Search results for: acid buffering capacity
4844 Study of the ZnO Effect on the Properties of HDPE/ ZnO Nanocomposites
Authors: F. Z. Benabid, F. Zouai, N. Kharchi, D. Benachour
Abstract:
A HDPE/ZnO nano composites have been successfully performed using the co-mixing. The ZnO was first co-mixed with the stearic acid then added to the polymer in the plastograph. The nano composites prepared with the co-mixed ZnO were compared to those prepared with the neat TiO2. The nano composites were characterized by different techniques as the wide-angle X-ray scattering (WAXS). The micro and nano structure/properties relationships were investigated. The present study allowed establishing good correlations between the different measured properties.Keywords: exfoliation, ZnO, nano composites, HDPE, co-mixing
Procedia PDF Downloads 3494843 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading
Authors: Chui-Hsin Chen, Yu-Ting Chen
Abstract:
Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ
Procedia PDF Downloads 924842 Development of High Strength Self Curing Concrete Using Super Absorbing Polymer
Authors: K. Bala Subramanian, A. Siva, S. Swaminathan, Arul. M. G. Ajin
Abstract:
Concrete is an essential building material which is widely used in construction industry all over the world due to its compressible strength. Curing of concrete plays a vital role in durability and other performance necessities. Improper curing can affect the concrete performance and durability easily. When areas like scarcity of water, structures is not accessible by humans external curing cannot be performed, so we opt for internal curing. Internal curing (or) self-curing plays a major role in developing the concrete pore structure and microstructure. The concept of internal curing is to enhance the hydration process to maintain the temperature uniformly. The evaporation of water in the concrete is reduced by self-curing agent (Super Absorbing Polymer – SAP) thereby increasing the water retention capacity of the concrete. The research work was carried out to reduce water, which is prime material used for concrete in the construction industry. Concrete curing plays a major role in developing hydration process. Concept of self-curing will reduce the evaporation of water from concrete. Self-curing will increase water retention capacity as compared to the conventional concrete. Proper self-curing (or) internal curing increases the strength, durability and performance of concrete. Super absorbing Polymer (SAP) used as internal curing agent. In this study 0.2% to 0.4% of SAP was varied in different grade of high strength concrete. In the experiment replacement of cement by silica fumes with 5%, 10% and 15% are studied. It is found that replacement of silica fumes by 10 % gives more strength and durability when compared to othersKeywords: compressive strength, high strength concrete rapid chloride permeability, super absorbing polymer
Procedia PDF Downloads 3774841 Various Sources of N-3 Polyunsaturated Fatty Acid Supplementation Modulate Mitochondria Membrane Composition and Function
Authors: Wen-Ting Wang, Wei-An Tsai, Rong-Hong Hsieh
Abstract:
Long term taking high fat diet can lead to over production of energy, result in accumulation of body fat, dyslipidemia and increased lipid metabolism in the body. Over metabolism of lipid results in excessive reactive oxygen species and oxidative stress, may also cause mitochondrial dysfunction and cell death. Krill oil, fish oil and linseed oil are good sources of n-3 polyunsaturated fatty acids (PUFA). The present study investigated the effect of high fat diet and various oil rich of n-3 fatty acids on mitochondrial function and cell membrane composition. Six-weeks old male Spraque-Dawley rats were randomly divided into 8 groups including: control group, high fat diet group, low dosage and high dosage krill oil group, low dosage and high dosage fish oil group, and low dosage and high dosage linseed oil group. After 12 weeks of experimental period, the low dosage krill oil, fish oil group and linseed oil group with different dosage prevented mitochondrial dysfunction caused by high fat diet. The supplementation of different oils increased plasma, erythrocyte and mitochondrial n-3/n-6 ratio and further increased the proportion of PUFA in erythrocyte and mitochondrial membrane. It also decreased serum triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) concentration. However, there was no significant change in serum total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), biomarker of liver function, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR) and plasma malonadialdehyde (MDA) concentration when compared with high fat diet group. The supplementation of different sources of n-3 PUFA can maintain mitochondrial function and modulate cell membrane fatty acid composition in high fat diet conditions, and there is a positive relationship between mitochondrial function and mitochondrial membrane composition.Keywords: fish oil, linseed oil, mitochondria, n-3 PUFA
Procedia PDF Downloads 4134840 A Comparative Study of Simple and Pre-polymerized Fe Coagulants for Surface Water Treatment
Authors: Petros Gkotsis, Giorgos Stratidis, Manassis Mitrakas, Anastasios Zouboulis
Abstract:
This study investigates the use of original and pre-polymerized iron (Fe) reagents compared to the commonly applied polyaluminum chloride (PACl) coagulant for surface water treatment. Applicable coagulants included both ferric chloride (FeCl₃) and ferric sulfate (Fe₂(SO₄)₃) and their pre-polymerized Fe reagents, such as polyferric sulfate (PFS) and polyferric chloride (PFCl). The efficiency of coagulants was evaluated by the removal of natural organic matter (NOM) and suspended solids (SS), which were determined in terms of reducing the UV absorption at 254 nm and turbidity, respectively. The residual metal concentration (Fe and Al) was also measured. Coagulants were added at five concentrations (1, 2, 3, 4 and 5 mg/L) and three pH values (7.0, 7.3 and 7.6). Experiments were conducted in a jar-test device, with two types of synthetic surface water (i.e., of high and low organic strength) which consisted of humic acid (HA) and kaolin at different concentrations (5 mg/L and 50 mg/L). After the coagulation/flocculation process, clean water was separated with filters of pore size 0.45 μm. Filtration was also conducted before the addition of coagulants in order to compare the ‘net’ effect of the coagulation/flocculation process on the examined parameters (UV at 254 nm, turbidity, and residual metal concentration). Results showed that the use of PACl resulted in the highest removal of humics for both types of surface water. For the surface water of high organic strength (humic acid-kaolin, 50 mg/L-50 mg/L), the highest removal of humics was observed at the highest coagulant dosage of 5 mg/L and at pH=7. On the contrary, turbidity was not significantly affected by the coagulant dosage. However, the use of PACl decreased turbidity the most, especially when the surface water of high organic strength was employed. As expected, the application of coagulation/flocculation prior to filtration improved NOM removal but slightly affected turbidity. Finally, the residual Fe concentration (0.01-0.1 mg/L) was much lower than the residual Al concentration (0.1-0.25 mg/L).Keywords: coagulation/flocculation, iron and aluminum coagulants, metal salts, pre-polymerized coagulants, surface water treatment
Procedia PDF Downloads 1524839 Supply Chain Optimisation through Geographical Network Modeling
Authors: Cyrillus Prabandana
