Search results for: data mining techniques
27382 Assessing Project Performance through Work Sampling and Earned Value Analysis
Authors: Shobha Ramalingam
Abstract:
The majority of the infrastructure projects are affected by time overrun, resulting in project delays and subsequently cost overruns. Time overrun may vary from a few months to as high as five or more years, placing the project viability at risk. One of the probable reasons noted in the literature for this outcome in projects is due to poor productivity. Researchers contend that productivity in construction has only marginally increased over the years. While studies in the literature have extensively focused on time and cost parameters in projects, there are limited studies that integrate time and cost with productivity to assess project performance. To this end, a study was conducted to understand the project delay factors concerning cost, time and productivity. A case-study approach was adopted to collect rich data from a nuclear power plant project site for two months through observation, interviews and document review. The data were analyzed using three different approaches for a comprehensive understanding. Foremost, a root-cause analysis was performed on the data using Ishikawa’s fish-bone diagram technique to identify the various factors impacting the delay concerning time. Based on it, a questionnaire was designed and circulated to concerned executives, including project engineers and contractors to determine the frequency of occurrence of the delay, which was then compiled and presented to the management for a possible solution to mitigate. Second, a productivity analysis was performed on select activities, including rebar bending and concreting through a time-motion study to analyze product performance. Third, data on cost of construction for three years allowed analyzing the cost performance using earned value management technique. All three techniques allowed to systematically and comprehensively identify the key factors that deter project performance and productivity loss in the construction of the nuclear power plant project. The findings showed that improper planning and coordination between multiple trades, concurrent operations, improper workforce and material management, fatigue due to overtime were some of the key factors that led to delays and poor productivity. The findings are expected to act as a stepping stone for further research and have implications for practitioners.Keywords: earned value analysis, time performance, project costs, project delays, construction productivity
Procedia PDF Downloads 9727381 Hydraulic Characteristics of Mine Tailings by Metaheuristics Approach
Authors: Akhila Vasudev, Himanshu Kaushik, Tadikonda Venkata Bharat
Abstract:
A large number of mine tailings are produced every year as part of the extraction process of phosphates, gold, copper, and other materials. Mine tailings are high in water content and have very slow dewatering behavior. The efficient design of tailings dam and economical disposal of these slurries requires the knowledge of tailings consolidation behavior. The large-strain consolidation theory closely predicts the self-weight consolidation of these slurries as the theory considers the conservation of mass and momentum conservation and considers the hydraulic conductivity as a function of void ratio. Classical laboratory techniques, such as settling column test, seepage consolidation test, etc., are expensive and time-consuming for the estimation of hydraulic conductivity variation with void ratio. Inverse estimation of the constitutive relationships from the measured settlement versus time curves is explored. In this work, inverse analysis based on metaheuristics techniques will be explored for predicting the hydraulic conductivity parameters for mine tailings from the base excess pore water pressure dissipation curve and the initial conditions of the mine tailings. The proposed inverse model uses particle swarm optimization (PSO) algorithm, which is based on the social behavior of animals searching for food sources. The finite-difference numerical solution of the forward analytical model is integrated with the PSO algorithm to solve the inverse problem. The method is tested on synthetic data of base excess pore pressure dissipation curves generated using the finite difference method. The effectiveness of the method is verified using base excess pore pressure dissipation curve obtained from a settling column experiment and further ensured through comparison with available predicted hydraulic conductivity parameters.Keywords: base excess pore pressure, hydraulic conductivity, large strain consolidation, mine tailings
Procedia PDF Downloads 13627380 An Assessment of Drainage Network System in Nigeria Urban Areas using Geographical Information Systems: A Case Study of Bida, Niger State
Authors: Yusuf Hussaini Atulukwu, Daramola Japheth, Tabitit S. Tabiti, Daramola Elizabeth Lara
Abstract:
In view of the recent limitations faced by the township concerning poorly constructed and in some cases non - existence of drainage facilities that resulted into incessant flooding in some parts of the community poses threat to life,property and the environment. The research seeks to address this issue by showing the spatial distribution of drainage network in Bida Urban using Geographic information System techniques. Relevant features were extracted from existing Bida based Map using un-screen digitization and x, y, z, data of existing drainages were acquired using handheld Global Positioning System (GPS). These data were uploaded into ArcGIS 9.2, software, and stored in the relational database structure that was used to produce the spatial data drainage network of the township. The result revealed that about 40 % of the drainages are blocked with sand and refuse, 35 % water-logged as a result of building across erosion channels and dilapidated bridges as a result of lack of drainage along major roads. The study thus concluded that drainage network systems in Bida community are not in good working condition and urgent measures must be initiated in order to avoid future disasters especially with the raining season setting in. Based on the above findings, the study therefore recommends that people within the locality should avoid dumping municipal waste within the drainage path while sand blocked or weed blocked drains should be clear by the authority concerned. In the same vein the authority should ensured that contract of drainage construction be awarded to professionals and all the natural drainages caused by erosion should be addressed to avoid future disasters.Keywords: drainage network, spatial, digitization, relational database, waste
Procedia PDF Downloads 33427379 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach
Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas
Abstract:
Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality
Procedia PDF Downloads 18727378 A Geophysical Study for Delineating the Subsurface Minerals at El Qusier Area, Central Eastern Desert, Egypt
Authors: Ahmed Khalil, Elhamy Tarabees, Svetlana Kovacikova
Abstract:
The Red Sea Mountains have been famous for their ore deposits since ancient times. Also, petrographic analysis and previous potential field surveys indicated large unexplored accumulations of ore minerals in the area. Therefore, the main goal of the presented study is to contribute to the discovery of hitherto unknown ore mineral deposits in the Red Sea region. To achieve this goal, we used two geophysical techniques: land magnetic survey and magnetotelluric data. A high-resolution land magnetic survey has been acquired using two proton magnetometers, one instrument used as a base station for the diurnal correction and the other used to measure the magnetic field along the study area. Two hundred eighty land magnetic stations were measured over a mesh-like area with a 500m spacing interval. The necessary reductions concerning daily variation, regional gradient and time observation were applied. Then, the total intensity anomaly map was constructed and transformed into the reduced magnetic pole (RTP). The magnetic interpretation was carried out using the analytical signal as well as regional–residual separation is carried out using the power spectrum. Also, the tilt derivative method (TDR) technique is applied to delineate the structure and hidden anomalies. Data analysis has been performed using trend analysis and Euler deconvolution. The results indicate that magnetic contacts are not the dominant geological feature of the study area. The magnetotleruric survey consisted of two profiles with a total of 8 broadband measurement points with a duration of about 24 hours crossing a wadi um Gheig approximately 50 km south of El Quseir. Collected data have been inverted to the electrical resistivity model using the 3D modular 3D inversion technique ModEM. The model revealed a non-conductive body in its central part, probably corresponding to a dolerite dyke, with which possible ore mineralization could be related.Keywords: magnetic survey, magnetotelluric, mineralization, 3d modeling
Procedia PDF Downloads 2727377 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).Keywords: intrusion detection, supervised learning, traffic classification, computer networks
Procedia PDF Downloads 35027376 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0
Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini
Abstract:
Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling
Procedia PDF Downloads 9427375 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers
Authors: Rajkumar Kolangarakandy
Abstract:
Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL
Procedia PDF Downloads 33527374 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 23527373 Economic Characteristics of Bitcoin: "An Analytical Study"
Authors: Abdelhalem Shahen
Abstract:
The world is now experiencing a digital revolution and greatly accelerated technological developments, in addition to the transition from the economy in its traditional form to the digital economy, which has resulted in the emergence of new tools that are appropriate to those developments, and from this, this paper attempts to explore the economic characteristics of the bitcoin currency that circulated recently. Due to the many advantages that distinguish it from money in its traditional forms, which have a range of economic effects. The study found that Bitcoin is among the technological innovations, which contain a set of characteristics that are worth studying, those that make it the focus of attention, such as the digital currency, the peer-to-peer property, Lower and Faster Transaction Costs, transparency, decentralized control, privacy, and Double-Spending, as well as security and Cryptographic, and finally mining.Keywords: Digital Economics, Digital Currencies, Bitcoin, Features of Bitcoin
