Search results for: impact models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16896

Search results for: impact models

14406 Forecasting the Sea Level Change in Strait of Hormuz

Authors: Hamid Goharnejad, Amir Hossein Eghbali

Abstract:

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting

Procedia PDF Downloads 271
14405 The Impact of Using Authentic Materials on Students' Motivation in Learning Indonesian Language as a Foreign Language

Authors: Ratna Elizabeth

Abstract:

Motivation is a very important factor since it contributes a lot to the students’ success in learning a language. Using authentic materials is believed as a mean of increasing the motivation. The materials define as authentic if they are not specifically written for the purpose of language teaching. They are genuine spoken or written language data which are drawn from many different sources. The intention of this study is to investigate the impact of using of authentic materials on students’ motivation. A single case study is conducted to the grade 9 students who learn Indonesian Language as a Foreign Language (ILFL) at an international school in Jakarta, Indonesia. Questionnaires are also distributed to the students to know their perceptions on the using of authentic materials. The results show that the using of authentic materials has increased the students’ motivation in learning the language.

Keywords: authentic materials, ILFL, language learning, motivation

Procedia PDF Downloads 388
14404 Fluid Structure Interaction of Offshore Concrete Columns under Explosion Loads

Authors: Ganga K. V. Prakhya, V. Karthigeyan

Abstract:

The paper describes the influences of the fluid and structure interaction in concrete structures that support large oil platforms in the North Sea. The dynamic interaction of the fluid both in 2D and 3D are demonstrated through a Computational Fluid Dynamics analysis in the event of explosion following a gas leak inside of the concrete column. The structural response characteristics of the column in water under dynamic conditions are quite complex involving axial, radial and circumferential modes. Fluid structure interaction (FSI) modelling showed that there are some frequencies of the column in water which are not found for a column in air. For example, it was demonstrated that one of the axial breathing modes can never be simulated without the use of FSI models. The occurrence of a shift in magnitude and time of pressure from explosion following gas leak along the height of the shaft not only excited the modes of vibration involving breathing (axial), bending and squashing (radial) modes but also magnified the forces in the column. FSI models revealed that dynamic effects resulted in dynamic amplification of loads. The results are summarized from a detailed study that was carried out by the first author for the Offshore Safety Division of Health & Safety Executive United Kingdom.

Keywords: concrete, explosion, fluid structure interaction, offshore structures

Procedia PDF Downloads 188
14403 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene

Authors: R. Dangtungee, A. Rattanapan, S. Siengchin

Abstract:

Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.

Keywords: high-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide

Procedia PDF Downloads 363
14402 A Study on the Impact of Covid-19 on Primary Healthcare Workers in Ekiti State, South-West Nigeria

Authors: Adeyinka Adeniran, Omowunmi Bakare, Esther Oluwole, Florence Chieme, Temitope Durojaiye, Modupe Akinyinka, Omobola Ojo, Babatunde Olujobi, Marcus Ilesanmi, Akintunde Ogunsakin

Abstract:

Introduction: Globally, COVID-19 has greatly impacted the human race physically, socially, mentally, and economically. However, healthcare workers seemed to bear the greatest impact. The study, therefore, sought to assess the impact of COVID-19 on the primary healthcare workers in Ekiti, South-west Nigeria. Methods: The study was a cross-sectional descriptive study using a quantitative data collection method of 716 primary healthcare workers in Ekiti state. Respondents were selected using an online convenience sampling method via their social media platforms. Data was collected, collated, and analyzed using SPSS version 25 software and presented as frequency tables, mean and standard deviation. Bivariate and multivariate analyses were conducted using a t-test, and the level of statistical significance was set at p<0.05. Results: Less than half (47.1%) of respondents were between 41-50 age group and a mean age of 44.4+6.4SD. A majority (89.4%) were female, and almost all (96.2%) were married. More than (90%) had ever heard of Coronavirus, and (85.8%) had to spend more money on activities of daily living such as transportation (90.1%), groceries (80.6%), assisting relations (95.8%) and sanitary measures (disinfection) at home (95.0%). COVID-19 had a huge negative impact on about (89.7%) of healthcare workers, with a mean score of 22+4.8. Conclusion: COVID-19 negatively impacted the daily living and professional duties of primary healthcare workers, which reflected their psychological, physical, social, and economic well-being. Disease outbreaks are unlikely to disappear in the near future. Hence, global proactive interventions and homegrown measures should be adopted to protect healthcare workers and save lives.