Abstract:
Supply chain optimisation requires multiple factors as consideration or constraints. These factors are including but not limited to demand forecasting, raw material fulfilment, production capacity, inventory level, facilities locations, transportation means, and manpower availability. By knowing all manageable factors involved and assuming the uncertainty with pre-defined percentage factors, an integrated supply chain model could be developed to manage various business scenarios. This paper analyse the utilisation of geographical point of view to develop an integrated supply chain network model to optimise the distribution of finished product appropriately according to forecasted demand and available supply. The supply chain optimisation model shows that small change in one supply chain constraint is possible to largely impact other constraints, and the new information from the model should be able to support the decision making process. The model was focused on three areas, i.e. raw material fulfilment, production capacity and finished products transportation. To validate the model suitability, it was implemented in a project aimed to optimise the concrete supply chain in a mining location. The high level of operations complexity and involvement of multiple stakeholders in the concrete supply chain is believed to be sufficient to give the illustration of the larger scope. The implementation of this geographical supply chain network modeling resulted an optimised concrete supply chain from raw material fulfilment until finished products distribution to each customer, which indicated by lower percentage of missed concrete order fulfilment to customer.Keywords: decision making, geographical supply chain modeling, supply chain optimisation, supply chain
Procedia PDF Downloads 3454838 Comparison of Pbs/Zns Quantum Dots Synthesis Methods
Authors: Mahbobeh Bozhmehrani, Afshin Farah Bakhsh
Abstract:
Nanoparticles with PbS core of 12 nm and shell of approximately 3 nm were synthesized at PbS:ZnS ratios of 1.01:0.1 using Merca Ptopropionic Acid as stabilizing agent. PbS/ZnS nanoparticles present a dramatically increase of Photoluminescence intensity, confirming the confinement of the PbS core by increasing the Quantum Yield from 0.63 to 0.92 by the addition of the ZnS shell. In this case, the synthesis by microwave method allows obtaining nanoparticles with enhanced optical characteristics than those of nanoparticles synthesized by colloidal method.Keywords: Pbs/Zns, quantum dots, colloidal method, microwave
Procedia PDF Downloads 2834837 Agritourism Potentials in Oman: An Overview with Visionary for Adoption
Authors: A. Al Hinai, H. Jayasuriya, H. Kotagama
Abstract:
Most Gulf Cooperation Council (GCC) countries with oil-based economy like Oman are looking for other potential revenue generation options as the crude oil price is regularly fluctuating due to changing geopolitical environment. Oman has advantage of possessing world-heritage nature tourism hotspots around the country and the government is making investments and strategies to uplift the tourism industry following Oman Vision 2040 strategies. Oman’s agriculture is not significantly contributing to the economy, but possesses specific and diversified arid cropping systems. Oman has modern farms; nevertheless some of the agricultural production activities are done with cultural practices and styles that would be attractive to tourists. The aim of this paper is to investigate the potentials for promoting agritourism industry in Oman; recognize potential sites, commodities and activities, and predict potential revenue generation as a projection from that of the tourism sector. Moreover, the study enables to foresee possible auxiliary advantages of agritourism such as, empowerment of women and youth, enhancement in the value-addition industry for agricultural produce through technology transfer and capacity building, and producing export quality products. Agritourism could increase employability, empowerment of women and youth, improve value-addition industry and export-oriented agribusiness. These efforts including provision of necessary technology-transfer and capacity-building should be rendered by the collaboration of academic institutions, relevant ministries and other public and private sector stakeholders.Keywords: agritourism, nature-based tourism, potentials, revenue generation, value addition
Procedia PDF Downloads 1354836 Ionic Liquids-Polymer Nanoparticle Systems as Breakthrough Tools to Improve the Leprosy Treatment
Authors: A. Julio, R. Caparica, S. Costa Lima, S. Reis, J. G. Costa, P. Fonte, T. Santos De Almeida
Abstract:
The Mycobacterium leprae causes a chronic and infectious disease called leprosy, which the most common symptoms are peripheral neuropathy and deformation of several parts of the body. The pharmacological treatment of leprosy is a combined therapy with three different drugs, rifampicin, clofazimine, and dapsone. However, clofazimine and dapsone have poor solubility in water and also low bioavailability. Thus, it is crucial to develop strategies to overcome such drawbacks. The use of ionic liquids (ILs) may be a strategy to overcome the low solubility since they have been used as solubility promoters. ILs are salts, liquid below 100 ºC or even at room temperature, that may be placed in water, oils or hydroalcoholic solutions. Another approach may be the encapsulation of drugs into polymeric nanoparticles, which improves their bioavailability. In this study, two different classes of ILs were used, the imidazole- and the choline-based ionic liquids, as solubility enhancers of the poorly soluble antileprotic drugs. Thus, after the solubility studies, it was developed IL-PLGA nanoparticles hybrid systems to deliver such drugs. First of all, the solubility studies of clofazimine and dapsone were performed in water and in water: IL mixtures, at ILs concentrations where cell viability is maintained, at room temperature for 72 hours. For both drugs, it was observed an improvement on the drug solubility and [Cho][Phe] showed to be the best solubility enhancer, especially for clofazimine, where it was observed a 10-fold improvement. Later, it was produced nanoparticles, with a polymeric matrix of poly(lactic-co-glycolic acid) (PLGA) 75:25, by a modified solvent-evaporation W/O/W double emulsion technique in the presence of [Cho][Phe]. Thus, the inner phase was an aqueous solution of 0.2 % (v/v) of the above IL with each drug to its maximum solubility determined on the previous study. After the production, the nanosystem hybrid was physicochemically characterized. The produced nanoparticles had a diameter of around 580 nm and 640 nm, for clofazimine and dapsone, respectively. Regarding the polydispersity index, it was in agreement of the recommended value of this parameter for drug delivery systems (around 0.3). The association efficiency (AE) of the developed hybrid nanosystems demonstrated promising AE values for both drugs, given their low solubility (64.0 ± 4.0 % for clofazimine and 58.6 ± 10.0 % for dapsone), that prospects the capacity of these delivery systems to enhance the bioavailability and loading of clofazimine and dapsone. Overall, the study achievement may signify an upgrading of the patient’s quality of life, since it may mean a change in the therapeutic scheme, not requiring doses of drug so high to obtain a therapeutic effect. The authors would like to thank Fundação para a Ciência e a Tecnologia, Portugal (FCT/MCTES (PIDDAC), UID/DTP/04567/2016-CBIOS/PRUID/BI2/2018).Keywords: ionic liquids, ionic liquids-PLGA nanoparticles hybrid systems, leprosy treatment, solubility