Procedia PDF Downloads 13827372 Microsatellite Passive Thermal Design Using Anodized Titanium
Authors: Maged Assem Soliman Mossallam
Abstract:
Microsatellites' low available power limits the usage of active thermal control techniques in these categories of satellites. Passive thermal control techniques are preferred due to their high reliability and power saving which increase the satellite's survivability in orbit. Steady-state and transient simulations are applied to the microsatellite design in order to define severe conditions in orbit. Satellite thermal orbital three-dimensional simulation is performed using thermal orbit propagator coupled with Comsol Multiphysics finite element solver. Sensitivity study shows the dependence of the satellite temperatures on the internal heat dissipation and the thermooptical properties of anodization coatings. The critical case is defined as low power orbiting mode at the eclipse zone. Using black anodized aluminum drops the internal temperatures to severe values which exceed the permissible cold limits. Replacement with anodized titanium returns the internal subsystems' temperatures back to adequate temperature fluctuations limits.Keywords: passive thermal control, thermooptical, anodized titanium, emissivity, absorbtiviy
Procedia PDF Downloads 14227371 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 9527370 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption
Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme
Procedia PDF Downloads 38027369 Toward Automatic Chest CT Image Segmentation
Authors: Angely Sim Jia Wun, Sasa Arsovski
Abstract:
Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.Keywords: lung segmentation, binary masks, U-Net, medical software tools
Procedia PDF Downloads 9827368 Managing Physiological and Nutritional Needs of Rugby Players in Kenya
Authors: Masita Mokeira, Kimani Rita, Obonyo Brian, Kwenda Kennedy, Mugambi Purity, Kirui Joan, Chomba Eric, Orwa Daniel, Waiganjo Peter
Abstract:
Rugby is a highly intense and physical game requiring speed and strength. The need for physical fitness therefore cannot be over-emphasized. Sports are no longer about lifting weights so as to build muscle. Most professional teams are investing much more in the sport in terms of time, equipment and other resources. To play competitively, Kenyan players may therefore need to complement their ‘home-grown’ and sometimes ad-hoc training and nutrition regimes with carefully measured strength and conditioning, diet, nutrition, and supplementation. Nokia Research Center and University of Nairobi conducted an exploratory study on needs and behaviours surrounding sports in Africa. Rugby being one sport that is gaining ground in Kenya was selected as the main focus. The end goal of the research was to identify areas where mobile technology could be used to address gaps, challenges and/or unmet needs. Themes such as information gap, social culture, growth, and development, revenue flow, and technology adoption among others emerged about the sport. From the growth and development theme, it was clear that as rugby continues to grow in the country, teams, coaches, and players are employing interesting techniques both in training and playing. Though some of these techniques are indeed scientific, those employing them are sometimes not fully aware of their scientific basis. A further case study on sports science in rugby in Kenya focusing on physical fitness and nutrition revealed interesting findings. This paper discusses findings on emerging adoption of techniques in managing physiological and nutritional needs of rugby players across different levels of rugby in Kenya namely high school, club and national levels.Keywords: rugby, nutrition, physiological needs, sports science
Procedia PDF Downloads 38627367 The Impact of Government Expenditure on Economic Growth: A Study of Asian Countries
Authors: K. P. K. S. Lahirushan, W. G. V. Gunasekara
Abstract:
Main purpose of this study is to identifying the impact of government expenditure on economic growth in Asian Countries. Consequently, Fist, objective is to analyze whether government expenditure causes economic growth in Asian countries vice versa and then scrutinizing long-run equilibrium relationship exists between them. The study completely based on secondary data. The methodology being quantitative that includes econometrical techniques of cointegration, panel fixed effects model and granger causality in the context of panel data of Asian countries; Singapore, Malaysia, Thailand, South Korea, Japan, China, Sri Lanka, India and Bhutan with 44 observations in each country, totaling to 396 observations from 1970 to 2013. The model used is the random effects panel OLS model. As with