Keywords: Covid-19, health workforce, primary health care, health systems, depression

Procedia PDF Downloads 84
14401 Repair of Thermoplastic Composites for Structural Applications

Authors: Philippe Castaing, Thomas Jollivet

Abstract:

As a result of their advantages, i.e. recyclability, weld-ability, environmental compatibility, long (continuous) fiber thermoplastic composites (LFTPC) are increasingly used in many industrial sectors (mainly automotive and aeronautic) for structural applications. Indeed, in the next ten years, the environmental rules will put the pressure on the use of new structural materials like composites. In aerospace, more than 50% of the damage are due to stress impact and 85% of damage are repaired on the fuselage (fuselage skin panels and around doors). With the arrival of airplanes mainly of composite materials, replacement of sections or panels seems difficult economically speaking and repair becomes essential. The objective of the present study is to propose a solution of repair to prevent the replacement the damaged part in thermoplastic composites in order to recover the initial mechanical properties. The classification of impact damage is not so not easy : talking about low energy impact (less than 35 J) can be totally wrong when high speed or weak thicknesses as well as thermoplastic resins are considered. Crash and perforation with higher energy create important damages and the structures are replaced without repairing, so we just consider here damages due to impacts at low energy that are as follows for laminates : − Transverse cracking; − Delamination; − Fiber rupture. At low energy, the damages are barely visible but can nevertheless reduce significantly the mechanical strength of the part due to resin cracks while few fiber rupture is observed. The patch repair solution remains the standard one but may lead to the rupture of fibers and consequently creates more damages. That is the reason why we investigate the repair of thermoplastic composites impacted at low energy. Indeed, thermoplastic resins are interesting as they absorb impact energy through plastic strain. The methodology is as follows: - impact tests at low energy on thermoplastic composites; - identification of the damage by micrographic observations; - evaluation of the harmfulness of the damage; - repair by reconsolidation according to the extent of the damage ; -validation of the repair by mechanical characterization (compression). In this study, the impacts tests are performed at various levels of energy on thermoplastic composites (PA/C, PEEK/C and PPS/C woven 50/50 and unidirectional) to determine the level of impact energy creating damages in the resin without fiber rupture. We identify the extent of the damage by US inspection and micrographic observations in the plane part thickness. The samples were in addition characterized in compression to evaluate the loss of mechanical properties. Then the strategy of repair consists in reconsolidating the damaged parts by thermoforming, and after reconsolidation the laminates are characterized in compression for validation. To conclude, the study demonstrates the feasibility of the repair for low energy impact on thermoplastic composites as the samples recover their properties. At a first step of the study, the “repair” is made by reconsolidation on a thermoforming press but we could imagine a process in situ to reconsolidate the damaged parts.

Keywords: aerospace, automotive, composites, compression, damages, repair, structural applications, thermoplastic

Procedia PDF Downloads 304
14400 Impact of Charging PHEV at Different Penetration Levels on Power System Network

Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat

Abstract:

Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.

Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile

Procedia PDF Downloads 287
14399 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination

Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq

Abstract:

Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.

Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing

Procedia PDF Downloads 90
14398 Payload Bay Berthing of an Underwater Vehicle With Vertically Actuated Thrusters

Authors: Zachary Cooper-Baldock, Paulo E. Santos, Russell S. A. Brinkworth, Karl Sammut

Abstract:

In recent years, large unmanned underwater vehicles such as the Boeing Voyager and Anduril Ghost Shark have been developed. These vessels can be structured to contain onboard internal payload bays. These payload bays can serve a variety of purposes – including the launch and recovery (LAR) of smaller underwater vehicles. The LAR of smaller vessels is extremely important, as it enables transportation over greater distances, increased time on station, data transmission and operational safety. The larger vessel and its payload bay structure complicate the LAR of UUVs in contrast to static docks that are affixed to the seafloor, as they actively impact the local flow field. These flow field impacts require analysis to determine if UUV vessels can be safely launched and recovered inside the motherships. This research seeks to determine the hydrodynamic forces exerted on a vertically over-actuated, small, unmanned underwater vehicle (OUUV) during an internal LAR manoeuvre and compare this to an under-actuated vessel (UUUV). In this manoeuvre, the OUUV is navigated through the stern wake region of the larger vessel to a set point within the internal payload bay. The manoeuvre is simulated using ANSYS Fluent computational fluid dynamics models, covering the entire recovery of the OUUV and UUUV. The analysis of the OUUV is compared against the UUUV to determine the differences in the exerted forces. Of particular interest are the drag, pressure, turbulence and flow field effects exerted as the OUUV is driven inside the payload bay of the larger vessel. The hydrodynamic forces and flow field disturbances are used to determine the feasibility of making such an approach. From the simulations, it was determined that there was no significant detrimental physical forces, particularly with regard to turbulence. The flow field effects exerted by the OUUV are significant. The vertical thrusters exert significant wake structures, but their orientation ensures the wake effects are exerted below the UUV, minimising the impact. It was also seen that OUUV experiences higher drag forces compared to the UUUV, which will correlate to an increased energy expenditure. This investigation found no key indicators that recovery via a mothership payload bay was not feasible. The turbulence, drag and pressure phenomenon were of a similar magnitude to existing static and towed dock structures.

Keywords: underwater vehicles, submarine, autonomous underwater vehicles, AUV, computational fluid dynamics, flow fields, pressure, turbulence, drag

Procedia PDF Downloads 91
14397 An Investigation on Opportunities and Obstacles on Implementation of Building Information Modelling for Pre-fabrication in Small and Medium Sized Construction Companies in Germany: A Practical Approach

Authors: Nijanthan Mohan, Rolf Gross, Fabian Theis

Abstract:

The conventional method used in the construction industries often resulted in significant rework since most of the decisions were taken onsite under the pressure of project deadlines and also due to the improper information flow, which results in ineffective coordination. However, today’s architecture, engineering, and construction (AEC) stakeholders demand faster and accurate deliverables, efficient buildings, and smart processes, which turns out to be a tall order. Hence, the building information modelling (BIM) concept was developed as a solution to fulfill the above-mentioned necessities. Even though BIM is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. Due to the huge capital requirement, the small and medium-sized construction companies are still reluctant to implement BIM workflow in their projects. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, pre-fabrication is chosen for this paper because it plays a vital role in creating an impact on time as well as cost factors of a construction project. The positive impact of prefabrication can be explicitly observed by the project stakeholders and participants, which enables the breakthrough of the skepticism factor among the small scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction, followed by a practical approach, which was executed with two case studies. The first case study represents on-site prefabrication, and the second was done for off-site prefabrication. It was planned in such a way that the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the cost and time analysis was made, and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal or no wastes, better accuracy, less problem-solving at the construction site. It is also observed that this process requires more planning time, better communication, and coordination between different disciplines such as mechanical, electrical, plumbing, architecture, etc., which was the major obstacle for successful implementation. This paper was carried out in the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.

Keywords: building information modelling, construction wastes, pre-fabrication, small and medium sized company

Procedia PDF Downloads 113
14396 Damage Mesomodel Based Low-Velocity Impact Damage Analysis of Laminated Composite Structures

Authors: Semayat Fanta, P.M. Mohite, C.S. Upadhyay

Abstract:

Damage meso-model for laminates is one of the most widely applicable approaches for the analysis of damage induced in laminated fiber-reinforced polymeric composites. Damage meso-model for laminates has been developed over the last three decades by many researchers in experimental, theoretical, and analytical methods that have been carried out in micromechanics as well as meso-mechanics analysis approaches. It has been fundamentally developed based on the micromechanical description that aims to predict the damage initiation and evolution until the failure of structure in various loading conditions. The current damage meso-model for laminates aimed to act as a bridge between micromechanics and macro-mechanics of the laminated composite structure. This model considers two meso-constituents for the analysis of damage in ply and interface that imparted from low-velocity impact. The damages considered in this study include fiber breakage, matrix cracking, and diffused damage of the lamina, and delamination of the interface. The damage initiation and evolution in laminae can be modeled in terms of damaged strain energy density using damage parameters and the thermodynamic irreversible forces. Interface damage can be modeled with a new concept of spherical micro-void in the resin-rich zone of interface material. The damage evolution is controlled by the damage parameter (d) and the radius of micro-void (r) from the point of damage nucleation to its saturation. The constitutive martial model for meso-constituents is defined in a user material subroutine VUMAT and implemented in ABAQUS/Explicit finite element modeling tool. The model predicts the damages in the meso-constituents level very accurately and is considered the most effective technique of modeling low-velocity impact simulation for laminated composite structures.

Keywords: mesomodel, laminate, low-energy impact, micromechanics

Procedia PDF Downloads 223
14395 Some Aspects of Social Media Marketing (Georgian Case)

Authors: Nugzar Todua, Charita Jashi

Abstract:

This paper is focusing on the attitude of Georgian consumers toward social media, influence of social media on consumer buying behavior. The purpose of this paper is to explore the impact and usage of social media marketing strategies for Georgian companies and consumers in the new reality of Georgia. There is a lack of research on social media marketing in Georgia, especially the topic which analyzes the possible purchase influence of consumers. The result of marketing research has revealed that social webs are mostly used by Georgian consumers, but they have little impact on the buying decision. The research method was exploratory in nature in the sense that there is no previous academic research about consumers’ attitude towards social media marketing.

Keywords: marketing research, purchasing behavior, social media marketing, social networking sites

Procedia PDF Downloads 516
14394 Overall Function and Symptom Impact of Self-Applied Myofascial Release in Adult Patients With Fibromyalgia. A Seven-Week Pilot Study

Authors: Domenica Tambasco, Riina Bray, Sophia Jaworski, Gillian Grant, Celeste Corkery

Abstract:

Fibromyalgia is a chronic condition characterized by widespread musculoskeletal pain, fatigue, and reduced function. Management of symptoms include medications, physical treatments and mindfulness therapies. Myofascial Release is a modality that has been successfully applied in var-ious musculoskeletal conditions. However, to the author’s best knowledge, it is not yet recog-nized as a self-management therapy option in Fibromyalgia. In this study, we investigated whether Self-applied Myofascial Release (SMR) is associated with overall improved function and symptoms in Fibromyalgia. Methods: Eligible adult patients with a confirmed diagnosis of Fibromyalgia at Women’s College Hospital were recruited to SMR. Sessions ran for 1 hour once a week for 7 weeks, led by the same two Physiotherapists knowledgeable in this physical treat-ment modality. The main outcome measure was an overall impact score for function and symp-toms based on the validated assessment tool for Fibromyalgia, the Revised Fibromyalgia Impact Questionnaire (FIQR), measured pre and post-intervention. Both descriptive and analytical methods were applied and reported. Results: We analyzed results using a paired t-test to deter-mine if there was a statistically significant difference in mean FIQR scores between initial (pre-intervention) and final (post-intervention) scores. A clinically significant difference in FIQR was defined as a reduction in score by 10 or more points. Conclusions: Our pilot study showed that SMR appeared to be a safe and effective intervention for our Fibromyalgia participants and the overall impact on function and symptoms occurred in only 7 weeks. Further studies with larger sample sizes comparing SMR to other physical treatment modalities (such as stretching) in an RCT are recommended.

