Search results for: cognitive radio network
4424 Neuronal Mechanisms of Observational Motor Learning in Mice
Authors: Yi Li, Yinan Zheng, Ya Ke, Yungwing Ho
Abstract:
Motor learning is a process that frequently happens among humans and rodents, which is defined as the changes in the capability to perform a skill that is conformed to have a relatively permanent improvement through practice or experience. There are many ways to learn a behavior, among which is observational learning. Observational learning is the process of learning by watching the behaviors of others, for example, a child imitating parents, learning a new sport by watching the training videos or solving puzzles by watching the solutions. Many research explores observational learning in humans and primates. However, the neuronal mechanism of which, especially observational motor learning, was uncertain. It’s well accepted that mirror neurons are essential in the observational learning process. These neurons fire when the primate performs a goal-directed action and sees someone else demonstrating the same action, which suggests they have high firing activity both completing and watching the behavior. The mirror neurons are assumed to mediate imitation or play a critical and fundamental role in action understanding. They are distributed in many brain areas of primates, i.e., posterior parietal cortex (PPC), premotor cortex (M2), and primary motor cortex (M1) of the macaque brain. However, few researchers report the existence of mirror neurons in rodents. To verify the existence of mirror neurons and the possible role in motor learning in rodents, we performed customised string-pulling behavior combined with multiple behavior analysis methods, photometry, electrophysiology recording, c-fos staining and optogenetics in healthy mice. After five days of training, the demonstrator (demo) mice showed a significantly quicker response and shorter time to reach the string; fast, steady and accurate performance to pull down the string; and more precisely grasping the beads. During three days of observation, the mice showed more facial motions when the demo mice performed behaviors. On the first training day, the observer reduced the number of trials to find and pull the string. However, the time to find beads and pull down string were unchanged in the successful attempts on the first day and other training days, which indicated successful action understanding but failed motor learning through observation in mice. After observation, the post-hoc staining revealed that the c-fos expression was increased in the cognitive-related brain areas (medial prefrontal cortex) and motor cortices (M1, M2). In conclusion, this project indicated that the observation led to a better understanding of behaviors and activated the cognitive and motor-related brain areas, which suggested the possible existence of mirror neurons in these brain areas.Keywords: observation, motor learning, string-pulling behavior, prefrontal cortex, motor cortex, cognitive
Procedia PDF Downloads 884423 Translation, War and Humanitarian Action: A Case Study of the Kindertransporte to Switzerland
Authors: Lisa Mockli, Chelsea Sambells
Abstract:
By combining the methodologies of history and translation studies, this study will explore the interplay between humanitarian action, politics, and translation within the advertising for a lesser-known Swiss child evacuation project of some 60.000 Belgium and French children to Switzerland for three month periods from 1940 to 1945. Inspired by Descriptive-Explanatory Translation Studies, this project compares Swiss speeches published between May and September 1942 (the termination of the evacuations). Radio broadcasts, leaflets and newspapers will triangulate the data. First, linguistic and content-related differences will be identified and described. Second, based on findings from the Swiss Federal Archives, the evidence from the comparative textual analysis will then be evaluated in order to explore how the speeches were modified, for what purpose, and which key issues were raised during their modification. By exploring these questions, this paper provides new insights into (I) Switzerland’s understanding of Swiss neutrality and humanitarianism during the Second World War, (II) the role of children in war and (III) the role of translation in shaping political discourse and humanitarian action. Moreover, this interdisciplinary approach also demonstrates how scholarly collaboration may help to make some elements of humanitarian action more self-reflexive and effective.Keywords: children, history, humanitarianism, politics, translation
Procedia PDF Downloads 2954422 Celebrity Culture and Social Role of Celebrities in Türkiye during the 1990s: The Case of Türkiye, Newspaper, Radio, Televison (TGRT) Channel
Authors: Yelda Yenel, Orkut Acele
Abstract:
In a media-saturated world, celebrities have become ubiquitous figures, encountered both in public spaces and within the privacy of our homes, seamlessly integrating into daily life. From Alexander the Great to contemporary media personalities, the image of celebrity has persisted throughout history, manifesting in various forms and contexts. Over time, as the relationship between society and the market evolved, so too did the roles and behaviors of celebrities. These transformations offer insights into the cultural climate, revealing shifts in habits and worldviews. In Türkiye, the emergence of private television channels brought an influx of celebrities into everyday life, making them a pervasive part of daily routines. To understand modern celebrity culture, it is essential to examine the ideological functions of media within political, economic, and social contexts. Within this framework, celebrities serve as both reflections and creators of cultural values and, at times, act as intermediaries, offering insights into the society of their era. Starting its broadcasting life in 1992 with religious films and religious conversation, Türkiye Newspaper, Radio, Television channel (TGRT) later changed its appearance, slogan, and the celebrities it featured in response to the political atmosphere. Celebrities played a critical role in transforming from the existing slogan 'Peace has come to the screen' to 'Watch and see what will happen”. Celebrities hold significant roles in society, and their images are produced and circulated by various actors, including media organizations and public relations teams. Understanding these dynamics is crucial for analyzing their influence and impact. This study aims to explore Turkish society in the 1990s, focusing on TGRT and its visual and discursive characteristics regarding celebrity figures such as Seda Sayan. The first section examines the historical development of celebrity culture and its transformations, guided by the conceptual framework of celebrity studies. The complex and interconnected image of celebrity, as introduced by post-structuralist approaches, plays a fundamental role in making sense of existing relationships. This section traces the existence and functions of celebrities from antiquity to the present day. The second section explores the economic, social, and cultural contexts of 1990s Türkiye, focusing on the media landscape and visibility that became prominent in the neoliberal era following the 1980s. This section also discusses the political factors underlying TGRT's transformation, such as the 1997 military memorandum. The third section analyzes TGRT as a case study, focusing on its significance as an Islamic television channel and the shifts in its public image, categorized into two distinct periods. The channel’s programming, which aligned with Islamic teachings, and the celebrities who featured prominently during these periods became the public face of both TGRT and the broader society. In particular, the transition to a more 'secular' format during TGRT's second phase is analyzed, focusing on changes in celebrity attire and program formats. This study reveals that celebrities are used as indicators of ideology, benefiting from this instrumentalization by enhancing their own fame and reflecting the prevailing cultural hegemony in society.Keywords: celebrity culture, media, neoliberalism, TGRT
Procedia PDF Downloads 304421 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.Keywords: decision tree, feature selection, intrusion detection system, support vector machine
Procedia PDF Downloads 2654420 Neural Network Approach for Solving Integral Equations
Authors: Bhavini Pandya
Abstract:
This paper considers Hη: T2 → T2 the Perturbed Cerbelli-Giona map. That is a family of 2-dimensional nonlinear area-preserving transformations on the torus T2=[0,1]×[0,1]= ℝ2/ ℤ2. A single parameter η varies between 0 and 1, taking the transformation from a hyperbolic toral automorphism to the “Cerbelli-Giona” map, a system known to exhibit multifractal properties. Here we study the multifractal properties of the family of maps. We apply a box-counting method by defining a grid of boxes Bi(δ), where i is the index and δ is the size of the boxes, to quantify the distribution of stable and unstable manifolds of the map. When the parameter is in the range 0.51< η <0.58 and 0.68< η <1 the map is ergodic; i.e., the unstable and stable manifolds eventually cover the whole torus, although not in a uniform distribution. For accurate numerical results we require correspondingly accurate construction of the stable and unstable manifolds. Here we use the piecewise linearity of the map to achieve this, by computing the endpoints of line segments which define the global stable and unstable manifolds. This allows the generalized fractal dimension Dq, and spectrum of dimensions f(α), to be computed with accuracy. Finally, the intersection of the unstable and stable manifold of the map will be investigated, and compared with the distribution of periodic points of the system.Keywords: feed forward, gradient descent, neural network, integral equation
Procedia PDF Downloads 1894419 Strategies to Mitigate Disasters at the Hajj Religious Festival Using GIS and Agent Based Modelling
Authors: Muteb Alotaibi, Graham Clarke, Nick Malleson
Abstract:
The Hajj religious festival at Mina in Saudi Arabia has always presented the opportunity for injuries or deaths. For example, in 1990, a stampede killed 1426 pilgrims, whilst in 1997, 343 people were killed and 1500 injured due to a fire fuelled by high winds sweeping through the tent city in Mina.Many more minor incidents have occurred since then. It is predicted that 5 million pilgrims will soon perform the ritual at Mina (which is, in effect, a temporary city built each year in the desert), which might lead in the future to severe congestion and accidents unless the research is conducted on actions that contribute positively to improving the management of the crowd and facilitating the flow of pilgrims safely and securely. To help prevent further disasters, it is important to first plan better, more accessible locations for emergency services across Mina to ensure a good service for pilgrims. In this paper, we first use a Location Allocation Model (LAM) within a network GIS to examine the optimal locations for key services in the temporary city of Mina. This has been undertaken in relation to the location and movement of the pilgrims during the six day religious festival. The results of various what-if scenarios have been compared against the current location of services. A major argument is that planners should be flexible and locate facilities at different locations throughout the day and night. The use of location-allocation models in this type of comparative static mode has rarely been operationalised in the literature. Second, we model pilgrim movements and behaviours along with the most crowded parts of the network. This has been modelled using an agent-based model. This model allows planners to understand the key bottlenecks in the network and at what usage levels the paths become critically congested. Thus the paper has important implications and recommendations for future disaster planning strategies. This will enable planners to see at what stage in the movements of pilgrims problems occur in terms of potential crushes and trampling incidents. The main application of this research was only customised for pedestrians as the concentration only for pedestrians who move to Jamarat via foot. Further, the network in the middle of Mina was only dedicated for pedestrians for safety, so no Buses, trains and private cars were allowed in this area to prevent the congestion within this network. Initially, this research focus on Mina city as ‘temporary city’ and also about service provision in temporary cities, which is not highlighted in literature so far. Further, it is the first study which use the dynamic demand to optimise the services in the case of day and night time. Moreover, it is the first study which link the location allocation model for optimising services with ABM to find out whether or not the service location is located in the proper location in which it’s not affecting on crowd movement in mainstream flow where some pilgrims need to have health services.Keywords: ABM, crowd management, hajj, temporary city
Procedia PDF Downloads 1234418 Long-Term Mechanical and Structural Properties of Metakaolin-Based Geopolymers
Authors: Lenka Matulova
Abstract:
Geopolymers are alumosilicate materials that have long been studied. Despite this fact, little is known about the long-term stability of geopolymer mechanical and structural properties, so crucial for their successful industrial application. To improve understanding, we investigated the effect of four different types of environments on the mechanical and structural properties of a metakaolin-based geopolymer (MK GP). The MK GP samples were stored in laboratory conditions (control samples), in water at 20 °C, in water at 80 °C, and outside exposed to the weather. Compressive and tensile strengths were measured after 28, 56, 90, and 360 days. In parallel, structural properties were analyzed using XRD, SEM, and mercury intrusion porosimetry. Whereas the mechanical properties of the samples in laboratory conditions and in 20 °C water were stable, the mechanical properties of the outdoor samples and the samples 80 °C water decreased noticeably after 360 days. Structural analyses were focused on changes in sample microstructure (developing microcrack network, porosity) and identifying zeolites, the presence of which would indicate detrimental processes in the structure that can change it from amorphous to crystalline. No zeolites were found during the 360-day period in MK GP samples, but the reduction in mechanical properties coincided with a developing network of microcracks and changes in pore size distribution.Keywords: geopolymer, long-term properties, mechanical properties, metakaolin, structural properties
Procedia PDF Downloads 2414417 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 1394416 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3054415 Availability Strategy of Medical Information for Telemedicine Services
Authors: Rozo D. Juan Felipe, Ramírez L. Leonardo Juan, Puerta A. Gabriel Alberto
Abstract:
The telemedicine services require correct computing resource management to guarantee productivity and efficiency for medical and non-medical staff. The aim of this study was to examine web management strategies to ensure the availability of resources and services in telemedicine so as to provide medical information management with an accessible strategy. In addition, to evaluate the quality-of-service parameters, the followings were measured: delays, throughput, jitter, latency, available bandwidth, percent of access and denial of services based of web management performance map with profiles permissions and database management. Through 24 different test scenarios, the results show 100% in availability of medical information, in relation to access of medical staff to web services, and quality of service (QoS) of 99% because of network delay and performance of computer network. The findings of this study suggest that the proposed strategy of web management is an ideal solution to guarantee the availability, reliability, and accessibility of medical information. Finally, this strategy offers seven user profile used at telemedicine center of Bogota-Colombia keeping QoS parameters suitable to telemedicine services.Keywords: availability, medical information, QoS, strategy, telemedicine
Procedia PDF Downloads 2054414 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement
Authors: Shibo Wei, Ting Jiang
Abstract:
Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR
Procedia PDF Downloads 2014413 Impulsivity, Emotional Regulation, Problematic Mukbang Watching and Eating Disorders in University Students
Authors: Aqsa Butt, Nida Zafar
Abstract:
The study assesses the relationship between impulsivity, emotional regulation, problematic mukbang watching, and eating disorders in university students. It was hypothesized there is likely to be a relationship between impulsivity, emotional regulation, problematic mukbang watching, and eating disorders in university students; impulsivity and emotional regulation would predict problematic mukbang watching in university students; problematic mukbang watching would predict eating disorders in university students. A correlational research design was used. A sample of 200 students was taken from different public and private universities in Lahore. Emotional regulation questionnaire (Gross & John, 2003), Abbreviated Barrat Impulsiveness Scale (Christopher et al., 2014), Problematic Mukbang Watching Scale (Kircaburun et al., 2020), and Eating Disorder Diagnostic Scale (Stice et al., 2004) were used for assessment. Results showed a significant positive relationship between impulsivity and expressive suppression with problematic mukbang watching. However, there is a significant negative relationship between cognitive reappraisal and problematic mukbang watching. Problematic mukbang is significantly positively related to bulimia nervosa and binge eating. Furthermore, impulsivity and expressive suppression are significant positive predictors of problematic mukbang watching, and cognitive reappraisal is a significant negative predictor of problematic mukbang watching. Additionally, problematic mukbang watching significantly positively predicts bulimia nervosa and binge eating. The research has important implications for university students to understand that excessive watching of such videos can lead to eating disorders such as bulimia nervosa and binge eating. This research provides an understanding of the effects of Mukbang watching, and it also adds to the existing body of knowledge on eating disorders.Keywords: impulsivity, emotional regulation, problematic Mukbang watching eating disorders, students
Procedia PDF Downloads 614412 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture
Authors: Venkat S. Somayajula
Abstract:
Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical featuresKeywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle
Procedia PDF Downloads 1284411 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment
Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan
Abstract:
With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.Keywords: data sharing, cross-domain, data exchange, publish-subscribe
Procedia PDF Downloads 1244410 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India
Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah
Abstract:
Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method
Procedia PDF Downloads 2394409 Social Networks in a Communication Strategy of a Large Company
Authors: Kherbache Mehdi
Abstract:
Within the framework of the validation of the Master in business administration marketing and sales in INSIM institute international in management Blida, we get the opportunity to do a professional internship in Sonelgaz Enterprise and a thesis. The thesis deals with the integration of social networking in the communication strategy of a company. The problematic is: How communicate with social network can be a solution for companies? The challenges stressed by this thesis were to suggest limits and recommendations to Sonelgaz Enterprise concerning social networks. The whole social networks represent more than a billion people as a potential target for the companies. Thanks to research and a qualitative approach, we have identified tree valid hypothesis. The first hypothesis allows confirming that using social networks cannot be ignored by any company in its communication strategy. However, the second hypothesis demonstrates that it’s necessary to prepare a strategy that integrates social networks in the communication plan of the company. The risk of this strategy is very limited because failure on social networks is not a restraint for the enterprise, social networking is not expensive and, a bad image which could result from it is not as important in the long-term. Furthermore, the