the above methodology, the study found the fascinating outcome. At first, empirical findings exhibit a momentous positive impact of government expenditure on Gross Domestic Production in Asian region. Secondly, government expenditure and economic growth indicate a long-run relationship in Asian countries. In conclusion, there is a unidirectional causality from economic growth to government expenditure and government expenditure to economic growth in Asian countries. Hence the study is validated that it is in line with the Keynesian theory and Wagner’s law as well. Consequently, it can be concluded that role of government would play a vital role in economic growth of Asian Countries .However; if government expenditure did not figure out with the economy’s needs it might be considerably inspiration the economy in a negative way so that society bears the costs.Keywords: Asian countries, government expenditure, Keynesian theory, Wagner’s theory, random effects panel ols model
Procedia PDF Downloads 35227366 IACOP - Route Optimization in Wireless Networks Using Improved Ant Colony Optimization Protocol
Authors: S. Vasundra, D. Venkatesh
Abstract:
Wireless networks have gone through an extraordinary growth in the past few years, and will keep on playing a crucial role in future data communication. The present wireless networks aim to make communication possible anywhere and anytime. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Since an ad hoc network may consist of a large number of mobile hosts, this imposes a significant challenge on the design of an effective and efficient routing protocol that can work well in an environment with frequent topological changes. This paper proposes improved ant colony optimization (IACO) technique. It also maintains load balancing in wireless networks. The simulation results show that the proposed IACO performs better than existing routing techniques.Keywords: wireless networks, ant colony optimization, load balancing, architecture
Procedia PDF Downloads 42227365 Design of a Computational Model to Support the Calculation of a Structural Health Index for Bridges
Authors: Jeison Sánchez Araya, Cesar Garita, Giannina Ortiz
Abstract:
In many Latin American countries, including Costa Rica, the poor condition of national road bridges significantly hinders socioeconomic progress. Addressing this issue, this article introduces a computational method designed to evaluate and monitor bridge health over time. It outlines a business intelligence model that facilitates data storage from bridge inspections and supports structural health index calculations. A Power BI prototype displays crucial visualizations that improve decision making on infrastructure investments. This approach leverages business intelligence and hierarchical visualization techniques, offering a solution to quantitatively assess bridge health and prioritize investments in national infrastructure efficiently.Keywords: bridges, business intelligence, structural health index, structural health monitoring
Procedia PDF Downloads 027364 Improving the Training for Civil Engineers by Introducing Virtual Reality Technique
Authors: Manar Al-Ateeq
Abstract:
The building construction industry plays a major role in the economy of the word and the state of Kuwait. This paper evaluates existing new civil site engineers, describes a new system for improvement and insures the importance of prequalifying and developing for new engineers. In order to have a strong base in engineering, educational institutes and workplaces should be responsible to continuously train engineers and update them with new methods and techniques in engineering. As to achieve that, school of engineering should constantly update computational resources to be used in the professions. A survey was prepared for graduated Engineers based on stated objectives to understand the status of graduate engineers in both the public and private sector. Interviews were made with different sectors in Kuwait, and several visits were made to different training centers within different workplaces in Kuwait to evaluate training process and try to improve it. Virtual Reality (VR) technology could be applied as a complement to three-dimensional (3D) modeling, leading to better communication whether in job training, in education or in professional practice. Techniques of 3D modeling and VR can be applied to develop the models related to the construction process. The 3D models can support rehabilitation design as it can be considered as a great tool for monitoring failure and defaults in structures; also it can support decisions based on the visual analyses of alternative solutions. Therefore, teaching computer-aided design (CAD) and VR techniques in school will help engineering students in order to prepare them to site work and also will assist them to consider these technologies as important supports in their later professional practice. This teaching technique will show how the construction works developed, allow the visual simulation of progression of each type of work and help them to know more about the necessary equipment needed for tasks and how it works on site.Keywords: three dimensional modeling (3DM), civil engineers (CE), professional practice (PP), virtual reality (VR)