Keywords: fibromyalgia, myofascial release, physical therapy, FIQR

Procedia PDF Downloads 76
14393 The State Model of Corporate Governance

Authors: Asaiel Alohaly

Abstract:

A theoretical framework for corporate governance is needed to bridge the gap between the corporate governance of private companies and State-owned Enterprises (SOEs). The two dominant models, being shareholder and stakeholder, do not always address the specific requirements and challenges posed by ‘hybrid’ companies; namely, previously national bodies that have been privatised bffu t where the government retains significant control or holds a majority of shareholders. Thus, an exploratory theoretical study is needed to identify how ‘hybrid’ companies should be defined and why the state model should be acknowledged since it is the less conspicuous model in comparison with the shareholder and stakeholder models. This research focuses on ‘the state model of corporate governance to understand the complex ownership, control pattern, goals, and corporate governance of these hybrid companies. The significance of this research lies in the fact that there is a limited available publication on the state model. The outcomes of this research are as follows. It became evident that the state model exists in the ecosystem. However, corporate governance theories have not extensively covered this model. Though, there is a lot being said about it by OECD and the World Bank. In response to this gap between theories and industry practice, this research argues for the state model, which proceeds from an understanding of the institutionally embedded character of hybrid companies where the government is either a majority of the total shares or a controlling shareholder.

Keywords: corporate governance, control, shareholders, state model

Procedia PDF Downloads 143
14392 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities

Authors: Retius Chifurira

Abstract:

Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.

Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities

Procedia PDF Downloads 200
14391 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival

Procedia PDF Downloads 341
14390 The Learning Impact of a 4-Dimensional Digital Construction Learning Environment

Authors: Chris Landorf, Stephen Ward

Abstract:

This paper addresses a virtual environment approach to work integrated learning for students in construction-related disciplines. The virtual approach provides a safe and pedagogically rigorous environment where students can apply theoretical knowledge in a simulated real-world context. The paper describes the development of a 4-dimensional digital construction environment and associated learning activities funded by the Australian Office for Learning and Teaching. The environment was trialled with over 1,300 students and evaluated through questionnaires, observational studies and coursework analysis. Results demonstrate a positive impact on students’ technical learning and collaboration skills, but there is need for further research in relation to critical thinking skills and work-readiness.

Keywords: architectural education, construction industry, digital learning environments, immersive learning

Procedia PDF Downloads 411
14389 Effects of Soil-Structure Interaction on Seismic Performance of Steel Structures Equipped with Viscous Fluid Dampers

Authors: Faramarz Khoshnoudian, Saeed Vosoughiyan

Abstract:

The main goal of this article is to clarify the soil-structure interaction (SSI) effects on the seismic performance of steel moment resisting frame buildings which are rested on soft soil and equipped with viscous fluid dampers (VFDs). For this purpose, detailed structural models of a ten-story SMRF with VFDs excluding and including the SSI are constructed first. In order to simulate the dynamic response of the foundation, in this paper, the simple cone model is applied. Then, the nonlinear time-history analysis of the models is conducted using three kinds of earthquake excitations with different intensities. The analysis results have demonstrated that the SSI effects on the seismic performance of a structure equipped with VFDs and supported by rigid foundation on soft soil need to be considered. Also VFDs designed based on rigid foundation hypothesis fail to achieve the expected seismic objective while SSI goes into effect.

Keywords: nonlinear time-history analysis, soil-structure interaction, steel moment resisting frame building, viscous fluid dampers

Procedia PDF Downloads 335
14388 Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach

Authors: M. Anji Reddy, R. Uma Devi

Abstract:

Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery.

Keywords: air pollution tolerance index, bio-indicators, eco-friendly vegetation, urban greenery

Procedia PDF Downloads 454
14387 Modeling of Long Wave Generation and Propagation via Seabed Deformation

Authors: Chih-Hua Chang

Abstract:

This study uses a three-dimensional (3D) fully nonlinear model to simulate the wave generation problem caused by the movement of the seabed. The numerical model is first simplified into two dimensions and then compared with the existing two-dimensional (2D) experimental data and the 2D numerical results of other shallow-water wave models. Results show that this model is different from the earlier shallow-water wave models, with the phase being closer to the experimental results of wave propagation. The results of this study are also compared with those of the 3D experimental results of other researchers. Satisfactory results can be obtained in both the waveform and the flow field. This study assesses the application of the model to simulate the wave caused by the circular (radius r0) terrain rising or falling (moving distance bm). The influence of wave-making parameters r0 and bm are discussed. This study determines that small-range (e.g., r0 = 2, normalized by the static water depth), rising, or sinking terrain will produce significant wave groups in the far field. For large-scale moving terrain (e.g., r0 = 10), uplift and deformation will potentially generate the leading solitary-like waves in the far field.