Procedia PDF Downloads 1484835 The Effects of a Circuit Training Program on Muscle Strength, Agility, Anaerobic Performance and Cardiovascular Endurance
Authors: Wirat Sonchan, Pratoom Moungmee, Anek Sootmongkol
Abstract:
This study aimed to examine the effects of a circuit training program on muscle strength, agility, anaerobic performance and cardiovascular endurance. The study involved 24 freshmen (age 18.87+0.68 yr.) male students of the Faculty of Sport Science, Burapha University. They sample study were randomly divided into two groups: Circuit Training group (CT; n=12) and a Control group (C; n=12). Baseline data on height, weight, muscle strength (hand grip dynamometer and leg strength dynamometer), agility (agility T-Test), and anaerobic performance (Running-based Anaerobic Sprint Test) and cardiovascular endurance (20 m Endurance Shuttle Run Test) were collected. The circuit training program included one circuit of eight stations of 30/60 seconds of work/rest interval with two cycles in Week 1-4, and 60/90 seconds of work/rest interval with three cycles in Week 5-8, performed three times per week. Data were analyzed using paired t-tests and independent sample t-test. Statistically significance level was set at 0.05. The results show that after 8 weeks of a training program, muscle strength, agility, anaerobic capacity and cardiovascular endurance increased significantly in the CT Group (p < 0.05), while significant increase was not observed in the C Group (p < 0.05). The results of this study suggest that the circuit training program improved muscle strength, agility, anaerobic capacity and cardiovascular endurance of the study subjects. This program may be used as a guideline for selecting a set of exercise to improve physical fitness.Keywords: circuit training, physical fitness, cardiovascular endurance, anaerobic performance
Procedia PDF Downloads 4924834 Role of Erythrocyte Fatty Acids in Predicting Cardiometabolic Risk among the Elderly: A Secondary Analysis of the Walnut and Healthy Aging Study
Authors: Tony Jehi, Sujatha Rajaram, Nader majzoub, Joan Sabate
Abstract:
Aging significantly increases the incidence of various cardiometabolic diseases, including cardiovascular disease (CVD). To combat CVD and its associated risk factors, it is imperative to adopt a healthy dietary pattern that is rife with beneficial nutrient and non-nutrient compounds. Unsaturated fats, specifically n-3 polyunsaturated fatty acids (n-3 PUFA), have cardio-protective effects; the opposite is true for saturated fatty acids. What role, if any, does the biomarker of fatty acid intake (specific fatty acids in the erythrocyte) play in predicting cardiometabolic risk among the elderly, a population highly susceptible to increased mortality and morbidity from CVD risk factors, remains unclear. This was a secondary analysis of the Walnuts and Healthy Aging Study. Briefly, elderly (n=192, mean age 69 y) participants followed their usual diet and were randomized into two groups to either eat walnuts daily or abstain from eating walnuts for a period of 2 years. The purpose was to identify potential associations between erythrocyte membrane fatty acids and cardiometabolic risk factors (body weight, blood pressure, blood lipids, and fasting glucose). Erythrocyte n-3 PUFA were inversely associated with total cholesterol (ß = -3.83; p= 0.02), triglycerides (ß = -7.66; p= <0.01), and fasting glucose (ß = -0.19; p=0.03). Specifically, erythrocyte ALA (ß= -1.59; P = 0.04) and DPA (ß= -0.62; P=0.04) were inversely associated with diastolic blood pressure and fasting glucose, respectively. N-6 PUFAs were positively associated with systolic blood pressure (ß=1.10; P=0.02). Mono-unsaturated fatty acids were positively associated with TAG (ß = 4.16; P=0.03). Total saturated fatty acids were not associated with any cardiometabolic risk factors. No association was found between any erythrocyte fatty acid and body weight. In conclusion, erythrocyte n-3 PUFA may be used as a biomarker to predict the cardiometabolic risk among healthy elders, providing support for the American Heart Association guidelines for including n-3 PUFA for preventing CVD.Keywords: cardiometabolic diseases, erythrocyte fatty acids, elderly, n-3 PUFA
Procedia PDF Downloads 704833 Rheological Study of Wheat-Chickpea Flour Blend Bread for People with Type-2 Diabetes
Authors: Tasleem Zafar, Jiwan Sidhu
Abstract:
Introduction: Chickpea flour is known to offer many benefits to diabetic persons, especially in maintaining their blood sugar levels in the acceptable range. Under this project we have studied the chemical composition and antioxidant capacity of white flour (WF), whole wheat flour (WWF) and chickpea flour (BF), in addition to the effect of replacement of WF and WWF with BF on the rheological characteristics of these flour blends, with the ultimate objective of producing acceptable quality flat as well as pan-bread for the diabetic consumers. Methods: WF and WWF were replaced with BF ranging from 0 to 40%, to investigate its effect on the rheological properties and functionality of blended flour dough using farinograph, viscoamylograph, mixograph and falling number apparatus as per the AACC standard methods. Texture Profile Analysis (TPA) was carried on the WF, WWF, and their blends with BF using Stable Micro System Texture Analyzer. Effect of certain additives, such as freeze-dried amla fruit powder (Phyllanthus emblica L.), guar gum, and xanthan gum on the dough rheological properties were also studied. Results: Freeze-dried amla fruit powder was found to be very rich in ascorbic acid and other phenolics having higher antioxidant activity. A decreased farinograph water absorption, increased dough development time, higher mixing tolerance index (i.e., weakening of dough), decreased resistance to extension, lower ratio numbers were obtained when the replacement with BF was increased from 0 to 40%. The BF gave lower peak viscosity, lower paste breakdown, and lower setback values when compared with WF. The falling number values were significantly lower in WWF (meaning higher α-amylase activity) than both the WF and BF. Texture Profile Analysis (TPA) carried on the WF, WWF, and their blends with BF showed significant variations in hardness and compressibility values, dough becoming less hard and less compressible when the replacement of WF and WWF with BF was increased from 0 to 40%. Conclusions: To overcome the deleterious effects of adding BF to WF and WWF on the rheological properties will be an interesting challenge when good quality pan bread and Arabic flatbread have to be commercially produced in a bakery. Use of freeze-dried amla fruit powder, guar gum, and xanthan gum did show some promise to improve the mixing characteristics of WF, WWF, and their blends with BF, and these additives are expected to be useful in producing an acceptable quality flat as well as pan-bread on a commercial scale.Keywords: wheat flour, chickpea flour, amla fruit, rheology
Procedia PDF Downloads 1564832 Taleb's Complexity Theory Concept of 'Antifragility' Has a Significant Contribution to Make to Positive Psychology as Applied to Wellbeing
Authors: Claudius Peter Van Wyk
Abstract:
Given the increasingly manifest phenomena, as described in complexity theory, of volatility, uncertainty, complexity and ambiguity (VUCA), Taleb's notion of 'antifragility, has a significant contribution to make to positive psychology applied to wellbeing. Antifragility is argued to be fundamentally different from the concepts of resiliency; as the ability to recover from failure, and robustness; as the ability to resist failure. Rather it describes the capacity to reorganise in the face of stress in such a way as to cope more effectively with systemic challenges. The concept, which has been applied in disciplines ranging from physics, molecular biology, planning, engineering, and computer science, can now be considered for its application in individual human and social wellbeing. There are strong correlations to Antonovsky's model of 'salutogenesis' in which an attitude and competencies are developed of transforming burdening factors into greater resourcefulness. We demonstrate, from the perspective of neuroscience, how technology measuring nervous system coherence can be coupled to acquired psychodynamic approaches to not only identify contextual stressors, utilise biofeedback instruments for facilitating greater coherence, but apply these insights to specific life stressors that compromise well-being. Employing an on-going case study with BMW South Africa, the neurological mapping is demonstrated together with 'reframing' and emotional anchoring techniques from neurolinguistic programming. The argument is contextualised in the discipline of psychoneuroimmunology which describes the stress pathways from the CNS and endocrine systems and their impact on immune function and the capacity to restore homeostasis.Keywords: antifragility, complexity, neuroscience, psychoneuroimmunology, salutogenesis, volatility
Procedia PDF Downloads 3754831 Bone Mineral Density in Long-Living Patients with Coronary Artery Disease
Authors: Svetlana V. Topolyanskaya, Tatyana A. Eliseeva, Olga N. Vakulenko, Leonid I. Dvoretski
Abstract:
Introduction: Limited data are available on osteoporosis in centenarians. Therefore, we evaluated bone mineral density in long-living patients with coronary artery disease (CAD). Methods: 202 patients hospitalized with CAD were enrolled in this cross-sectional study. The patients' age ranged from 90 to 101 years. The majority of study participants (64.4%) were women. The main exclusion criteria were any disease or medication that can lead to secondary osteoporosis. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Results: Normal lumbar spine BMD was observed in 40.9%, osteoporosis – in 26.9%, osteopenia – in 32.2% of patients. Normal proximal femur BMD values were observed in 21.3%, osteoporosis – in 39.9%, and osteopenia – in 38.8% of patients. Normal femoral neck BMD was registered only in 10.4% of patients, osteoporosis was observed in 60.4%, osteopenia in 29.2%. Significant positive correlation was found between all BMD values and body mass index of patients (p < 0.001). Positive correlation was registered between BMD values and serum uric acid (p=0.0005). The likelihood of normal BMD values with hyperuricemia increased 3.8 times, compared to patients with normal uric acid, who often have osteoporosis (Odds Ratio=3.84; p = 0.009). Positive correlation was registered between all BMD values and body mass index (p < 0.001). Positive correlation between triglycerides levels and T-score (p=0.02), but negative correlation between BMD and HDL-cholesterol (p=0.02) were revealed. Negative correlation between frailty severity and BMD values (p=0.01) was found. Positive correlation between BMD values and functional abilities of patients assessed using Barthel index (r=0,44; p=0,000002) and IADL scale (r=0,36; p=0,00008) was registered. Fractures in history were observed in 27.6% of patients. Conclusions: The study results indicate some features of BMD in long-livers. In the study group, significant relationships were found between bone mineral density on the one hand, and patients' functional abilities on the other. It is advisable to further study the state of bone tissue in long-livers involving a large sample of patients.Keywords: osteoporosis, bone mineral density, centenarians, coronary artery disease
Procedia PDF Downloads 1424830 Surfactant-Modified Chitosan Beads: An Efficient and Cost Effective Material for Adsorptive Removal of Lead from Aqueous Solutions
Authors: Preeti Pal, Anjali Pal
Abstract:
Chitosan is an effective sorbent for removal of contaminants from wastewater. However, the ability of pure chitosan is specific because of its cationic charge. It causes repulsion in the removal process of various cationic charged molecules. The present study has been carried out for the successful removal of Pb²⁺ ions from aqueous solution by modified chitosan beads. Surface modification of chitosan (CS) beads was performed by using the anionic surfactant (AS), sodium dodecyl sulfate (SDS). Micelle aggregation property of SDS has been utilized for the formation of bilayer over the CS beads to produce surfactant modified chitosan (SMCS) beads. Prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) in order to find out their composition and surface morphology. SMCS beads, when compared to the pure CS beads, showed three times higher adsorption. This higher adsorption is believed to be due to the adsolubilization of Pb²⁺ ions on SDS bilayer. This bilayer provides more adsorption sites for quick and effective removal of Pb²⁺ ions from the aqueous phase. Moreover, the kinetic and adsorption isotherm models were employed to the obtained data for the description of the lead adsorption processes. It was found that the removal kinetics follows pseudo-second order model. Adsorption isotherm data fits well to the Langmuir model. The maximum adsorption capacity obtained is 100 mg/g at the dosage of 0.675 g/L for 50 mg/L of Pb²⁺. The adsorption capacity is subject to increase with increasing the Pb²⁺ ions concentration in the solution. The results indicated that the prepared hydrogel beads are efficient adsorbent for removal of Pb²⁺ ions from the aqueous medium.Keywords: adsolubilisation, anionic surfactant, bilayer, chitosan, Pb²⁺
Procedia PDF Downloads 2374829 Comparison of Inexpensive Cell Disruption Techniques for an Oleaginous Yeast
Authors: Scott Nielsen, Luca Longanesi, Chris Chuck
Abstract:
Palm oil is obtained from the flesh and kernel of the fruit of oil palms and is the most productive and inexpensive oil crop. The global demand for palm oil is approximately 75 million metric tonnes, a 29% increase in global production of palm oil since 2016. This expansion of oil palm cultivation has resulted in mass deforestation, vast biodiversity destruction and increasing net greenhouse gas emissions. One possible alternative is to produce a saturated oil, similar to palm, from microbes such as oleaginous yeast. The yeasts can be cultured on sugars derived from second-generation sources and do not compete with tropical forests for land. One highly promising oleaginous yeast for this application is Metschnikowia pulcherrima. However, recent techno-economic modeling has shown that cell lysis and standard lipid extraction are major contributors to the cost of the oil. Typical cell disruption techniques to extract either single cell oils or proteins have been based around bead-beating, homogenization and acid lysis. However, these can have a detrimental effect on lipid quality and are energy-intensive. In this study, a vortex separator, which produces high sheer with minimal energy input, was investigated as a potential low energy method of lysing cells. This was compared to four more traditional methods (thermal lysis, acid lysis, alkaline lysis, and osmotic lysis). For each method, the yeast loading was also examined at 1 g/L, 10 g/L and 100 g/L. The quality of the cell disruption was measured by optical cell density, cell counting and the particle size distribution profile comparison over a 2-hour period. This study demonstrates that the vortex separator is highly effective at lysing the cells and could potentially be used as a simple apparatus for lipid recovery in an oleaginous yeast process. The further development of this technology could potentially reduce the overall cost of microbial lipids in the future.Keywords: palm oil substitute, metschnikowia pulcherrima, cell disruption, cell lysis
