can be probed using high resolution X-ray diffraction. Moreover, because the magnetic interaction among the Mn atoms are super-exchange type via Mn-O•••O-Mn path, the variation of the Mn-O•••O-Mn dihedral angle and Mn-O bond distances under high pressure inevitably affects the magnetic properties. Therefore, it is evident that high pressure studies on the magnetically ordered materials would shed light on the interplay between their structural properties and magnetic ordering. This will indeed confirm the role of buckling of the Mn-O polyhedral in understanding the origin of anti-ferromagnetism. In this context, we carried out the pressure dependent X-ray diffraction measurement in a diamond anvil cell (DAC) up to a maximum pressure of 17 GPa to study the phase transition and determine equation of state from the volume compression data. Upon increasing the pressure, we didn’t observe any new diffraction peaks or sudden discontinuity in the pressure dependences of the d values up to the maximum achieved pressure of ~17 GPa. However, it is noticed that beyond 12 GPa the a and b lattice parameters become identical while there is a discontinuity in the β value around the same pressure. This indicates a subtle transition to a pseudo-monoclinic phase. Using the third order Birch-Murnaghan equation of state (EOS) to fit the volume compression data for the entire range, we found the bulk modulus (B0) to be 44 GPa. If we consider the subtle transition at 12 GPa, we tried to fit another equation state for the volume beyond 12 GPa using the second order Birch-Murnaghan EOS. This gives a bulk modulus of ~ 34 GPa for this phase.Keywords: mineral, structural phase transition, high pressure XRD, spectroscopy
Procedia PDF Downloads 871882 Application of Method of Symmetries at a Calculation and Planning of Circular Plate with Variable Thickness
Authors: Kirill Trapezon, Alexandr Trapezon
Abstract:
A problem is formulated for the natural oscillations of a circular plate of linearly variable thickness on the basis of the symmetry method. The equations of natural frequencies and forms for a plate are obtained, providing that it is rigidly fixed along the inner contour. The first three eigenfrequencies are calculated, and the eigenmodes of the oscillations of the acoustic element are constructed. An algorithm for applying the symmetry method and the factorization method for solving problems in the theory of oscillations for plates of variable thickness is shown. The effectiveness of the approach is demonstrated on the basis of comparison of known results and those obtained in the article. It is shown that the results are more accurate and reliable.Keywords: vibrations, plate, method of symmetries, differential equation, factorization, approximation
Procedia PDF Downloads 2621881 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 861880 Accelerating Side Channel Analysis with Distributed and Parallelized Processing
Authors: Kyunghee Oh, Dooho Choi
Abstract:
Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.Keywords: DPA, distributed computing, parallelized processing, side channel analysis
Procedia PDF Downloads 4251879 Comparison Analysis of Multi-Channel Echo Cancellation Using Adaptive Filters
Authors: Sahar Mobeen, Anam Rafique, Irum Baig
Abstract:
Acoustic echo cancellation in multichannel is a system identification application. In real time environment, signal changes very rapidly which required adaptive algorithms such as Least Mean Square (LMS), Leaky Least Mean Square (LLMS), Normalized Least Mean square (NLMS) and average (AFA) having high convergence rate and stable. LMS and NLMS are widely used adaptive algorithm due to less computational complexity and AFA used of its high convergence rate. This research is based on comparison of acoustic echo (generated in a room) cancellation thorough LMS, LLMS, NLMS, AFA and newly proposed average normalized leaky least mean square (ANLLMS) adaptive filters.Keywords: LMS, LLMS, NLMS, AFA, ANLLMS
Procedia PDF Downloads 5641878 Optimal Delivery of Two Similar Products to N Ordered Customers
Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis
Abstract:
The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering products located at a central depot to customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from the depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity of the goods that must be delivered. In the present work, we present a specific capacitated stochastic vehicle routing problem which has realistic applications to distributions of materials to shops or to healthcare facilities or to military units. A vehicle starts its route from a depot loaded with items of two similar but not identical products. We name these products, product 1 and product 2. The vehicle must deliver the products to N customers according to a predefined sequence. This means that first customer 1 must be serviced, then customer 2 must be serviced, then customer 3 must be serviced and so on. The vehicle has a finite capacity and after servicing all customers it returns to the depot. It is assumed that each customer prefers either product 1 or product 2 with known probabilities. The actual preference of each customer becomes known when the vehicle visits the customer. It is also assumed that the quantity that each customer demands is a random variable with known distribution. The actual demand is revealed upon the vehicle’s arrival at customer’s site. The demand of each customer cannot exceed the vehicle capacity and the vehicle is allowed during its route to return to the depot to restock with quantities of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. If there is shortage for the desired product, it is permitted to deliver the other product at a reduced price. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the expected total cost among all possible strategies. It is possible to find the optimal routing strategy using a suitable stochastic dynamic programming algorithm. It is also possible to prove that the optimal routing strategy has a specific threshold-type structure, i.e. it is characterized by critical numbers. This structural result enables us to construct an efficient special-purpose dynamic programming algorithm that operates only over those routing strategies having this structure. The findings of the present study lead us to the conclusion that the dynamic programming method may be a very useful tool for the solution of specific vehicle routing problems. A problem for future research could be the study of a similar stochastic vehicle routing problem in which the vehicle instead of delivering, it collects products from ordered customers.Keywords: collection of similar products, dynamic programming, stochastic demands, stochastic preferences, vehicle routing problem
Procedia PDF Downloads 2661877 On Musical Information Geometry with Applications to Sonified Image Analysis
Authors: Shannon Steinmetz, Ellen Gethner
Abstract:
In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content.Keywords: sonification, musical information geometry, image, content extraction, automated quantification, audio segmentation, pattern recognition
Procedia PDF Downloads 2351876 Parallel Computing: Offloading Matrix Multiplication to GPU
Authors: Bharath R., Tharun Sai N., Bhuvan G.
Abstract:
This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks
Procedia PDF Downloads 551875 Congestion Control in Mobile Network by Prioritizing Handoff Calls
Authors: O. A. Lawal, O. A Ojesanmi
Abstract:
The demand for wireless cellular services continues to increase while the radio resources remain limited. Thus, network operators have to continuously manage the scarce radio resources in order to have an improved quality of service for mobile users. This paper proposes how to handle the problem of congestion in the mobile network by prioritizing handoff call, using the guard channel allocation scheme. The research uses specific threshold value for the time of allocation of the channel in the algorithm. The scheme would be simulated by generating various data for different traffics in the network as it would be in the real life. The result would be used to determine the probability of handoff call dropping and the probability of the new call blocking as a way of measuring the network performance.Keywords: call block, channel, handoff, mobile cellular network
Procedia PDF Downloads 3921874 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies
Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak
Abstract:
Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states
Procedia PDF Downloads 751873 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis
Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu
Abstract:
Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.Keywords: GPT, phantom-less QCT, large language model, osteoporosis
Procedia PDF Downloads 701872 Practical Problems as Tools for the Development of Secondary School Students’ Motivation to Learn Mathematics
Authors: M. Rodionov, Z. Dedovets
Abstract:
This article discusses plausible reasoning use for solution to practical problems. Such reasoning is the major driver of motivation and implementation of mathematical, scientific and educational research activity. A general, practical problem solving algorithm is presented which includes an analysis of specific problem content to build, solve and interpret the underlying mathematical model. The author explores the role of practical problems such as the stimulation of students' interest, the development of their world outlook and their orientation in the modern world at the different stages of learning mathematics in secondary school. Particular attention is paid to the characteristics of those problems which were systematized and presented in the conclusions.Keywords: mathematics, motivation, secondary school, student, practical problem
Procedia PDF Downloads 2981871 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data
Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju
Abstract:
Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding
Procedia PDF Downloads 4101870 Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata
Authors: Ramin Javadzadeh
Abstract:
The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms.Keywords: cellular automata, cellular learning automata, local search, optimization, particle swarm optimization