Keywords: seismic wave, wave generation, far-field waves, seabed deformation

Procedia PDF Downloads 86
14386 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks

Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.

Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions

Procedia PDF Downloads 82
14385 Batch Kinetic, Isotherm and Thermodynamic Studies of Copper (II) Removal from Wastewater Using HDL as Adsorbent

Authors: Nadjet Taoualit, Zoubida Chemat, Djamel-Eddine Hadj-Boussaad

Abstract:

This study aims the removal of copper Cu (II) contained in wastewater by adsorption on a perfect synthesized mud. It is the materials Hydroxides Double Lamellar, HDL, prepared and synthesized by co-precipitation method at constant pH, which requires a simple titration assembly, with an inexpensive and available material in the laboratory, and also allows us better control of the composition of the reaction medium, and gives well crystallized products. A characterization of the adsorbent proved essential. Thus a range of physic-chemical analysis was performed including: FTIR spectroscopy, X-ray diffraction… The adsorption of copper ions was investigated in dispersed medium (batch). A systematic study of various parameters (amount of support, contact time, initial copper concentration, temperature, pH…) was performed. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order, Bangham's equation and intra-particle diffusion models. The equilibrium data were analyzed using Langmuir, Freundlich, Tempkin and other isotherm models at different doses of HDL. The thermodynamics parameters were evaluated at different temperatures. The results have established good potentiality for the HDL to be used as a sorbent for the removal of Copper from wastewater.

Keywords: adsoption, copper, HDL, isotherm

Procedia PDF Downloads 275
14384 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 145
14383 Experimental Investigation on the Effect of Prestress on the Dynamic Mechanical Properties of Conglomerate Based on 3D-SHPB System

Authors: Wei Jun, Liao Hualin, Wang Huajian, Chen Jingkai, Liang Hongjun, Liu Chuanfu

Abstract:

Kuqa Piedmont is rich in oil and gas resources and has great development potential in Tarim Basin, China. However, there is a huge thick gravel layer developed with high content, wide distribution and variation in size of gravel, leading to the condition of strong heterogeneity. So that, the drill string is in a state of severe vibration and the drill bit is worn seriously while drilling, which greatly reduces the rock-breaking efficiency, and there is a complex load state of impact and three-dimensional in-situ stress acting on the rock in the bottom hole. The dynamic mechanical properties and the influencing factors of conglomerate, the main component of gravel layer, are the basis of engineering design and efficient rock breaking method and theoretical research. Limited by the previously experimental technique, there are few works published yet about conglomerate, especially rare in dynamic load. Based on this, a kind of 3D SHPB system, three-dimensional prestress, can be applied to simulate the in-situ stress characteristics, is adopted for the dynamic test of the conglomerate. The results show that the dynamic strength is higher than its static strength obviously, and while the three-dimensional prestress is 0 and the loading strain rate is 81.25~228.42 s-1, the true triaxial equivalent strength is 167.17~199.87 MPa, and the strong growth factor of dynamic and static is 1.61~1.92. And the higher the impact velocity, the greater the loading strain rate, the higher the dynamic strength and the greater the failure strain, which all increase linearly. There is a critical prestress in the impact direction and its vertical direction. In the impact direction, while the prestress is less than the critical one, the dynamic strength and the loading strain rate increase linearly; otherwise, the strength decreases slightly and the strain rate decreases rapidly. In the vertical direction of impact load, the strength increases and the strain rate decreases linearly before the critical prestress, after that, oppositely. The dynamic strength of the conglomerate can be reduced properly by reducing the amplitude of impact load so that the service life of rock-breaking tools can be prolonged while drilling in the stratum rich in gravel. The research has important reference significance for the speed-increasing technology and theoretical research while drilling in gravel layer.