Procedia PDF Downloads 2034828 Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors
Authors: Ye Ling, Ruan Haihui
Abstract:
Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources.Keywords: Zn-ion hybrid supercapacitors, ion absorption/desorption reactions, titanium nitride, zeolitic imidazolate framework-8
Procedia PDF Downloads 484827 The Impact of Enzymatic Treatments on the Pasting Behavior and Its Reflection on Stalling and Quality of Bread
Authors: Sayed Mostafa, Mohamed Shebl
Abstract:
The problem of bread stalling is still one of the most troubling problems for those interested in manufacturing bakery products, as increasing the freshness period of bread is considered one of the most important factors that help encourage this industry due to its important role in reducing expected losses. Therefore, this study aims to improve the quality of pan bread and increase its freshness period by enzymatic treatments, including maltogenic α-amylase (MAA), amyloglucosidase (AGS), glucoseoxidase (GOX) and phospholipase (PhL). Rheological and pasting behavior of wheat flour were estimated in addition to the physical, texture, and sensory parameters of the final product. The addition of MAA resulted in a decrease in peak viscosity, breakdown, setback, and pasting temperature. The addition of MAA also led to a reduction in falling number values. Enzymatic treatments (MAA and PhL) exhibited higher alkaline water retention capacity of pan bread compared to untreated pan bread (control) throughout different storage periods. Furthermore, other enzymes displayed varying effects on bread quality; for instance, AGS enhanced the crust color, while a high concentration of GOX improved the specific volume of the bread. Conclusion: The research findings demonstrate that the enzymatic treatments can significantly improve its quality attributes, such as specific volume, increase the alkaline water retention capacity with lower hardness value, which reflects bread freshness during storage periods, and improve sensory characteristics.Keywords: anti-stalling agents, enzymatic treatments, maltogenic α-amylase, amyloglucosidase, glucoseoxidase, phospholipase, pasting behavior, wheat flour
Procedia PDF Downloads 44826 Effect of Preconception Picture-Based Nutrition Education on Knowledge and Adherence to Iron-Folic Acid Supplementation Among Women Planning to Be Pregnant in Ethiopia
Authors: Anteneh Berhane Yeyi, Tefera Belachew
Abstract:
Any woman who could become pregnant is at risk of having a baby with neural tube defects (NTDs). A spontaneous aborted women with immediately preceding pregnancy may have an increased risk of develop NTDs. Ethiopia has one of the highest rates of micronutrient deficiencies, including folate and iron deficiency. Currently, in Ethiopia, NTDs is emerged as a public health concern. Even if Ethiopia, has implement different strategies for reducing maternal and neonatal mortality and morbidity, there is no room in the health care system and lack of integration for preventing the risk of NTDs for those women who aborted spontaneously and women who discontinue long acting contraception to become pregnant. The purpose of this study was to evaluate the effect of preconception picture-based nutrition education on knowledge and adherence to iron-folic acid supplement (IFAS) intake to reduce the risk of developing neural tube defects (NTDs) and iron deficiency anemia (IDA) among women who had a planned to pregnancy in Ethiopia, a country with a high burden of NTDs. Methodology: This study was conducted in Eastern Ethiopia. A double blinded parallel randomized controlled trial design was employed among women in the age group of 18-45 years who requested to interrupt modern contraceptive who have an intention to be pregnant and women with spontaneous abortion who refused to take a contraceptive. The interventional arm (n=122) received a preconception picture-based nutrition education with iron-folic acid supplement, and the control arm (n=122) received only preconception IFAS. In this study male partners were participated. Result: After three months of intervention the proportion of adherence to IFAS was 23% (n=56). With regard to adherence within the groups, 42.6% (n=52) in the intervention group and 3.3% (n=4) in the control group and the intervention group were significantly higher than in control group. In the intervention group the proportion of adherence to IFAS intake among participants increased by 40.1% and there were statistically difference (P<0.0001). The difference in difference between the two groups of adherence to IFAS intake was 37.6% and there were a statistical significance (P<0.0001). Level of knowledge between the groups did differ before and after intervention (P= 0.87 Vs P<0.0001). The overall the mean change in knowledge Mean (+SE) between group was 0.9 (+3.04 SE) and there were significant differences between two groups (P<0.001). Conclusion: In general this intervention is effective toward adherence to IFAS and a critical milestone to improve maternal health and reduce the neonate mortality due to NTDs and other advert effect of pregnancy and birth outcomes. This intervention is very short, simple, and cost effective and has potential for adaptation, feasible development to large-scale implementation in the existing health care system. Furthermore, this type of interventional approach has the potential to reduce the country's ANC program dropout rates and increase male partner’s participation on reproductive health.Keywords: NTDs, IFAS, WRA, Ethiopia
Procedia PDF Downloads 344825 Chemical Composition and Antifungal Activity of Selected Essential Oils against Toxigenic Fungi Associated with Maize (Zea mays L.)
Authors: Birhane Atnafu, Chemeda Abedeta Garbaba, Fikre Lemessa, Abdi Mohammed, Alemayehu Chala
Abstract:
Essential oil is a bio-pesticide plant product used as an alternative to pesticides in managing plant pests, including fungal pathogens. Thus, the current study aims to investigate the chemical composition and antifungal activities of essential oils (EO) extracted from three aromatic plants i.e., Thymus vulgaris, Coriandrum sativum, and Cymbopogon martini. The leaf parts of those selected plants were collected from the Jimma area and their essential oil was extracted by hydro-distillation method in a Clevenger apparatus. The chemical composition of selected plant essential oil was analyzed by using Gas chromatography-mass spectrometry (GC/MS) and their inhibitory effects were tested in vitro on toxigenic fungi isolated from maize kernel. Chemical analysis results revealed the presence of 32 compounds in C. sativum with Hexanedioic acid, bis (2-ethylhexyl) ester (46. 9%), 2-Decenal, (E)- (12.6), and linalool (8.3%) being the dominant ones. T. vulgaris essential oils constituted 25 compounds, of which thymol (34.4%), o-cymene (17.5%), and Gamma-Terpinene (16.8%) were the major components. Twenty-five compounds were detected in C. martinii of which geraniol (51.4%), Geranyl acetate (14.5%), and Trans – ß-Ocimene (11.7%) were dominant. The EOs of the tested plants had very high antifungal activity (up to 100% efficacy) against Aspergillus flavus, Aspergillus niger, Fusarium graminearum and Fusarium verticillioides in vitro and on maize grains. The antifungal activities of these essential oils were dependent on the major components such as thymol, hexanedioic acid, bis (2-ethylhexyl) ester, and geraniol. The study affirmed the potential of these essential oils controlling as bio-fungicides to manage the effects of potentially toxigenic fungi associated with maize under post-harvest stages. This can reduce the consequences of the health impacts of the mold and toxigenic compounds produced in maize.Keywords: bio-activity, bio-pesticides, maize, mycotoxin