return on investment is difficult to evaluate. Finally, the last hypothesis shows that firms establish a new relation between consumers and brands thanks to the proximity allowed by social networks. After the validation of the hypothesis, we suggested some recommendations to Sonelgaz Enterprise regarding the communication through social networks. Firstly, the company must use the interactivity of social network in order to have fruitful exchanges with the community. We also recommended having a strategy to treat negative comments. The company must also suggest delivering resources to the community thanks to a community manager, in order to have a good relation with the community. Furthermore, we advised using social networks to do business intelligence. Sonelgaz Enterprise can have some creative and interactive contents with some amazing applications on Facebook for example. Finally, we recommended to the company to be not intrusive with “fans” or “followers” and to be open to all the platforms: Twitter, Facebook, Linked-In for example.Keywords: social network, buzz, communication, consumer, return on investment, internet users, web 2.0, Facebook, Twitter, interaction
Procedia PDF Downloads 4224408 A Context Aware Mobile Learning System with a Cognitive Recommendation Engine
Authors: Jalal Maqbool, Gyu Myoung Lee
Abstract:
Using smart devices for context aware mobile learning is becoming increasingly popular. This has led to mobile learning technology becoming an indispensable part of today’s learning environment and platforms. However, some fundamental issues remain - namely, mobile learning still lacks the ability to truly understand human reaction and user behaviour. This is due to the fact that current mobile learning systems are passive and not aware of learners’ changing contextual situations. They rely on static information about mobile learners. In addition, current mobile learning platforms lack the capability to incorporate dynamic contextual situations into learners’ preferences. Thus, this thesis aims to address these issues highlighted by designing a context aware framework which is able to sense learner’s contextual situations, handle data dynamically, and which can use contextual information to suggest bespoke learning content according to a learner’s preferences. This is to be underpinned by a robust recommendation system, which has the capability to perform these functions, thus providing learners with a truly context-aware mobile learning experience, delivering learning contents using smart devices and adapting to learning preferences as and when it is required. In addition, part of designing an algorithm for the recommendation engine has to be based on learner and application needs, personal characteristics and circumstances, as well as being able to comprehend human cognitive processes which would enable the technology to interact effectively and deliver mobile learning content which is relevant, according to the learner’s contextual situations. The concept of this proposed project is to provide a new method of smart learning, based on a capable recommendation engine for providing an intuitive mobile learning model based on learner actions.Keywords: aware, context, learning, mobile
Procedia PDF Downloads 2454407 Evaluation of Commercials by Psychological Changes in Consumers’ Physiological Characteristics
Authors: Motoki Seguchi, Fumiko Harada, Hiromitsu Shimakawa
Abstract:
There have been many local companies in countryside that carefully produce and sell products, which include crafts and foods produced with traditional methods. These companies are likely to use commercials to advertise their products. However, it is difficult for companies to judge whether the commercials they create are having an impact on consumers. Therefore, to create effective commercials, this study researches what kind of gimmicks in commercials affect what kind of consumers. This study proposes a method for extracting psychological change points from the physiological characteristics of consumers while they are watching commercials and estimating the gimmicks in the commercial that affect consumer engagement. In this method, change point detection is applied to pupil size for estimating gimmicks that affect consumers’ emotional engagement, and to EDA for estimating gimmicks that affect cognitive engagement. A questionnaire is also used to estimate the commercials that influence behavioral engagement. As a result of estimating the gimmicks that influence consumer engagement using this method, it was found that there are some common features among the gimmicks. To influence cognitive engagement, it was found that it was useful to include flashback scenes, messages to be appealed to, the company’s name, and the company’s logos as gimmicks. It was also found that flashback scenes and story climaxes were useful in influencing emotional engagement. Furthermore, it was found that the use of storytelling commercials may or may not be useful, depending on which consumers are desired to take which behaviors. It also estimated the gimmicks that influence consumers for each target and found that the useful gimmicks are slightly different for students and working adults. By using this method, it can understand which gimmicks in the commercial affect which engagement of the consumers. Therefore, the results of this study can be used as a reference for the gimmicks that should be included in commercials when companies create their commercials in the future.Keywords: change point detection, estimating engagement, physiological characteristics, psychological changes, watching commercials