Procedia PDF Downloads 6051869 Detect QOS Attacks Using Machine Learning Algorithm
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack.Keywords: wireless lan, quality of service, machine learning, class hijacking, EDCA remapping
Procedia PDF Downloads 571868 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 4821867 Promoting Creative and Critical Thinking in Mathematics
Authors: Ana Maria Reis D'Azevedo Breda, Catarina Maria Neto da Cruz
Abstract:
The Japanese art of origami provides a rich context for designing exploratory mathematical activities for children and young people. By folding a simple sheet of paper, fascinating and surprising planar and spatial configurations emerge. Equally surprising is the unfolding process, which also produces striking patterns. The procedure of folding, unfolding, and folding again allows the exploration of interesting geometric patterns. When adequately and systematically done, we may deduce some of the mathematical rules ruling origami. As the child/youth folds the sheet of paper repeatedly, he can physically observe how the forms he obtains are transformed and how they relate to the pattern of the corresponding unfolding, creating space for the understanding/discovery of mathematical principles regulating the folding-unfolding process. As part of a 2023 Summer Academy organized by a Portuguese university, a session entitled “Folding, Thinking and Generalizing” took place. Twenty-three students attended the session, all enrolled in the 2nd cycle of Portuguese Basic Education and aged between 10 and 12 years old. The main focus of this session was to foster the development of critical cognitive and socio-emotional skills among these young learners using origami. These skills included creativity, critical analysis, mathematical reasoning, collaboration, and communication. Employing a qualitative, descriptive, and interpretative analysis of data collected during the session through field notes and students’ written productions, our findings reveal that structured origami-based activities not only promote student engagement with mathematical concepts in a playful and interactive but also facilitate the development of socio-emotional skills, which include collaboration and effective communication between participants. This research highlights the value of integrating origami into educational practices, highlighting its role in supporting comprehensive cognitive and emotional learning experiences.Keywords: skills, origami rules, active learning, hands-on activities
Procedia PDF Downloads 661866 Numerical Simulation of Precast Concrete Panels for Airfield Pavement
Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička
Abstract:
Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement
Procedia PDF Downloads 2561865 Low-Income African-American Fathers' Gendered Relationships with Their Children: A Study Examining the Impact of Child Gender on Father-Child Interactions
Authors: M. Lim Haslip
Abstract:
This quantitative study explores the correlation between child gender and father-child interactions. The author analyzes data from videotaped interactions between African-American fathers and their boy or girl toddler to explain how African-American fathers and toddlers interact with each other and whether these interactions differ by child gender. The purpose of this study is to investigate the research question: 'How, if at all, do fathers’ speech and gestures differ when interacting with their two-year-old sons versus daughters during free play?' The objectives of this study are to describe how child gender impacts African-American fathers’ verbal communication, examine how fathers gesture and speak to their toddler by gender, and to guide interventions for low-income African-American families and their children in early language development. This study involves a sample of 41 low-income African-American fathers and their 24-month-old toddlers. The videotape data will be used to observe 10-minute father-child interactions during free play. This study uses the already transcribed and coded data provided by Dr. Meredith Rowe, who did her study on the impact of African-American fathers’ verbal input on their children’s language development. The Child Language Data Exchange System (CHILDES program), created to study conversational interactions, was used for transcription and coding of the videotape data. The findings focus on the quantity of speech, diversity of speech, complexity of speech, and the quantity of gesture to inform the vocabulary usage, number of spoken words, length of speech, and the number of object pointings observed during father-toddler interactions in a free play setting. This study will help intervention and prevention scientists understand early language development in the African-American population. It will contribute to knowledge of the role of African-American fathers’ interactions on their children’s language development. It will guide interventions for the early language development of African-American children.Keywords: parental engagement, early language development, African-American families, quantity of speech, diversity of speech, complexity of speech and the quantity of gesture
Procedia PDF Downloads 104