Search results for: essential quality tools
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16580

Search results for: essential quality tools

14120 Achieving Social Sustainability through Architectural Designs for Physically Challenged People: Datascapes Technique

Authors: Fatemeh Zare, Kaveh Bazrafkan, Alireza Bolhari

Abstract:

Quality of life is one of the most recent issues in today's architectural world. It has numerous criteria and has diverse aspects in different nation's cultures. Social sustainability, on the other hand, is frequently a positive attitude which is manifested by integration of human beings and equity of access to fundamental amenities; for instance, transportation, hygienic systems, equal education facilities, etc. This paper demonstrates that achieving desired quality of life is through assurance of sustainable society. Choosing a sustainable approach in every day's life becomes a practical manner and solution for human life. By assuming that an architect is someone who designs people's life by his/her projects, scrutinizing the relationship between quality of life and architectural buildings would reveal hidden criteria through Datascapes technique. This would be enriched when considering this relationship with everyone's basic needs in the society. One the most impressive needs are the particular demands of physically challenged people which are directly examined and discussed.

Keywords: sustainable design, social sustainability, disabled people, datascapes technique

Procedia PDF Downloads 489
14119 Pre-Drying Effects on the Quality of Frying Oil

Authors: Hasan Yalcin, Tugba Dursun Capar

Abstract:

Deep-fat frying causes desirable as well as undesirable changes in oil and potato, and changes the quality of the oil by hydrolysis, oxidation, and polymerization. The main objective of the present study was to investigate the pre-drying effects on the quality of both frying oil and potatoes. Prior to frying, potato slices (10 mm x10 mm x 30 mm) were air- dried at 60°C for 15, 30, 45, 60, 90, and 120 mins., respectively. Potato slices without the pre-drying treatment were considered as the control variable. Potato slices were fried in sunflower oil at 180°C for 5, 10, and 13 mins. The deep-frying experiments were repeated five times using the new potato slices in the same oil without oil replenishment. Samples of the fresh oil, together with those sampled at the end of successive frying operations (1th, 3th and 5th) were removed and analysed. Moisture content, colour and oil intake of the potato and colour, peroxide value (PV), free fatty acid (FFA), fatty acid composition and viscosity of the used oil were evaluated. The effect of frying time was also examined. Results show that pre-drying treatment had a significant effect on physicochemical properties and colour parameters of potato slices and frying oil. Pre-drying considerably decreased the oil absorption. The lowest oil absorption was found for the treatment that was pre-dried for 120, and fried for 5 min. The FFA levels decreased permanently for each pre-treatment throughout the frying period. All the pre-drying treatments had reached their maximum levels of FFA by the end of the frying procedures. The PV of the control and 60 min pre-dried sample decreased after the third frying. However, the PV of other samples increased constantly throughout the frying periods. Lastly, pre-drying did not affect the fatty acid composition of frying oil considerably when compared against previously unused oil.

Keywords: air-drying, deep-fat frying, moisture content oil uptake, quality

Procedia PDF Downloads 310
14118 Surface and Drinking Water Quality Monitoring of Thomas Reservoir, Kano State, Nigeria

Authors: G. A. Adamu, M. S. Sallau, S. O. Idris, E. B. Agbaji

Abstract:

Drinking water is supplied to Danbatta, Makoda and some parts of Minjibir local government areas of Kano State from the surface water of Thomas Reservoir. The present land use in the catchment area of the reservoir indicates high agricultural activities, fishing, as well as domestic and small scale industrial activities. To study and monitor the quality of surface and drinking water of the area, water samples were collected from the reservoir, treated water at the treatment plant and potable water at the consumer end in three seasons November - February (cold season), March - June (dry season) and July - September (rainy season). The samples were analyzed for physical and chemical parameters, pH, temperature, total dissolved solids (TDS), conductivity, turbidity, total hardness, suspended solids, total solids, colour, dissolved oxygen (DO), biological oxygen demand (BOD), chloride ion (Cl-) nitrite (NO2-), nitrate (NO3-), chemical oxygen demand (COD) and phosphate (PO43-). The higher values obtained in some parameters with respect to the acceptable standard set by World Health Organization (WHO) and Nigerian Industrial Standards (NIS) indicate the pollution of both the surface and drinking water. These pollutants were observed to have a negative impact on water quality in terms of eutrophication, largely due to anthropogenic activities in the watershed.

