Search results for: fundamental models
5954 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption
Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.
Abstract:
The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design
Procedia PDF Downloads 795953 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones
Authors: Vineesh Amin, Ananya Agrawal
Abstract:
In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling
Procedia PDF Downloads 2105952 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment
Authors: Said Alshukri, Mazhar Hussain Malik
Abstract:
Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest
Procedia PDF Downloads 795951 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale
Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize
Abstract:
Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy
Procedia PDF Downloads 995950 Primary Analysis of a Randomized Controlled Trial of Topical Analgesia Post Haemorrhoidectomy
Authors: James Jin, Weisi Xia, Runzhe Gao, Alain Vandal, Darren Svirkis, Andrew Hill
Abstract:
Background: Post-haemorrhoidectomy pain is concerned by patients/clinicians. Minimizing the postoperation pain is highly interested clinically. Combinations of topical cream targeting three hypothesised post-haemorrhoidectomy pain mechanisms were developed and their effectiveness were evaluated. Specifically, a multi-centred double-blinded randomized clinical trial (RCT) was conducted in adults undergoing excisional haemorrhoidectomy. The primary analysis was conveyed on the data collected to evaluate the effectiveness of the combinations of topical cream targeting three hypothesized pain mechanisms after the operations. Methods: 192 patients were randomly allocated to 4 arms (each arm has 48 patients), and each arm was provided with pain cream 10% metronidazole (M), M and 2% diltiazem (MD), M with 4% lidocaine (ML), or MDL, respectively. Patients were instructed to apply topical treatments three times a day for 7 days, and record outcomes for 14 days after the operations. The primary outcome was VAS pain on day 4. Covariates and models were selected in the blind review stage. Multiple imputations were applied for the missingness. LMER, GLMER models together with natural splines were applied. Sandwich estimators and Wald statistics were used. P-values < 0.05 were considered as significant. Conclusions: The addition of topical lidocaine or diltiazem to metronidazole does not add any benefit. ML had significantly better pain and recovery scores than combination MDL. Multimodal topical analgesia with ML after haemorrhoidectomy could be considered for further evaluation. Further trials considering only 3 arms (M, ML, MD) might be worth exploring.Keywords: RCT, primary analysis, multiple imputation, pain scores, haemorrhoidectomy, analgesia, lmer
Procedia PDF Downloads 1205949 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality
Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad
Abstract:
Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.Keywords: silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality
Procedia PDF Downloads 4435948 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 1195947 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles
Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad
Abstract:
As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.Keywords: computational methods, context-awareness, design process, smart spaces
Procedia PDF Downloads 3315946 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks
Authors: Daehyoung Kim, Pervez Khan, Hoon Kim
Abstract:
Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.Keywords: spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks
Procedia PDF Downloads 3505945 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm
Authors: Dipti Patra, Guguloth Uma, Smita Pradhan
Abstract:
Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information
Procedia PDF Downloads 4085944 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 645943 Load Balancing Technique for Energy - Efficiency in Cloud Computing
Authors: Rani Danavath, V. B. Narsimha
Abstract:
Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission
Procedia PDF Downloads 4495942 The Improvement of Turbulent Heat Flux Parameterizations in Tropical GCMs Simulations Using Low Wind Speed Excess Resistance Parameter
Authors: M. O. Adeniyi, R. T. Akinnubi
Abstract:
The parameterization of turbulent heat fluxes is needed for modeling land-atmosphere interactions in Global Climate Models (GCMs). However, current GCMs still have difficulties with producing reliable turbulent heat fluxes for humid tropical regions, which may be due to inadequate parameterization of the roughness lengths for momentum (z0m) and heat (z0h) transfer. These roughness lengths are usually expressed in term of excess resistance factor (κB^(-1)), and this factor is used to account for different resistances for momentum and heat transfers. In this paper, a more appropriate excess resistance factor (〖 κB〗^(-1)) suitable for low wind speed condition was developed and incorporated into the aerodynamic resistance approach (ARA) in the GCMs. Also, the performance of various standard GCMs κB^(-1) schemes developed for high wind speed conditions were assessed. Based on the in-situ surface heat fluxes and profile measurements of wind speed and temperature from Nigeria Micrometeorological Experimental site (NIMEX), new κB^(-1) was derived through application of the Monin–Obukhov similarity theory and Brutsaert theoretical model for heat transfer. Turbulent flux parameterizations with this new formula provides better estimates of heat fluxes when compared with others estimated using existing GCMs κB^(-1) schemes. The derived κB^(-1) MBE and RMSE in the parameterized QH ranged from -1.15 to – 5.10 Wm-2 and 10.01 to 23.47 Wm-2, while that of QE ranged from - 8.02 to 6.11 Wm-2 and 14.01 to 18.11 Wm-2 respectively. The derived 〖 κB〗^(-1) gave better estimates of QH than QE during daytime. The derived 〖 κB〗^(-1)=6.66〖 Re〗_*^0.02-5.47, where Re_* is the Reynolds number. The derived κB^(-1) scheme which corrects a well documented large overestimation of turbulent heat fluxes is therefore, recommended for most regional models within the tropic where low wind speed is prevalent.Keywords: humid, tropic, excess resistance factor, overestimation, turbulent heat fluxes