Procedia PDF Downloads 1864406 Machine Learning Methods for Flood Hazard Mapping
Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto
Abstract:
This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia PDF Downloads 1784405 A Decision Support System for the Detection of Illicit Substance Production Sites
Authors: Krystian Chachula, Robert Nowak
Abstract:
Manufacturing home-made explosives and synthetic drugs is an increasing problem in Europe. To combat that, a data fusion system is proposed for the detection and localization of production sites in urban environments. The data consists of measurements of properties of wastewater performed by various sensors installed in a sewage network. A four-stage fusion strategy allows detecting sources of waste products from known chemical reactions. First, suspicious measurements are used to compute the amount and position of discharged compounds. Then, this information is propagated through the sewage network to account for missing sensors. The next step is clustering and the formation of tracks. Eventually, tracks are used to reconstruct discharge events. Sensor measurements are simulated by a subsystem based on real-world data. In this paper, different discharge scenarios are considered to show how the parameters of used algorithms affect the effectiveness of the proposed system. This research is a part of the SYSTEM project (SYnergy of integrated Sensors and Technologies for urban sEcured environMent).Keywords: continuous monitoring, information fusion and sensors, internet of things, multisensor fusion
Procedia PDF Downloads 1154404 Collective Potential: A Network of Acupuncture Interventions for Flood Resilience
Authors: Sachini Wickramanayaka
Abstract:
The occurrence of natural disasters has increased in an alarming rate in recent times due to escalating effects of climate change. One such natural disaster that has continued to grow in frequency and intensity is ‘flooding’, adversely affecting communities around the globe. This is an exploration on how architecture can intervene and facilitate in preserving communities in the face of disaster, specifically in battling floods. ‘Resilience’ is one of the concepts that have been brought forward to be instilled in vulnerable communities to lower the impact from such disasters as a preventative and coping mechanism. While there are number of ways to achieve resilience in the built environment, this paper aims to create a synthesis between resilience and ‘urban acupuncture’. It will consider strengthening communities from within, by layering a network of relatively small-scale, fast phased interventions on pre-existing conventional flood preventative large-scale engineering infrastructure.By investigating ‘The Woodlands’, a planned neighborhood as a case study, this paper will argue that large-scale water management solutions while extremely important will not suffice as a single solution particularly during a time of frequent and extreme weather events. The different projects will try to synthesize non-architectural aspects such as neighborhood aspirations, requirements, potential and awareness into a network of architectural forms that would collectively increase neighborhood resiliency to floods. A mapping study of the selected study area will identify the problematic areas that flood in the neighborhood while the empirical data from previously implemented case studies will assess the success of each solution.If successful the different solutions for each of the identified problem areas will exhibithow flooding and water management can be integrated as part and parcel of daily life.Keywords: acupuncture, architecture, resiliency, micro-interventions, neighborhood
Procedia PDF Downloads 1704403 Market Acceptance of a Murabaha-Based Finance Structure within a Social Network of Non-Islamic Small and Medium Enterprise Owners in African Procurement
Authors: Craig M. Allen
Abstract:
Twenty two African entrepreneurs with Small and Medium Enterprises (SMEs) in a single social network centered around a non-Muslim population in a smaller African country, selected an Islamic financing structure, a form of Murabaha, based solely on market rationale. These entrepreneurs had all won procurement contracts from major purchasers of goods within their country and faced difficulty arranging traditional bank financing to support their supply-chain needs. The Murabaha-based structure satisfied their market-driven demand and provided an attractive alternative to the traditional bank-offered lending products. The Murabaha-styled trade-financing structure was not promoted with any religious implications, but solely as a market solution to the existing problems associated with bank-related financing. This indicates the strong market forces that draw SMEs to financing structures that are traditionally considered within the framework of Islamic finance.Keywords: Africa, entrepreneurs, Islamic finance, market acceptance, Murabaha, SMEs