Keywords: surface water, drinking water, water quality, pollution, Thomas reservoir, Kano

Procedia PDF Downloads 299
14117 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques

Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña

Abstract:

The automatic detection of indigenous languages ​​in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.

Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages

Procedia PDF Downloads 20
14116 Effects of Audit Quality and Corporate Governance on Earnings Management of Quoted Deposit Money Banks in Nigeria

Authors: Joel S. Akintayo, Ramat T. Salman

Abstract:

The stakeholders’ pressure on corporate managers to maintain firm’s profitability has created economic incentives for management to engage in earnings management practices. Therefore, this study examines the effects of audit quality and corporate governance on earnings management of quoted deposit money banks (DMBs) in Nigeria. This study specifically investigates the influence of audit tenure, audit fee, board independence, and board size on earnings management of DMBs. Explanatory research design was employed in carrying out the study while secondary data were sourced from the annual reports and accounts of all the 15 quoted DMBs in Nigerian Stock Exchange as at December 31, 2015 for a period of 10 years covering from 2006 to 2015. The data obtained for the study were analyzed using panel regression analysis approach. The findings reveal that board independence has a negative significant effect on earnings management at a 5% level of significance (p=0.002), while audit fee has a positive significant effect on earnings management at a 5% level of significance (p=0.013) and audit tenure has a negative significant effect on earnings management of DMBs at a 5% level of significance (p=0.003). Surprisingly, board size was statistically not significant at a 5% level of significance (p=0.086). The study concludes that high audit quality and sound corporate governance could improve the earnings quality of DMBs. Hence, the study recommends that the authorities saddled with the responsibility of banking supervision in Nigeria such the Securities and Exchange Commission (SEC) and CBN to advise the National Assembly in Nigeria to pass into law the three years professional requirement for audit tenure.

Keywords: audit quality, audit tenure, audit fee, board independence, corporate governance, earnings management

Procedia PDF Downloads 205
14115 Unveiling Karst Features in Miocene Carbonate Reservoirs of Central Luconia-Malaysia: Case Study of F23 Field's Karstification

Authors: Abd Al-Salam Al-Masgari, Haylay Tsegab, Ismailalwali Babikir, Monera A. Shoieb

Abstract:

We present a study of Malaysia's Central Luconia region, which is an essential deposit of Miocene carbonate reservoirs. This study aims to identify and map areas of selected carbonate platforms, develop high-resolution statistical karst models, and generate comprehensive karst geobody models for selected carbonate fields. This study uses seismic characterization and advanced geophysical surveys to identify karst signatures in Miocene carbonate reservoirs. The results highlight the use of variance, RMS, RGB colour blending, and 3D visualization Prop seismic sequence stratigraphy seismic attributes to visualize the karstified areas across the F23 field of Central Luconia. The offshore karst model serves as a powerful visualization tool to reveal the karstization of carbonate sediments of interest. The results of this study contribute to a better understanding of the karst distribution of Miocene carbonate reservoirs in Central Luconia, which are essential for hydrocarbon exploration and production. This is because these features significantly impact the reservoir geometry, flow path and characteristics.

Keywords: karst, central Luconia, seismic attributes, Miocene carbonate build-ups

Procedia PDF Downloads 75
14114 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-world, resilience to damage

Procedia PDF Downloads 552
14113 Water-Bentonite Interaction of Green Pellets through Micro-Structural Analysis

Authors: Satyananda Patra, Venugopal Rayasam

Abstract:

The quality of pellets produced is affected by quality and type of green pellets, amount of addition of binders and fluxing agents along with the provided firing conditions. The green pellet quality depends upon chemistry, mineralogy and granulometry of fines used for pellet making, the feed size, its moisture content and porosity. During firing of green pellets, ingredients present within reacts to form different phases and microstructure. So in turn, physical and metallurgical properties of pellets are influenced by amount and type of binder and flux addition, induration time and temperature. During iron making process, the metallurgical properties of fired pellets are decided by the type and amount of these phases and their chemistry. Green pelletizing and induration studies have been already carried out with magnetite and hematite ore fines but for Indian iron ores of high alumina content showing different pelletizing characters, these studies cannot be directly interpreted. The main objective of proposed research work is to understand the green pelletizing process and determine the water bentonite interaction at different levels. Swelling behavior of bentonite and microstructure of the green pellet are investigated. Conversion of iron ore fines into pellets, the key raw material and process variables that influence the pellet quality needs to be identified and a correlation should be established between them.