Keywords: huge thick gravel layer, conglomerate, 3D SHPB, dynamic strength, the deformation characteristics, prestress

Procedia PDF Downloads 209
14382 The Status of Precision Agricultural Technology Adoption on Row Crop Farms vs. Specialty Crop Farms

Authors: Shirin Ghatrehsamani

Abstract:

Higher efficiency and lower environmental impact are the consequence of using advanced technology in farming. They also help to decrease yield variability by diminishing weather variability impact, optimizing nutrient and pest management as well as reducing competition from weeds. A better understanding of the pros and cons of applying technology and finding the main reason for preventing the utilization of the technology has a significant impact on developing technology adoption among farmers and producers in the digital agriculture era. The results from two surveys carried out in 2019 and 2021 were used to investigate whether the crop types had an impact on the willingness to utilize technology on the farms. The main focus of the questionnaire was on utilizing precision agriculture (PA) technologies among farmers in some parts of the united states. Collected data was analyzed to determine the practical application of various technologies. The survey results showed more similarities in the main reason not to use PA between the two crop types, but the present application of using technology in specialty crops is generally five times larger than in row crops. GPS receiver applications were reported similar for both types of crops. Lack of knowledge and high cost of data handling were cited as the main problems. The most significant difference was among using variable rate technology, which was 43% for specialty crops while was reported 0% for row crops. Pest scouting and mapping were commonly used for specialty crops, while they were rarely applied for row crops. Survey respondents found yield mapping, soil sampling map, and irrigation scheduling were more valuable for specialty crops than row crops in management decisions. About 50% of the respondents would like to share the PA data in both types of crops. Almost 50 % of respondents got their PA information from retailers in both categories, and as the second source, using extension agents were more common in specialty crops than row crops.

Keywords: precision agriculture, smart farming, digital agriculture, technology adoption

Procedia PDF Downloads 114
14381 Exploring the Contribution of Dynamic Capabilities to a Firm's Value Creation: The Role of Competitive Strategy

Authors: Mona Rashidirad, Hamid Salimian

Abstract:

Dynamic capabilities, as the most considerable capabilities of firms in the current fast-moving economy may not be sufficient for performance improvement, but their contribution to performance is undeniable. While much of the extant literature investigates the impact of dynamic capabilities on organisational performance, little attention has been devoted to understand whether and how dynamic capabilities create value. Dynamic capabilities as the mirror of competitive strategies should enable firms to search and seize new ideas, integrate and coordinate the firm’s resources and capabilities in order to create value. A careful investigation to the existing knowledge base remains us puzzled regarding the relationship among competitive strategies, dynamic capabilities and value creation. This study thus attempts to fill in this gap by empirically investigating the impact of dynamic capabilities on value creation and the mediating impact of competitive strategy on this relationship. We aim to contribute to dynamic capability view (DCV), in both theoretical and empirical senses, by exploring the impact of dynamic capabilities on firms’ value creation and whether competitive strategy can play any role in strengthening/weakening this relationship. Using a sample of 491 firms in the UK telecommunications market, the results demonstrate that dynamic sensing, learning, integrating and coordinating capabilities play a significant role in firm’s value creation, and competitive strategy mediates the impact of dynamic capabilities on value creation. Adopting DCV, this study investigates whether the value generating from dynamic capabilities depends on firms’ competitive strategy. This study argues a firm’s competitive strategy can mediate its ability to derive value from its dynamic capabilities and it explains the extent a firm’s competitive strategy may influence its value generation. The results of the dynamic capabilities-value relationships support our expectations and justify the non-financial value added of the four dynamic capability processes in a highly turbulent market, such as UK telecommunications. Our analytical findings of the relationship among dynamic capabilities, competitive strategy and value creation provide further evidence of the undeniable role of competitive strategy in deriving value from dynamic capabilities. The results reinforce the argument for the need to consider the mediating impact of organisational contextual factors, such as firm’s competitive strategy to examine how they interact with dynamic capabilities to deliver value. The findings of this study provide significant contributions to theory. Unlike some previous studies which conceptualise dynamic capabilities as a unidimensional construct, this study demonstrates the benefits of understanding the details of the link among the four types of dynamic capabilities, competitive strategy and value creation. In terms of contributions to managerial practices, this research draws attention to the importance of competitive strategy in conjunction with development and deployment of dynamic capabilities to create value. Managers are now equipped with solid empirical evidence which explains why DCV has become essential to firms in today’s business world.