Procedia PDF Downloads 1814402 Effects of Acute Exposure to WIFI Signals (2,45 GHz) on Heart Variability and Blood Pressure in Albinos Rabbit
Authors: Linda Saili, Amel Hanini, Chiraz Smirani, Iness Azzouz, Amina Azzouz, Hafedh Abdemelek, Zihad Bouslama
Abstract:
Electrocardiogram and arterial pressure measurements were studied under acute exposures to WIFI (2.45 GHz) during one hour in adult male rabbits. Antennas of WIFI were placed at 25 cm at the right side near the heart. Acute exposure of rabbits to WIFI increased heart frequency (+ 22%) and arterial blood pressure (+14%). Moreover, analysis of ECG revealed that WIFI induced a combined increase of PR and QT intervals. By contrast, the same exposure failed to alter the maximum amplitude and P waves. After intravenously injection of dopamine (0.50 ml/kg) and epinephrine (0.50ml/kg) under acute exposure to RF we found that WIFI alter catecholamines(dopamine, epinephrine) action on heart variability and blood pressure compared to control. These results suggest for the first time, as far as we know, that exposure to WIFI affect heart rhythm, blood pressure, and catecholamines efficacy on cardiovascular system; indicating that radio frequency can act directly and/or indirectly on the cardiovascular system.Keywords: heart rate (HR), arterial pressure (PA), electrocardiogram (ECG), the efficacy of catecholamines, dopamine, epinephrine
Procedia PDF Downloads 4524401 Passengers’ Behavior Analysis under the Public Transport Disruption: An Agent-Based Simulation
Abstract:
This paper study the travel behavior of passengers in a public transport disruption under information provision strategies. We develop a within-day approach for multi-agent simulation to evaluate the behavior of the agents, under comprehensive scenarios through various information exposure, equilibrium, and non-equilibrium scenarios. In particular, we quantify the effects of information strategies in disruption situation on passengers’ satisfaction, number of involved agents, and the caused delay. An agent-based micro-simulation model (MATSim) is applied for the city of Zürich, Switzerland, for the purpose of activity-based simulation in a multimodal network. Statistic outcome is analysed for all the agents who may be involved in the disruption. Agents’ movement in the public transport network illustrates agents’ adaptations to available information about the disruption. Agents’ delays and utility reveal that information significantly affects agents’ satisfaction and delay in public transport disruption. Besides, while the earlier availability of the information causes the fewer consequent delay for the involved agents, however, it also leads to more amount of affected agents.Keywords: agent-based simulation, disruption management, passengers’ behavior simulation, public transport
Procedia PDF Downloads 1524400 Energy-Efficient Internet of Things Communications: A Comparative Study of Long-Term Evolution for Machines and Narrowband Internet of Things Technologies
Authors: Nassim Labdaoui, Fabienne Nouvel, Stéphane Dutertre
Abstract:
The Internet of Things (IoT) is emerging as a crucial communication technology for the future. Many solutions have been proposed, and among them, licensed operators have put forward LTE-M and NB-IoT. However, implementing these technologies requires a good understanding of the device energy requirements, which can vary depending on the coverage conditions. In this paper, we investigate the power consumption of LTE-M and NB-IoT devices using Ublox SARA-R422S modules based on relevant standards from two French operators. The measurements were conducted under different coverage conditions, and we also present an empirical consumption model based on the different states of the radio modem as per the RRC protocol specifications. Our findings indicate that these technologies can achieve a 5 years operational battery life under certain conditions. Moreover, we conclude that the size of transmitted data does not have a significant impact on the total power consumption of the device under favorable coverage conditions. However, it can quickly influence the battery life of the device under harsh coverage conditions. Overall, this paper offers insights into the power consumption of LTE-M and NBIoT devices and provides useful information for those considering the use of these technologies.Keywords: internet of things, LTE-M, NB-IoT, MQTT, cellular IoT, power consumption
Procedia PDF Downloads 1424399 A Framework for Analyzing Public Interaction of Saudi Universities on Twitter
Authors: Sahar Al-Qahtani, Rabeeh Ayaz Abbasi, Naif Radi Aljohani
Abstract:
Many universities use social media platforms as new communication channels to disseminate information and promptly communicate with their audience. As Twitter is one of the widely used social media platforms, this research aims to explore the adaption and utilization of Twitter by universities. We propose a framework called 'Social Network Analysis for Universities on Twitter' (SNAUT) to analyze the usage of Twitter by universities and to measure their interaction with public. The study includes a sample of around 110,000 tweets from 36 Saudi universities, including both public and private universities. Using SNAUT, we can (1) investigate the purpose of using Twitter by universities, (2) determine the broad topics discussed by them, and (3) identify the groups closely associated with the universities. The results show that most of the Saudi universities (whether public or private) actively use Twitter. Results also reveal that public universities respond to public queries more frequently, but private universities stand out more in terms of information dissemination using retweets and diverse hashtags. Finally, we develop a ranking mechanism in SNAUT for ranking universities based on their social interaction with the public on Twitter.Keywords: social media, twitter, social network analysis, universities, higher education, Saudi Arabia
Procedia PDF Downloads 1374398 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension
Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita
Abstract:
In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation
Procedia PDF Downloads 1844397 Examples of Techniques and Algorithms Used in Wlan Security
Authors: Vahid Bairami Rad
Abstract:
Wireless communications offer organizations and users many benefits such as portability and flexibility, increased productivity, and lower installation costs. Wireless networks serve as the transport mechanism between devices and among devices and the traditional wired networks (enterprise networks and the internet). Wireless networks are many and diverse but are frequently categorized into three groups based on their coverage range: WWAN, WLAN, and WPAN. WWAN, representing wireless wide area networks, includes wide coverage area technologies such as 2G cellular, Cellular Digital Packet Data (CDPD), Global System for Mobile Communications (GSM), and Mobitex. WLAN, representing wireless local area networks, includes 802.11, Hyper lan, and several others. WPAN, represents wireless personal area network technologies such as Bluetooth and Infrared. The security services are provided largely by the WEP (Wired Equivalent Privacy) protocol to protect link-level data during wireless transmission between clients and access points. That is, WEP does not provide end-to-end security but only for the wireless portion of the connection.Keywords: wireless lan, wired equivalent privacy, wireless network security, wlan security
Procedia PDF Downloads 5704396 Risk and Emotion: Measuring the Effect of Emotion and Other Visceral Factors on Decision Making under Risk
Authors: Michael Mihalicz, Aziz Guergachi
Abstract:
Background: The science of modelling choice preferences has evolved over centuries into an interdisciplinary field contributing to several branches of Microeconomics and Mathematical Psychology. Early theories in Decision Science rested on the logic of rationality, but as it and related fields matured, descriptive theories emerged capable of explaining systematic violations of rationality through cognitive mechanisms underlying the thought processes that guide human behaviour. Cognitive limitations are not, however, solely responsible for systematic deviations from rationality and many are now exploring the effect of visceral factors as the more dominant drivers. The current study builds on the existing literature by exploring sleep deprivation, thermal comfort, stress, hunger, fear, anger and sadness as moderators to three distinct elements that define individual risk preference under Cumulative Prospect Theory. Methodology: This study is designed to compare the risk preference of participants experiencing an elevated affective or visceral state to those in a neutral state using nonparametric elicitation methods across three domains. Two experiments will be conducted simultaneously using different methodologies. The first will determine visceral states and risk preferences randomly over a two-week period by prompting participants to complete an online survey remotely. In each round of questions, participants will be asked to self-assess their current state using Visual Analogue Scales before answering a series of lottery-style elicitation questions. The second experiment will be conducted in a laboratory setting using psychological primes to induce a desired state. In this experiment, emotional states will be recorded using emotion analytics and used a basis for comparison between the two methods. Significance: The expected results include a series of measurable and systematic effects on the subjective interpretations of gamble attributes and evidence supporting the proposition that a portion of the variability in human choice preferences unaccounted for by cognitive limitations can be explained by interacting visceral states. Significant results will promote awareness about the subconscious effect that emotions and other drive states have on the way people process and interpret information, and can guide more effective decision making by informing decision-makers of the sources and consequences of irrational behaviour.Keywords: decision making, emotions, prospect theory, visceral factors
Procedia PDF Downloads 1494395 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning
Authors: Wei Feilong
Abstract:
In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment
Procedia PDF Downloads 264