Keywords: iron ore, pelletization, binders, green pellets, microstructure

Procedia PDF Downloads 321
14112 Education for Sustainability: Implementing a Place-Based Watershed Science Course for High School Students

Authors: Dina L. DiSantis

Abstract:

Development and implementation of a place-based watershed science course for high school students will prove to be a valuable experience for both student and teacher. By having students study and assess the watershed dynamics of a local stream, they will better understand how human activities affect this valuable resource. It is important that students gain tangible skills that will help them to have an understanding of water quality analysis and the importance of preserving our Earth's water systems. Having students participate in real world practices is the optimal learning environment and can offer students a genuine learning experience, by cultivating a knowledge of place, while promoting education for sustainability. Additionally, developing a watershed science course for high school students will give them a hands-on approach to studying science; which is both beneficial and more satisfying to students. When students conduct their own research, collect and analyze data, they will be intimately involved in addressing water quality issues and solving critical water quality problems. By providing students with activities that take place outside the confines of the indoor classroom, you give them the opportunity to gain an appreciation of the natural world. Placed-based learning provides students with problem-solving skills in everyday situations while enhancing skills of inquiry. An overview of a place-based watershed science course and its impact on student learning will be presented.

Keywords: education for sustainability, place-based learning, watershed science, water quality

Procedia PDF Downloads 158
14111 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 65
14110 Using a Robot Companion to Detect and Visualize the Indicators of Dementia Progression and Quality of Life of People Aged 65 and Older

Authors: Jeoffrey Oostrom, Robbert James Schlingmann, Hani Alers

Abstract:

This document depicts the research into the indicators of dementia progression, the automation of quality of life assignments, and the visualization of it. To do this, the Smart Teddy project was initiated to make a smart companion that both monitors the senior citizen as well as processing the captured data into an insightful dashboard. With around 50 million diagnoses worldwide, dementia proves again and again to be a bothersome strain on the lives of many individuals, their relatives, and society as a whole. In 2015 it was estimated that dementia care cost 818 billion U.S Dollars globally. The Smart Teddy project aims to take away a portion of the burden from caregivers by automating the collection of certain data, like movement, geolocation, and sound-levels. This paper proves that the Smart Teddy has the potential to become a useful tool for caregivers but won’t pose as a solution. The Smart Teddy still faces some problems in terms of emotional privacy, but its non-intrusive nature, as well as diversity in usability, can make up for it.

Keywords: dementia care, medical data visualization, quality of life, smart companion

Procedia PDF Downloads 146
14109 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 333
14108 Assessment of Groundwater Quality around a Cement Factory in Ewekoro, Ogun State, Southwest Nigeria

Authors: A. O. David, A. A. Akaho, M. A. Abah, J. O. Ogunjimi

Abstract:

This study focuses on the growing concerns about the quality of groundwater found around cement factories, which have caused several health issues for residents located within two (2) kilometer radius. The qualities of groundwater were determined by an investigative study that involved the determination of some heavy metals and physicochemical properties in drinking water samples. Eight (8) samples of groundwater were collected from the eight sampling sites. The samples were analysed for the following parameters; iron, copper, manganese, zinc, lead, color, dissolved solids, electrical conductivity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), temperature, turbidity and total hardness using standard methods. The test results showed the variation of the investigated parameters in the samples as follows: temperature 26-31oC, pH 5.9-7.2, electrical conductivity (EC) 0.37 – 0.78 µS/cm, total hardness 181.8 – 333.0 mg/l, turbidity 0.00-0.05 FTU, colour 5-10 TCU, dissolved oxygen 4.31-5.01 mg/l, BOD 0.2-1.0 mg/l, COD 2.0 -4.0 mg/l, Cu 0.04 – 0.09 mg/l, Fe 0.006-0.122 mg/l, Zn 0.016-0.306 mg/l, Mn 0.01-0.05 mg/l and Pb < 0.001 mg/l. The World Health Organization's standard for drinking water quality guidelines was exceeded in several of the analyzed parameters' amounts in the drinking water samples from the study area. The dissolved oxygen was found to exceed 5.0 mg/l, which is the WHO permissible limit; also, Limestone was found to exceed the WHO maximum limit of 170 mg/l. All the above results confirmed the high pollution of the groundwater sources, and hence, they are not suitable for consumption without any prior treatment.