Keywords: dynamic capabilities, resource based theory, value creation, competitive strategy

Procedia PDF Downloads 241
14380 The Effects of Quality of Web-Based Applications on Competitive Advantage: An Empirical Study in Commercial Banks in Jordan

Authors: Faisal Asad Aburub

Abstract:

Many organizations are investing in web applications and technologies in order to be competitive, some of them could not achieve its goals. The quality of web-based applications could play an important role for organizations to be competitive. So the aim of this study is to investigate the impact of quality of web-based applications to achieve a competitive advantage. A new model has been developed. An empirical investigation was performed on a banking sector in Jordan to test the new model. The results show that impact of web-based applications on competitive advantage is significant. Finally, further work is planned to validate and evaluate the proposed model using several domains.

Keywords: competitive advantage, web-based applications, empirical investigation, commercial banks in Jordan

Procedia PDF Downloads 341
14379 Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story

Authors: S. De Curtis, L. Delle Rose, S. Moretti, K. Yagyu

Abstract:

Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms.

Keywords: beyond the standard model, composite Higgs, supersymmetry, Two-Higgs Doublet Model

Procedia PDF Downloads 126
14378 Association of Temperature Factors with Seropositive Results against Selected Pathogens in Dairy Cow Herds from Central and Northern Greece

Authors: Marina Sofia, Alexios Giannakopoulos, Antonia Touloudi, Dimitris C Chatzopoulos, Zoi Athanasakopoulou, Vassiliki Spyrou, Charalambos Billinis

Abstract:

Fertility of dairy cattle can be affected by heat stress when the ambient temperature increases above 30°C and the relative humidity ranges from 35% to 50%. The present study was conducted on dairy cattle farms during summer months in Greece and aimed to identify the serological profile against pathogens that could affect fertility and to associate the positive serological results at herd level with temperature factors. A total of 323 serum samples were collected from clinically healthy dairy cows of 8 herds, located in Central and Northern Greece. ELISA tests were performed to detect antibodies against selected pathogens that affect fertility, namely Chlamydophila abortus, Coxiella burnetii, Neospora caninum, Toxoplasma gondii and Infectious Bovine Rhinotracheitis Virus (IBRV). Eleven climatic variables were derived from the WorldClim version 1.4. and ArcGIS V.10.1 software was used for analysis of the spatial information. Five different MaxEnt models were applied to associate the temperature variables with the locations of seropositive Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV herds (one for each pathogen). The logistic outputs were used for the interpretation of the results. ROC analyses were performed to evaluate the goodness of fit of the models’ predictions. Jackknife tests were used to identify the variables with a substantial contribution to each model. The seropositivity rates of pathogens varied among the 8 herds (0.85-4.76% for Chl. abortus, 4.76-62.71% for N. caninum, 3.8-43.47% for C. burnetii, 4.76-39.28% for T. gondii and 47.83-78.57% for IBRV). The variables of annual temperature range, mean diurnal range and maximum temperature of the warmest month gave a contribution to all five models. The regularized training gains, the training AUCs and the unregularized training gains were estimated. The mean diurnal range gave the highest gain when used in isolation and decreased the gain the most when it was omitted in the two models for seropositive Chl.abortus and IBRV herds. The annual temperature range increased the gain when used alone and decreased the gain the most when it was omitted in the models for seropositive C. burnetii, N. caninum and T. gondii herds. In conclusion, antibodies against Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV were detected in most herds suggesting circulation of pathogens that could cause infertility. The results of the spatial analyses demonstrated that the annual temperature range, mean diurnal range and maximum temperature of the warmest month could affect positively the possible pathogens’ presence. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-01078).

Keywords: dairy cows, seropositivity, spatial analysis, temperature factors

Procedia PDF Downloads 199
14377 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles

Authors: Nozar Kishi, Babak Kamrani, Filmon Habte

Abstract:

Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.

Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM

Procedia PDF Downloads 269