Procedia PDF Downloads 17627363 Folk Dance in Asterio Festivals in Ethiopia: Exploration of Performance, Variants, Symbols, and Therapeutic Role
Authors: Meseret Berhanie Menkir
Abstract:
The present study explores folk dance, one of the folklore texts, its symbols, and its therapeutic role. As a case, the study concentrates on Astrio-Mariam and Merkorios Bera, celebrated on January 30 and February 3 at Deresgie-Mariam Church in Ethiopia. By taking a qualitative stance, the study analyses the meaning of folk dance, explains its role, and describes its types. The data gathered through observation, interview, and focus group discussion techniques are documented in field notes, audio, and video. The data obtained is analyzed using structural-functionalism, psychoanalysis, and semiotics. Accordingly, community members of all ages (mainly the Ethiopian Orthodox Tewahedo Church followers) participate in the performance. While the folk dance is a type of small group dance and group dance, the group has no feature of using men and women performing together. The folk dance's role is a form of healing and spiritual fulfilment besides entertainment. The folk dance also has sword dance characteristics; the study confirmed this feature in content and form. Moreover, the folk dance characterized by frequent shoulder and hand movements Wancha likleka (Horn-mug spin), Doro metet (Chicken drink), and sword dance depict wealth, heroism, and warfare. The instruments used in the performances are also alive, with religious symbols reaching from the drum, incense, and cross to the suffering of Jesus Christ from Hanna to Qeyafa, and references to the 12 Apostles.Keywords: folk dance, festival, ritual, symbol, therapeutic
Procedia PDF Downloads 6827362 Protecting Privacy and Data Security in Online Business
Authors: Bilquis Ferdousi
Abstract:
With the exponential growth of the online business, the threat to consumers’ privacy and data security has become a serious challenge. This literature review-based study focuses on a better understanding of those threats and what legislative measures have been taken to address those challenges. Research shows that people are increasingly involved in online business using different digital devices and platforms, although this practice varies based on age groups. The threat to consumers’ privacy and data security is a serious hindrance in developing trust among consumers in online businesses. There are some legislative measures taken at the federal and state level to protect consumers’ privacy and data security. The study was based on an extensive review of current literature on protecting consumers’ privacy and data security and legislative measures that have been taken.Keywords: privacy, data security, legislation, online business
Procedia PDF Downloads 10627361 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 8527360 Flowing Online Vehicle GPS Data Clustering Using a New Parallel K-Means Algorithm
Authors: Orhun Vural, Oguz Bayat, Rustu Akay, Osman N. Ucan
Abstract:
This study presents a new parallel approach clustering of GPS data. Evaluation has been made by comparing execution time of various clustering algorithms on GPS data. This paper aims to propose a parallel based on neighborhood K-means algorithm to make it faster. The proposed parallelization approach assumes that each GPS data represents a vehicle and to communicate between vehicles close to each other after vehicles are clustered. This parallelization approach has been examined on different sized continuously changing GPS data and compared with serial K-means algorithm and other serial clustering algorithms. The results demonstrated that proposed parallel K-means algorithm has been shown to work much faster than other clustering algorithms.Keywords: parallel k-means algorithm, parallel clustering, clustering algorithms, clustering on flowing data
Procedia PDF Downloads 22227359 An Analysis of Privacy and Security for Internet of Things Applications
Authors: Dhananjay Singh, M. Abdullah-Al-Wadud
Abstract:
The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.Keywords: Internet of Things (IoT), message authentication, privacy, security
Procedia PDF Downloads 38227358 Inspiring Woman: The Emotional Intelligence Leadership of Khadijah Bint Khuwaylid
Authors: Eman S. Soliman, Sana Hawamdeh, Najmus S. Mahfooz
Abstract:
Purpose: The purpose of this paper was to examine various components of applied emotional intelligence as demonstrated in the leadership style of Khadijah Bint Khuwaylid in pre and post-Islamic society. Methodology: The research used a qualitative research method, specifically historical and ethnographic techniques. Data collection included both primary and secondary sources. Data from sources were analyzed to document the use of emotional intelligent leadership behaviors throughout Khadijah Bint Khuwaylid leadership experience from 596 A.D. to 621 A.D. Findings: Demonstration of four cornerstones of emotional intelligence which are self-awareness, self-management, social awareness and relationship management. Apply them on khadejah Bint Khuwaylid leadership style reveal that she possess main behavioral competences