Keywords: groundwater, quality, heavy metals, parameters

Procedia PDF Downloads 69
14107 Diabetes Prevalence and Quality of Life of Female Nursing Students in Riyadh

Authors: Alyaa Farouk AbdelFattah Ibrahim, Agnes Monica, Dolores I. Cabansag

Abstract:

The prevalence of diabetes mellitus is reaching epidemic proportions in many parts of the world causing an increasing public health concern. Cases of Type 2 diabetes are rapidly increasing in the Middle East region. Deprived of lifestyle deviations, a section of the Middle East’s inhabitants will be pretentious by 2035. As all sociocultural factors have created unhealthy lifestyles, which have become part of the social norms within Saudi society, thereby increased the prevalence of sedentary lifestyle and obesity in women living in Saudi Arabia. So, this study aimed to assess the impact of diabetes mellitus on quality of life of female nursing students in King Saud bin Abdulaziz University for Health Sciences, Riyadh. In a crossectional study design, 151 nursing students at King Saud bin Abdulaziz University for health sciences in Riyadh were included in the study. Biosociodemographic questionnaire and Short-Form 36 (SF-36) Health Related Quality of life Survey Arabic version were used for data collection, and all included students were screened for random blood glucose level. Results depicted that among 151 subjects included in the study 17 (11.3%) had diagnosed medical problems, and 29.4% of those participants with medical problems were diabetics. Univariate regression model for the relation between diabetes mellitus and overall percent score of SF-36 health survey domains showed no statistically significant difference between diabetic and non-diabetic subjects 0.990(0.931-1.053). In conclusion, although the diabetes prevalence was high among the study subjects it did not affect their quality of life may be due to age of the study population.

Keywords: diabetes mellitus, diabetes prevalence, quality of life, university students' health

Procedia PDF Downloads 190
14106 Shifting Paradigms for Micro, Small, and Medium Enterprises in the Global Construction Market: The Crucial Roles of Technology and Sustainability

Authors: Sohrab Donyavi

Abstract:

The global construction market is experiencing significant shifts, particularly for micro, small, and medium enterprises (MSMEs), driven by the dual imperatives of technological advancement and sustainability. MSMEs play a crucial role in the construction industry, often being the backbone of economic development and fostering entrepreneurial skills. However, their dominance has also led to industry fragmentation and challenges such as technological lag and declining profit margins, which threaten their global competitiveness. This paper explores the integration of technology and sustainability in reshaping the paradigms for MSMEs in the construction sector. The adoption of advanced technologies, such as building information modeling (BIM) and AI, are pivotal for promoting sustainable construction practices. These tools enable MSMEs to design and construct environmentally responsible buildings, thereby contributing to the industry's sustainability goals. The research highlights that achieving sustainability in construction involves significant efforts in conservation, recycling, and the development of new materials and technologies. This approach aligns with the broader goal of integrating economic, environmental, and social aims into firm objectives to create long-term value while ensuring the protection of natural resources for future generations. Critical factors for implementing sustainable oriented innovation (SOI) practices in MSMEs include top management support, government initiatives, and financial resources. These factors are essential for fostering an environment conducive to innovation and sustainability. Furthermore, the empowerment of MSMEs through improved governance, market-oriented programs, sustainable productivity growth, and access to financing is vital. In developing regions like Indonesia, these strategies are crucial for enabling MSMEs to thrive in the face of globalization. The tendency of large firms to grow larger with the help of technology and globalization has led to the emergence of a high-technology oligopoly, posing a significant challenge to traditional construction practices. This shift necessitates that MSMEs adapt by leveraging technology and embracing sustainable practices to remain competitive. The research underscores the importance of integrating technology and sustainability not only as a competitive strategy but also as a means to contribute to the global effort of environmental conservation and sustainable development. This paper concludes that the successful integration of technology and sustainability in MSMEs requires a multifaceted approach. It involves the adoption of advanced technological tools, strong support from top management, proactive government policies, and access to financial resources. By addressing these factors, MSMEs can overcome the challenges of industry fragmentation, technological lag, and declining profit margins. Ultimately, this integration will enable MSMEs to play a pivotal role in driving the construction industry towards a more sustainable and technologically advanced future. The findings and recommendations are based on a comprehensive case study utilizing semi-structured interviews, observations, questionnaires, and document reviews.