Procedia PDF Downloads 714824 Tomato Endophytes Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B Exhibits Plant Growth-Promotion and Fusarium Wilt Suppression
Authors: Bandana Saikia, Ashok Bhattacharyya
Abstract:
Endophytic microbes and their metabolites positively impact overall plant health, which may have a potential implication in agriculture. In the present study, 177 bacterial endophytes and 57 fungal endophytes were isolated, with the highest recovery rate from tomato roots. A maximum of 112 endophytes were isolated during monsoon, followed by 64 isolates and 58 isolates isolated during pre-monsoon and post-monsoon periods, respectively, indicating the rich diversity in bacterial and fungal endophytes of tomato crops from different locations of Assam, India. Further, the endophytes were evaluated for their antagonistic potential against Fusarium oxysporum f. sp. lycopersici. Fungal endophytic isolate AAUTLF (Endophytic Fungi of Tomato Leaf from Assam Agricultural University, Assam, India area) and bacterial endophyte D1B (Endophytic bacteria of tomato from Dhemiji, India district) showed the highest antifungal activity against the pathogen both in vitro and in vivo. Based on 5.8 rDNA sequence analysis of fungal and 16S rDNA sequence of bacteria endophytes, the most effective fungal and bacterial isolates against FOL were identified as Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B, respectively. The isolates showed an antagonistic effect against Fusarium oxysporum f.sp. lycopersici in-vitro and reduced the disease index of Fusarium wilt in tomatoes by 64.4% under pot conditions. Trichoderma asperellum AAUTLF produced an antifungal compound viz., 6-pentyl-2H-pyran-2-one, which also possesses growth-promoting characteristics. The bacteria Stenotrophomonas maltophilia D1B produced antifungal compounds, including benzothiazole, oleic acid, phenylacetic acid, and 3-(Hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one. This would be of high importance for the source of antagonistic strains and biocontrol of tomato Fusarium wilt, as well as other plant fungal diseases.Keywords: root endophytes, Stemotrophomonas, Trichoderma, benzothiazole, 6-pentyl-2H-pyran-2-one
Procedia PDF Downloads 694823 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data
Authors: Adrian Priceputu, Elena Mihaela Stan
Abstract:
Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations
Procedia PDF Downloads 544822 Vitex agnus-castus Anti-Inflammatory, Antioxidants Characters and Anti-Tumor Effect in Ehrlich Ascites Carcinoma Model
Authors: Abeer Y. Ibrahim, Faten M. Ibrahim, Samah A. El-Newary, Saber F. Hendawy
Abstract:
Objective: Appreciation of in-vitro anti-inflammatory and antioxidant characters of Vitex agnus-castus berries alcoholic extract and fractions, as well as in-vivo antitumor ability of alcoholic extract and chloroform fraction against Ehrlich ascites carcinoma is the aim of this study. Material and methods: Antioxidant properties of crude alcoholic extract of vitex berries as well as petroleum ether, chloroform, ethyl acetate and butanol fractions were evaluated, in-vitro assessments, as compared with standard materials, l-ascorbic acid (vitamin C) and butylated hydroxyl toluene(BHT). The anti-inflammatory activity was investigated in cyclooxygenase (COX)-1 and COX-2 inhibition assays. Moreover, in-vivo antitumor effect of vitex berries alcoholic and chloroform extracts were evaluated using Ehrlich ascites carcinoma model. Data were presented as mean±SE, and data were analyzed by one-way analysis of variance test. Results and conclusion: Berries crude extract showed potent antioxidant activity followed with its fractions ethyl acetate and chloroform as compared with standard (V.C and BHT). Ethyl acetate fraction showed good reduction capability, metal ion chelation, hydrogen peroxide scavenging, nitric oxide scavenging and superoxide anion scavenging. Meanwhile, chloroform fraction produced the highest free radical scavenging activity and total antioxidant capacity. In respectable of lipid peroxidation inhibition, crude alcoholic extract and its fractions cleared weak inhibition in comparing with standard materials. Anti-inflammatory activity of V. agnus-castus berries chloroform fraction of vitex was best COX-2 inhibitor (IC₅₀, 135.41 µg/ ml) as compared to vitex alcoholic extract or ethyl acetate fraction with weak inhibitory effect on COX-1 (IC50, 778.432 µg/ ml), where the lowest effect on COX-1 was recorded with alcoholic extract. Alcoholic extract and its fractions showed weak COX-1 inhibition activity, whereas COX-2 was inhibited (100%), compared with celecoxib drug (72% at 1000ppm). The crude alcoholic and chloroform extracts of V. agnus-castus barries significantly reduced the viable Ehrlich cell count and increased nonviable count with amelioration of all hematological parameters. This amelioration was reflected on increasing median survival time and significant increase (P < 0.05) in lifespan.Keywords: anti-inflammatory, antioxidants, ehrlich ascites carcinoma, Vitex agnus-castus
Procedia PDF Downloads 1444821 Antiulcer Activity of Aloe vera Gel against Indomethacin and Ethanol Induced Gastric Ulcers in Rats
Authors: Jyoti Manandhar Shrestha, Saurab Raj Joshi, Maya Shrestha, Prashanna Shrestha, Kshitij Chaulagain
Abstract:
Background: The widespread use of non-steroidal anti-inflammatory drugs has increased the incidence of ulcer and serious complications, such as perforation and bleeding. Although, the H2 receptor blockers and proton pump inhibitors decrease the acid secretion and promote healing of ulcer, their value in preventing relapse, recurrence, “acid rebound” after cessation of therapy and associated long term adverse effects limit their utility. So to minimize this, the herbal plant Aloe vera having anti-oxidant, anti-inflammatory, mucus secreting, cyto-protective and healing property is believed to cure the peptic ulcer. Objectives: To observe whether oral treatment with Aloe vera gel can prevent peptic ulcer. Indomethacin and ethanol were used to induce gastric ulcers. Thirty six albino rats of either sex were randomly allotted to six groups of six animals each. The negative control was pretreated with normal saline, the positive controls received ranitidine (20 mg/kg) and the test group received Aloe vera gel (300 mg/kg) orally for eight days. Then, after a 24 hour fast Indomethacin (20 mg/kg) or 80% ethanol (2ml) was administered orally to induce ulceration. At the end of the study, the rats were sacrificed, their stomachs opened, the ulcer index studied and tissues sent for histopathological examination. Results: It was observed that, in indomethacin treated group, the ulcer index in control group was 8.167 ± 1.72.In the Aloe vera pretreated animals, the ulcer index was 2.83 ± 1.72 and the standard ranitidine pretreated group ulcer index was 1.67 ± 1.36. In ethanol treated group, the ulcer index in control group was 7.5 ± 2.73. In the Aloe vera pretreated animals, the ulcer index was 2.67 ± 1.75 and the standard ranitidine pretreated group ulcer index was 1.33±1.21. Both ranitidine and Aloe vera gel significantly prevented stomach from gastric ulceration induced by indomethacin and ethanol. Conclusion: The results indicated that Aloe vera gel is effective against indomethacin and ethanol mediated gastric ulcer.Keywords: Aloe vera gel, ethanol, indomethacin, peptic ulcer, ranitidine