in the form of emotionally self-aware, self-.confidence, adaptability, empathy and influence. Conclusions: Khadijah Bint Khuwaylid serves as a historical model of effective leadership that included the use of emotional intelligence in her leadership behavior. The inclusion of the effective portion of the brain created a successful leadership style that can be learned by present day and future leadership. The recommendations for future leaders are to include the use of emotionally self-aware and self-confidence, adaptability, empathy and influence as components of leadership. This will then demonstrate in a leadership a basic knowledge and understanding of feelings, the keenness to be emotionally open with others, the ability to prototype beliefs and values, and the use of emotions in future communications, vision and progress.Keywords: emotional intelligence, leadership, Khadijah Bint Khuwaylid, women
Procedia PDF Downloads 27627357 Investigation of a Hybrid Process: Multipoint Incremental Forming
Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo
Abstract:
Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.Keywords: incremental forming, numerical simulation, MPIF, multipoint forming
Procedia PDF Downloads 35627356 The Influence of the Regional Sectoral Structure on the Socio-Economic Development of the Arkhangelsk Region
Authors: K. G. Sorokozherdyev, E. A. Efimov
Abstract:
The socio-economic development of regions and countries is an important research issue. Today, in the face of many negative events in the global and regional economies, it is especially important to identify those areas that can serve as sources of economic growth and the basis for the well-being of the population. This study aims to identify the most important sectors of the economy of the Arkhangelsk region that can contribute to the socio-economic development of the region as a whole. For research, the Arkhangelsk region was taken as one of the typical Russian regions that do not have significant reserves of hydrocarbons nor there are located any large industrial complexes. In this regard, the question of possible origins of economic growth seems especially relevant. The basis of this study constitutes the distributed lag regression model (ADL model) developed by the authors, which is based on quarterly data on the socio-economic development of the Arkhangelsk region for the period 2004-2016. As a result, we obtained three equations reflecting the dynamics of three indicators of the socio-economic development of the region -the average wage, the regional GRP, and the birth rate. The influencing factors are the shares in GRP of such sectors as agriculture, mining, manufacturing, construction, wholesale and retail trade, hotels and restaurants, as well as the financial sector. The study showed that the greatest influence on the socio-economic development of the region is exerted by such industries as wholesale and retail trade, construction, and industrial sectors. The study can be the basis for forecasting and modeling the socio-economic development of the Arkhangelsk region in the short and medium term. It also can be helpful while analyzing the effectiveness of measures aimed at stimulating those or other industries of the region. The model can be used in developing a regional development strategy.Keywords: regional economic development, regional sectoral structure, ADL model, Arkhangelsk region
Procedia PDF Downloads 10027355 Regulating Green Roofs: A Review of the Relation between Current International Regulations and Economic, Environmental and Social Effects
Authors: Marianna Nigra, Maicol Negrello
Abstract:
Efficiency, productivity, and sustainability are important factors for structure and the application of processes in green building. Various previous studies have addressed efficiency, productivity, and sustainability separately. This research study aims to investigate the implications of these three factors taking together. Frequency analysis and the ranking techniques are carried out to explore the connection between these factors. The interconnection matrix has been developed and functional grouping is made based upon data from expert opinion and field professionals. The existence of a relationship, the type of relationship and the scaled impact have been drawn. Additionally, a system diagram has been developed to show the variable correlation. The results of expert opinion show that efficiency, productivity, and sustainability have a stronger impact on green buildings.Keywords: green roof regulation, architecture, climate adaptation, resilience, innovation management
Procedia PDF Downloads 10427354 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis
Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri
Abstract:
In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.Keywords: automotive gearbox, mathematical morphology, wavelet, bispectrum
Procedia PDF Downloads 47327353 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment
Authors: Bireswar Paul, Amitava Datta
Abstract:
Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material.
Keywords: indoor air, carbon nanoparticle, lpg, partially premixed flame, optical techniques
Procedia PDF Downloads 277