Keywords: MSMEs, construction, technology, sustainability, innovation

Procedia PDF Downloads 45
14105 Efficacy of Pooled Sera in Comparison with Commercially Acquired Quality Control Sample for Internal Quality Control at the Nkwen District Hospital Laboratory

Authors: Diom Loreen Ndum, Omarine Njimanted

Abstract:

With increasing automation in clinical laboratories, the requirements for quality control materials have greatly increased in order to monitor daily performance. The constant use of commercial control material is not economically feasible for many developing countries because of non-availability or the high-cost of the materials. Therefore, preparation and use of in-house quality control serum will be a very cost-effective measure with respect to laboratory needs.The objective of this study was to determine the efficacy of in-house prepared pooled sera with respect to commercially acquired control sample for routine internal quality control at the Nkwen District Hospital Laboratory. This was an analytical study, serum was taken from leftover serum samples of 5 healthy adult blood donors at the blood bank of Nkwen District Hospital, which had been screened negative for human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Hepatitis B antigens (HBsAg), and were pooled together in a sterile container. From the pooled sera, sixty aliquots of 150µL each were prepared. Forty aliquots of 150µL each of commercially acquired samples were prepared after reconstitution and stored in a deep freezer at − 20°C until it was required for analysis. This study started from the 9th June to 12th August 2022. Every day, alongside with commercial control sample, one aliquot of pooled sera was removed from the deep freezer and allowed to thaw before analyzed for the following parameters: blood urea, serum creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), potassium and sodium. After getting the first 20 values for each parameter of pooled sera, the mean, standard deviation and coefficient of variation were calculated, and a Levey-Jennings (L-J) chart established. The mean and standard deviation for commercially acquired control sample was provided by the manufacturer. The following results were observed; pooled sera had lesser standard deviation for creatinine, urea and AST than commercially acquired control samples. There was statistically significant difference (p<0.05) between the mean values of creatinine, urea and AST for in-house quality control when compared with commercial control. The coefficient of variation for the parameters for both commercial control and in-house control samples were less than 30%, which is an acceptable difference. The L-J charts revealed shifts and trends (warning signs), so troubleshooting and corrective measures were taken. In conclusion, in-house quality control sample prepared from pooled serum can be a good control sample for routine internal quality control.

Keywords: internal quality control, levey-jennings chart, pooled sera, shifts, trends, westgard rules

Procedia PDF Downloads 83
14104 An Analysis of the Need of Training for Indian Textile Manufacturing Sector

Authors: Shipra Sharma, Jagat Jerath

Abstract:

Human resource training is an essential element of talent management in the current era of global competitiveness and dynamic trade in the manufacturing industry. Globally, India is behind only China as the largest textile manufacturer. The major challenges faced by the Indian textile manufacturing Industry are low technology levels, growing skill gaps, unorganized structure, lower efficiencies, etc. indicating the need for constant talent up-gradation. Assessment of training needs from a strategic perspective is an essential step for the formulation of effective training. The paper established the significance of training in the Indian textile industry and to determine the training needs on various parameters as presented. 40 HR personnel/s working in the textile and apparel companies based in the industrial region of Punjab, India, were the respondents for the study. The research tool used in this case was a structured questionnaire as per five-point Likert scale. Statistical analysis through descriptive statistics and chi-square test indicated the increased need for training whenever there were technical changes in the organizations. As per the data presented in this study, most of the HR personnel/s agreed that the variables associated with organizational analysis, task analysis, and individual analysis have a statistically significant role to play in determining the need for training in an organization.

Keywords: Indian textile manufacturing industry, significance of training, training needs analysis, parameters for training needs assessment

Procedia PDF Downloads 170
14103 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: artificial neural networks, milling process, rotational speed, temperature

Procedia PDF Downloads 412
14102 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 152
14101 Air Quality Health Index in Windsor, Canada, and the Impact of Regional Scale Transport

Authors: Xiaohong Xu, Tianchu Zhang, Yangfan Chen, Rongtai Tan

Abstract:

In Canada, Air Quality Health Index (AQHI) is a scale designed to help residences understand the impact of air quality on human health. In Ontario, Canada, AQHI was implemented in June 2015. This study investigated temporal variability of daily AQHI and impact of regional transport on AQHI in Windsor, Ontario, Canada from 2016 to 2019. During 2016–2019, 1428 daily AQHIs were recorded in Windsor Downtown Station. Among those, the AQHIs were at the low health risk level (AQHI = 1, 2 or 3) in 82% of days, only a few days at high risk level (AQHI = 7), the rest were at moderate health risk level (AQHI = 4, 5, 6), indicating air quality in Windsor was fairly good with relatively low health risk. The annual mean AQHI value decreased from 2.95 in 2016 to 2.81 in 2019, demonstrating the improvement of air quality. Half of the days, AQHI were 3 regardless of season. AQHI was higher in the warm season (3.1) than in the cold season (2.6) due to more frequent moderate risk days (27%, AQHI = 4) in warm season and more frequent low risk days (42%, AQHI = 2) in the cold season. Among the three pollutants considered in AQHI calculation, O3 was the most frequently reported dominant contributor to daily AQHI (88% of days), followed by NO2 (12%), especially in the cold season, with small contribution from PM2.5 (<1%). In the past two decades, NO2 concentrations had decreased significantly and O3 concentrations had increased, resulting in daily AQHI being less reliance on NO2 (from 51% of days being the primary contributor during 2003–2010 to 12% during 2016–2019) and more on O3 concentrations (49% to 88%). Trajectory analysis found that AQHI ≤ 3 days were closely associated with air masses from the north and northwest, whereas AQHI > 3 days were closely associated with air masses from the west and southwest. This is because northerly flows brought in clear air mass owing to less industrial facilities, while polluted air masses were transported from the south of Windsor, where several industrial states of the US were located. Overall, O3 concentrations dictate the daily AQHI values, the seasonal variability of AQHI, and the impact of regional transport on AQHI in Windsor. This makes further reductions of AQHI challenging because O3 concentrations are likely to continue increasing due to weakened consumption of O3 by NO owing to decreasing NO emissions and more hot days because of climate change. The predominant and increasing contribution of O3 to AQHI calls for more effective control measures to mitigate O3 pollution and its impact on human health and the environment.

Keywords: air quality, Air Quality Health Index (AQHI), hysplit, regional transport, windsor

Procedia PDF Downloads 69
14100 Improving Decision-Making in Multi-Project Environments within Organizational Information Systems Using Blockchain Technology

Authors: Seyed Hossein Iranmanesh, Hassan Nouri, Seyed Reza Iranmanesh

Abstract:

In the dynamic and complex landscape of today’s business, organizations often face challenges in impactful decision-making across multi-project settings. To efficiently allocate resources, coordinate tasks, and optimize project outcomes, establishing robust decision-making processes is essential. Furthermore, the increasing importance of information systems and their integration within organizational workflows introduces an additional layer of complexity. This research proposes the use of blockchain technology as a suitable solution to enhance decision-making in multi-project environments, particularly within the realm of information systems. The conceptual framework in this study comprises four independent variables and one dependent variable. The identified independent variables for the targeted research include: Blockchain Layer in Integrated Systems, Quality of Generated Information ,User Satisfaction with Integrated Systems and Utilization of Integrated Systems. The project’s performance, considered as the dependent variable and moderated by organizational policies and procedures, reflects the impact of blockchain technology adoption on organizational effectiveness1. The results highlight the significant influence of blockchain implementation on organizational performance.

Keywords: multi-project environments, decision support systems, information systems, blockchain technology, decentralized systems.

Procedia PDF Downloads 64
14099 Evaluation of Critical Success Factors in Public-Private Partnership Projects Based on Structural Equation Model

Authors: Medya Fathi

Abstract:

Today, success in the construction industry is not merely about project completion in a timely manner within an established budget and meeting required quality considerations. Management practices and partnerships need to be emphasized as well. In this regard, critical success factors (CSFs) cover necessary considerations for a successful project beyond the traditional success definition, which vary depending on project outcomes, delivery methods, project types, and partnering processes. Despite the extensive research on CSFs, there is a paucity of studies that examine CSFs for public-private partnership (PPP); the delivery method, which has gained increasing attention from researchers and practitioners over the last decade with a slow but growing adoption in the transportation infrastructure, particularly, highway industry. To fill this knowledge gap, data are collected through questionnaire surveys among private and public parties involved in PPP transportation projects in the United States. Then, the collected data are analyzed to explore the causality relationships between CSFs and PPP project success using structural equation model and provide a list of factors with the greatest influence. This study advocates adopting a critical success factor approach to enhance PPP success in the U.S. transportation industry and identify elements essential for public and private organizations to achieve this success.