Procedia PDF Downloads 4574820 Diselenide-Linked Redox Stimuli-Responsive Methoxy Poly(Ethylene Glycol)-b-Poly(Lactide-Co-Glycolide) Micelles for the Delivery of Doxorubicin in Cancer Cells
Authors: Yihenew Simegniew Birhan, Hsieh Chih Tsai
Abstract:
The recent advancements in synthetic chemistry and nanotechnology fostered the development of different nanocarriers for enhanced intracellular delivery of pharmaceutical agents to tumor cells. Polymeric micelles (PMs), characterized by small size, appreciable drug loading capacity (DLC), better accumulation in tumor tissue via enhanced permeability and retention (EPR) effect, and the ability to avoid detection and subsequent clearance by the mononuclear phagocyte (MNP) system, are convenient to improve the poor solubility, slow absorption and non-selective biodistribution of payloads embedded in their hydrophobic cores and hence, enhance the therapeutic efficacy of chemotherapeutic agents. Recently, redox-responsive polymeric micelles have gained significant attention for the delivery and controlled release of anticancer drugs in tumor cells. In this study, we synthesized redox-responsive diselenide bond containing amphiphilic polymer, Bi(mPEG-PLGA)-Se₂ from mPEG-PLGA, and 3,3'-diselanediyldipropanoic acid (DSeDPA) using DCC/DMAP as coupling agents. The successful synthesis of the copolymers was verified by different spectroscopic techniques. Above the critical micelle concentration, the amphiphilic copolymer, Bi(mPEG-PLGA)-Se₂, self-assembled into stable micelles. The DLS data indicated that the hydrodynamic diameter of the micelles (123.9 ± 0.85 nm) was suitable for extravasation into the tumor cells through the EPR effect. The drug loading content (DLC) and encapsulation efficiency (EE) of DOX-loaded micelles were found to be 6.61 wt% and 54.9%, respectively. The DOX-loaded micelles showed initial burst release accompanied by sustained release trend where 73.94% and 69.54% of encapsulated DOX was released upon treatment with 6mM GSH and 0.1% H₂O₂, respectively. The biocompatible nature of Bi(mPEG-PLGA)-Se₂ copolymer was confirmed by the cell viability study. In addition, the DOX-loaded micelles exhibited significant inhibition against HeLa cells (44.46%), at a maximum dose of 7.5 µg/mL. The fluorescent microscope images of HeLa cells treated with 3 µg/mL (equivalent DOX concentration) revealed efficient internalization and accumulation of DOX-loaded Bi(mPEG-PLGA)-Se₂ micelles in the cytosol of cancer cells. In conclusion, the intelligent, biocompatible, and the redox stimuli-responsive behavior of Bi(mPEG-PLGA)-Se₂ copolymer marked the potential applications of diselenide-linked mPEG-PLGA micelles for the delivery and on-demand release of chemotherapeutic agents in cancer cells.Keywords: anticancer drug delivery, diselenide bond, polymeric micelles, redox-responsive
Procedia PDF Downloads 1084819 Fatty Acid Profile and Dietary Fibre Contents of Some Standardized Soups and Dishes Consumed in Nigeria
Authors: Olufunke O. Obanla, Oluseye O. Onabanjo, Silifat A. Sanni, Mojisola O. Adegunwa, Wasiu A. O. Afolabi, Omolola O. Oyawoye, Atinuke Titilola Lano-Maduagu
Abstract:
Background: Dietary fat is implicated in the increasing development of chronic diseases in developing countries while dietary fibre plays a major role in the management of these diseases. Accurate nutrient composition data for composite dishes unique to a population is essential for the development of a nutrient database and the calculation of dietary intake. Methods: Representative samples of standardized Nigerian soups and dishes were analyzed for fatty acids using gas chromatography-mass spectrophotometry (GC-MS) and dietary fibre using an enzymatic-gravimetric standard method of AOAC. Results: The total Saturated Fatty acids (SFAs) ranged from 0.74+0.3g/100g to 73.82+0.07g/100g. The total monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) ranged from 2.16+1.13g/100g for Yam pottage to 22.25+0.58g/100g for Okazi soup and eba, and from 0.42+0.10g/100g for Yam pottage to 10.22+0.1g/100g for Pounded yam with egusi ball soup, respectively. Trans fat was observed in Alapafubu and Tuwo shinkafa (2.80+0.2g/100g), Yam pottage (0.20+0.15g/100g), Steamed bean pudding (1.28+0.53g/100g) and Ikokore (5.33+0.41g/100g). The Total Dietary Fibre (TDF) contents of the dishes ranged from 12.95+2.99g/100g in Jollof rice to 62.00+0.94g/100g in Melon seed and vegetable soup, the Soluble Dietary Fibre (SDF) ranged from 2.05+0.32g/100g in Steamed bean pudding to 7.81+0.74g/100g in Ikokore while the Insoluble Dietary Fibre (IDF) ranged from 8.20+0.43g/100g in Jollof rice to 57.91+4.69g/100g in melon seed and vegetable soup. Conclusions: The study has indicated that some Nigerian dishes are characterized by high SFAs, TFAs and dietary fibre, moderate MUFAs and very low levels of PUFAs. High levels of SFAs in some soups and dishes are a major public health concern.Keywords: healthy diet, dietary fibre, fatty acid profile, chronic diseases, Nigerian dishes
Procedia PDF Downloads 3744818 Reliability Based Analysis of Multi-Lane Reinforced Concrete Slab Bridges
Authors: Ali Mahmoud, Shadi Najjar, Mounir Mabsout, Kassim Tarhini
Abstract:
Empirical expressions for estimating the wheel load distribution and live-load bending moment are typically specified in highway bridge codes such as the AASHTO procedures. The purpose of this paper is to analyze the reliability levels that are inherent in reinforced concrete slab bridges that are designed based on the simplified empirical live load equations in the AASHTO LRFD procedures. To achieve this objective, bridges with multi-lanes (three and four lanes) and different spans are modeled using finite-element analysis (FEA) subjected to HS20 truck loading, tandem loading, and standard lane loading per AASHTO LRFD procedures. The FEA results are compared with the AASHTO LRFD moments in order to quantify the biases that might result from the simplifying assumptions adopted in AASHTO. A reliability analysis is conducted to quantify the reliability index for bridges designed using AASHTO procedures. To reach a consistent level of safety for three- and four-lane bridges, following a previous study restricted to one- and two-lane bridges, the live load factor in the design equation proposed by AASHTO LRFD will be assessed and revised if needed by alternating the live load factor for these lanes. The results will provide structural engineers with more consistent provisions to design concrete slab bridges or evaluate the load-carrying capacity of existing bridges.Keywords: reliability analysis of concrete bridges, finite element modeling, reliability analysis, reinforced concrete bridge design, load carrying capacity
Procedia PDF Downloads 3374817 Safety Considerations of Furanics for Sustainable Applications in Advanced Biorefineries
Authors: Anitha Muralidhara, Victor Engelen, Christophe Len, Pascal Pandard, Guy Marlair
Abstract:
Production of bio-based chemicals and materials from lignocellulosic biomass is gaining tremendous importance in advanced bio-refineries while aiming towards progressive replacement of petroleum based chemicals in transportation fuels and commodity polymers. One such attempt has resulted in the production of key furan derivatives (FD) such as furfural, HMF, MMF etc., via acid catalyzed dehydration (ACD) of C6 and C5 sugars, which are further converted into key chemicals or intermediates (such as Furandicarboxylic acid, Furfuryl alcohol etc.,). In subsequent processes, many high potential FD are produced, that can be converted into high added value polymers or high energy density biofuels. During ACD, an unavoidable polyfuranic byproduct is generated which is called humins. The family of FD is very large with varying chemical structures and diverse physicochemical properties. Accordingly, the associated risk profiles may largely vary. Hazardous Material (Haz-mat) classification systems such as GHS (CLP in the EU) and the UN TDG Model Regulations for transport of dangerous goods are one of the preliminary requirements for all chemicals for their appropriate classification, labelling, packaging, safe storage, and transportation. Considering the growing application routes of FD, it becomes important to notice the limited access to safety related information (safety data sheets available only for famous compounds such as HMF, furfural etc.,) in these internationally recognized haz-mat classification systems. However, these classifications do not necessarily provide information about the extent of risk involved when the chemical is used in any specific application. Factors such as thermal stability, speed of combustion, chemical incompatibilities, etc., can equally influence the safety profile of a compound, that are clearly out of the scope of any haz-mat classification system. Irrespective of the bio-based origin, FD has so far received inconsistent remarks concerning their toxicity profiles. With such inconsistencies, there is a fear that, a large family of FD may also follow extreme judgmental scenarios like ionic liquids, by ranking some compounds as extremely thermally stable, non-flammable, etc., Unless clarified, these messages could lead to misleading judgements while ranking the chemical based on its hazard rating. Safety is a key aspect in any sustainable biorefinery operation/facility, which is often underscored or neglected. To fill up these existing data gaps and to address ambiguities and discrepancies, the current study focuses on giving preliminary insights on safety assessment of FD and their potential targeted by-products. With the available information in the literature and obtained experimental results, physicochemical safety, environmental safety as well as (a scenario based) fire safety profiles of key FD, as well as side streams such as humins and levulinic acid, will be considered. With this, the study focuses on defining patterns and trends that gives coherent safety related information for existing and newly synthesized FD in the market for better functionality and sustainable applications.Keywords: furanics, humins, safety, thermal and fire hazard, toxicity
Procedia PDF Downloads 1644816 Studies on Knockdown Resistance Mutations in Aedes aegypti and Aedes albopictus in India
Authors: Neera Kapoor
Abstract:
Background: Knockdown Resistance (KDR) is one of the mechanisms of insecticide resistance in insects caused by the reduced target site sensitivity i.e. voltage gated sodium channel (VGSC) rendering it less sensitive to the toxic effects of DDT and pyrethroids. In this study, we evaluated insecticide susceptibility and its underlying KDR mechanism in eight Ae. aegypti and five Ae. albopictus field populations. Methodology: Field population was collected from four different geographical regions of India covering 18 districts of ten states. For genotyping of twelve KDR alleles in Ae. aegypti field populations, three PCR based assays were used; with DNA sequencing; ASPCR; PCR-RFLP. Genomic DNA was isolated, and three partial domains (II, III, and IV) of VGSC were amplified and sequenced. Results: Molecular screening for common KDR mutations, revealed the presence of five mutations viz. S989P, V1016G, T1520I, F1534C/L. Two novel mutations were observed, first at T1520 (ACC) residue where a C > T substitution at the second position of codon results in amino acid change to Isoleucine (ATC). Second mutation was an alternative point mutation at F1534 (TTC) residue where a substitution of T > C at the first position of codon results in an amino acid change to Leucine (CTC). ASPCRs were not accurate, so three PCR-RFLP assays were developed for genotyping of five KDR alleles in Ae. aegypti; viz. T1520I, F1534C/L. Representative samples of all genotypes (n=200) were sequenced to validate the newly developed PCR based assays for Ae. aegypti. Genotyping results showed that 989P is linked to 1016G and novel mutation 1520I was always found with 1534C allele. Conclusion: Present study confirmed the presence of DDT and pyrethroid resistance among Ae. aegypti populations in India and for the first time reported KDR mutations in this species from India including two novel mutations. Results of present study lead us to infer that, at least five KDR mutations (S989P, V1016G, T1530I, F1534C, and F1534L) can be seen as a potential marker for DDT/pyrethroid resistance.Keywords: F1534C, F1534L, S989P, T1530I, V1016G
Procedia PDF Downloads 1914815 Single Fly Over as a Solution to Congestion of Intersection Junction: Case Study of Jalan Jatingaleh Semarang
Authors: Rachmat Mudiyono, Siti Sumiati
Abstract:
In the next few years, traffic will happen most of the time. This was triggered by the growing rate of vehicles againts the road capacity which is not balance. All the time the congestion in the city of Semarang has been occured at peak hours. Congestion also occured in between Teuku Umar and Setia Budi road Jatingaleh because of a plot intersection (Kesatrian intersection, PLN intersection and Jatingaleh intersection) with the Toll Road. Jatingaleh is located in the southern city of Semarang which is a central meeting point between the upper and lower Semarang where the vehicle flows in through a combination of local current and regional traffic, and the flow of vehicles coming in and out from highway. The main cause of the problems that occurred in the area of Jatingaleh is due to the numbers of vehicles movement that occurs at the intersections. With the above issues, it is necessary to analyse the existing conditions and look into some solutions. Before carrying out an analysis of field surveys at peak hours for example morning (06:00 to 08:00 am) and for the afternoon (04:00 to 06:00 pm)should be conducted, then the number of vehicles is counted manually with “short-breakcounting” according to types of vehicles. From the analysis we found that the degree of saturation (DS) is 1.61 between Teuku Umar and Setia Budi road during the morning peak hours and 1.56 during the afternoon peak hours. This means that the capacity of the existing road is no longer able to accommodate the traffic flow. One of the solutions for the congestion that occurs at the intersection of Jatingaleh is to apply the efficiency of the intersection that is not in a plot with a Fly over, Underpass and the combination of Fly Over-Underpass. Base on the flow reduction calculation with 3 comparative modeling it shows that the Fly Over is the most technically efficient to be applied in this research.Keywords: single fly over, congestion, intersection, interchange
Procedia PDF Downloads 388