Keywords: project success, critical success factors, public-private partnership, transportation

Procedia PDF Downloads 103
14098 Model of Learning Center on OTOP Production Process Based on Sufficiency Economic Philosophy

Authors: Chutikarn Sriviboon, Witthaya Mekhum

Abstract:

The purposes of this research were to analyze and evaluate successful factors in OTOP production process for the developing of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, learning center

Procedia PDF Downloads 381
14097 Translation Quality Assessment in Fansubbed English-Chinese Swearwords: A Corpus-Based Study of the Big Bang Theory

Authors: Qihang Jiang

Abstract:

Fansubbing, the combination of fan and subtitling, is one of the main branches of Audiovisual Translation (AVT) having kindled more and more interest of researchers into the AVT field in recent decades. In particular, the quality of so-called non-professional translation seems questionable due to the non-transparent qualification of subtitlers in a huge community network. This paper attempts to figure out how YYeTs aka 'ZiMuZu', the largest fansubbing group in China, translates swearwords from English to Chinese for its fans of the prevalent American sitcom The Big Bang Theory, taking cultural, social and political elements into account in the context of China. By building a bilingual corpus containing both the source and target texts, this paper found that most of the original swearwords were translated in a toned-down manner, probably due to Chinese audiences’ cultural and social network features as well as the strict censorship under the Chinese government. Additionally, House (2015)’s newly revised model of Translation Quality Assessment (TQA) was applied and examined. Results revealed that most of the subtitled swearwords achieved their pragmatic functions and exerted a communicative effect for audiences. In conclusion, this paper enriches the empirical research concerning House’s new TQA model, gives a full picture of the subtitling of swearwords in AVT field and provides a practical guide for the practitioners in their career of subtitling.

Keywords: corpus-based approach, fansubbing, pragmatic functions, swearwords, translation quality assessment

Procedia PDF Downloads 149
14096 The Relationship between Organizational Culture and Application of Management Accounting Innovation: Evidence from Iran

Authors: Zohreh Hajiha

Abstract:

Culture affects the ability of the organization in expressing and achieving the goals. Organizational culture influences the selection of instruments applied in the management of organizations. All the instruments applied in organizations to control, promote and create innovations are influenced by organizational culture. This research studies organizational culture based on the cultural model of Muijen and its relationship with applying management accounting innovations in Iranian listed firms. Management accounting innovations of this study include activity-based costing, activity-based management, balanced scorecard, target costing, standard costing, quality costing, Kaizen costing and dimensions of organizational culture include support orientation, innovation orientation, rules orientation and goal orientation. 105 questionnaires were sent to financial executives of production companies and 73 questionnaires were returned. The findings show that there is a significant difference between organizational culture of firms that have applied management accounting innovations and those which have used these innovations less. Also, dimensions of support orientation and culture goal orientation are the highest in groups that apply management accounting innovations. The findings suggest that proper organization culture could promote the use od management accounting tools in Iranian firms.

Keywords: organizational culture, innovation, management accounting, muijen model

Procedia PDF Downloads 360
14095 Evaluating the Implementation of Machine Learning Techniques in the South African Built Environment

Authors: Peter Adekunle, Clinton Aigbavboa, Matthew Ikuabe, Opeoluwa Akinradewo

Abstract:

The future of machine learning (ML) in building may seem like a distant idea that will take decades to materialize, but it is actually far closer than previously believed. In reality, the built environment has been progressively increasing interest in machine learning. Although it could appear to be a very technical, impersonal approach, it can really make things more personable. Instead of eliminating humans out of the equation, machine learning allows people do their real work more efficiently. It is therefore vital to evaluate the factors influencing the implementation and challenges of implementing machine learning techniques in the South African built environment. The study's design was one of a survey. In South Africa, construction workers and professionals were given a total of one hundred fifty (150) questionnaires, of which one hundred and twenty-four (124) were returned and deemed eligible for study. Utilizing percentage, mean item scores, standard deviation, and Kruskal-Wallis, the collected data was analyzed. The results demonstrate that the top factors influencing the adoption of machine learning are knowledge level and a lack of understanding of its potential benefits. While lack of collaboration among stakeholders and lack of tools and services are the key hurdles to the deployment of machine learning within the South African built environment. The study came to the conclusion that ML adoption should be promoted in order to increase safety, productivity, and service quality within the built environment.

Keywords: machine learning, implementation, built environment, construction stakeholders

Procedia PDF Downloads 138
14094 Analysis of Slope in an Excavated Gneiss Rock Using Geological Strength Index (GSI) in Ilorin, Kwara State, Nigeria

Authors: S. A. Agbalajobi, W. A. Bello

Abstract:

The study carried out analysis on slope stability in an excavated gneiss rock using geological strength index (GSI) in Ilorin, Kwara State, Nigeria. A kinematic analysis of planar discontinuity sets in a gneiss deposit was carried out to ascertain the degree of slope stability. Discontinuity orientations in the rock mass were mapped using compass clinometers. The average result of physical and mechanical properties such as specific gravity, unit weight, uniaxial compressive strength, point load index, and Schmidt rebound value are 2.64 g/m3, 25.95 kN/m3, 156 MPa, 6.5 MPa, and 53.12 respectively. Also, a statistical model equation relating the rock strength was developed. The analyses states that the rock face is susceptible to wedge failures having all the geometrical conditions associated with the occurrence of such failures were noticeable. It can be concluded that analyses of discontinuity orientation in relation to cut face direction in rock excavation is essential for mine planning to forestall mine accidents. Assessment of excavated slope methods was evident that one excavation method (blasting and/or use of hydraulic hammer) is applicable for the given rock strength, the ease of excavation decreases as the rock mass quality increases, thus blasting most suitable for such operation.

Keywords: slope stability, wedge failure, geological strength index (GSI), discontinuities and excavated slope

Procedia PDF Downloads 523
14093 Client Importance and Audit Quality under Civil Law versus Common Law Societies

Authors: Kelly Grani Yuen

Abstract:

Accounting scandals and auditing frauds are perceived to be driven by aggressive companies and misrepresentation of audit reports. However, local legal systems and law enforcements may affect the services auditors provide to their ‘important’ clients. Under the civil law and common law jurisdictions, the standard setters, the government, and the regulatory bodies treat cases differently. As such, whether or not different forms of legal systems and extent of law enforcement plays an important role in auditor’s Audit Quality is a question this paper attempts to explore. The paper focuses on the investigation in Asia, where Hong Kong represents the common-law jurisdiction, while Taiwan and China represent the civil law jurisdiction. Only the ten reputable accounting firms are used in this study due to the differences in rankings and establishments of some of the small local audit firms. This will also contribute to the data collected between the years 2007-2013. By focusing on the use of multiple regression based on the dependent (Audit Quality) and independent variables (Client Importance, Law Enforcement, and Press Freedom), six different models are established. Results demonstrate that since different jurisdictions have different legal systems and market regulations, auditor’s treatment on ‘important’ clients will vary. However, with the moderators in place (law enforcement and press freedom), the relationship between client importance and audit quality may be smoothed out. With that in mind, this study contributes to local governments and standard setters’ consideration on legal reform and proper law enforcement in the market. Perhaps, with such modifications on the economic systems, collusion between companies and auditors can finally be put to a halt.

Keywords: audit quality, client importance, jurisdiction, modified audit opinions

Procedia PDF Downloads 414
14092 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 65
14091 Fear and Anxiety among School Age Children Undergoing Dental Treatment in an Oral Health Unit

Authors: Maha Ibrahim Mohamed Khalifa

Abstract:

Background: Dental fear and anxiety lead to avoidance of dental treatment and deterioration of oral health. Aim of the study: To assess the levels of fear and anxiety among school-age children undergoing dental treatment. Setting: The study was conducted in Outpatient Dental Clinics at Benha Teaching Hospital. Research design: A descriptive research design was utilized to conduct the study. Sample: A purposive sample of 60 school-age children and their mothers attending at the previously mentioned setting was included. Tools: Three tools were used: Tool one: A structured interviewing questionnaire for Personal characteristics of children and their mothers. Tool two: Dental Subscale of Children's Fear Survey Schedule (CFSS-DS). Tool three: Modified Dental Anxiety Scale (MDAS). Results: It was illustrated that more than two-fifths (43.3%) of children had maximum fear and more than half of children (53.3%) had maximal anxiety. Conclusion: Many school-age children undergoing dental treatment suffer from high levels of fear and anxiety. Recommendations: The study recommended further research should be conducted to assess levels of fear and anxiety among children undergoing dental treatments and preferable nursing interventions for reducing their fears and anxieties.

Keywords: fear, anxiety, children, dental treatment

Procedia PDF Downloads 93