Procedia PDF Downloads 2025941 The System Dynamics Research of China-Africa Trade, Investment and Economic Growth
Authors: Emma Serwaa Obobisaa, Haibo Chen
Abstract:
International trade and outward foreign direct investment are important factors which are generally recognized in the economic growth and development. Though several scholars have struggled to reveal the influence of trade and outward foreign direct investment (FDI) on economic growth, most studies utilized common econometric models such as vector autoregression and aggregated the variables, which for the most part prompts, however, contradictory and mixed results. Thus, there is an exigent need for the precise study of the trade and FDI effect of economic growth while applying strong econometric models and disaggregating the variables into its separate individual variables to explicate their respective effects on economic growth. This will guarantee the provision of policies and strategies that are geared towards individual variables to ensure sustainable development and growth. This study, therefore, seeks to examine the causal effect of China-Africa trade and Outward Foreign Direct Investment on the economic growth of Africa using a robust and recent econometric approach such as system dynamics model. Our study impanels and tests an ensemble of a group of vital variables predominant in recent studies on trade-FDI-economic growth causality: Foreign direct ınvestment, international trade and economic growth. Our results showed that the system dynamics method provides accurate statistical inference regarding the direction of the causality among the variables than the conventional method such as OLS and Granger Causality predominantly used in the literature as it is more robust and provides accurate, critical values.Keywords: economic growth, outward foreign direct investment, system dynamics model, international trade
Procedia PDF Downloads 1085940 Innovative Technologies of Distant Spectral Temperature Control
Authors: Leonid Zhukov, Dmytro Petrenko
Abstract:
Optical thermometry has no alternative in many cases of industrial most effective continuous temperature control. Classical optical thermometry technologies can be used on available for pyrometers controlled objects with stable radiation characteristics and transmissivity of the intermediate medium. Without using temperature corrections, it is possible in the case of a “black” body for energy pyrometry and the cases of “black” and “grey” bodies for spectral ratio pyrometry or with using corrections – for any colored bodies. Consequently, with increasing the number of operating waves, optical thermometry possibilities to reduce methodical errors significantly expand. That is why, in recent 25-30 years, research works have been reoriented on more perfect spectral (multicolor) thermometry technologies. There are two physical material substances, i.e., substance (controlled object) and electromagnetic field (thermal radiation), to be operated in optical thermometry. Heat is transferred by radiation; therefore, radiation has the energy, entropy, and temperature. Optical thermometry was originating simultaneously with the developing of thermal radiation theory when the concept and the term "radiation temperature" was not used, and therefore concepts and terms "conditional temperatures" or "pseudo temperature" of controlled objects were introduced. They do not correspond to the physical sense and definitions of temperature in thermodynamics, molecular-kinetic theory, and statistical physics. Launched by the scientific thermometric society, discussion about the possibilities of temperature measurements of objects, including colored bodies, using the temperatures of their radiation is not finished. Are the information about controlled objects transferred by their radiation enough for temperature measurements? The positive and negative answers on this fundamental question divided experts into two opposite camps. Recent achievements of spectral thermometry develop events in her favour and don’t leave any hope for skeptics. This article presents the results of investigations and developments in the field of spectral thermometry carried out by the authors in the Department of Thermometry and Physics-Chemical Investigations. The authors have many-year’s of experience in the field of modern optical thermometry technologies. Innovative technologies of optical continuous temperature control have been developed: symmetric-wave, two-color compensative, and based on obtained nonlinearity equation of spectral emissivity distribution linear, two-range, and parabolic. Тhe technologies are based on direct measurements of physically substantiated and proposed by Prof. L. Zhukov, radiation temperatures with the next calculation of the controlled object temperature using this radiation temperatures and corresponding mathematical models. Тhe technologies significantly increase metrological characteristics of continuous contactless and light-guide temperature control in energy, metallurgical, ceramic, glassy, and other productions. For example, under the same conditions, the methodical errors of proposed technologies are less than the errors of known spectral and classical technologies in 2 and 3-13 times, respectively. Innovative technologies provide quality products obtaining at the lowest possible resource-including energy costs. More than 600 publications have been published on the completed developments, including more than 100 domestic patents, as well as 34 patents in Australia, Bulgaria, Germany, France, Canada, the USA, Sweden, and Japan. The developments have been implemented in the enterprises of USA, as well as Western Europe and Asia, including Germany and Japan.Keywords: emissivity, radiation temperature, object temperature, spectral thermometry
Procedia PDF Downloads 985939 Filtration Efficacy of Reusable Full-Face Snorkel Masks for Personal Protective Equipment
Authors: Adrian Kong, William Chang, Rolando Valdes, Alec Rodriguez, Roberto Miki
Abstract:
The Pneumask consists of a custom snorkel-specific adapter that attaches a snorkel-port of the mask to a 3D-printed filter. This full-face snorkel mask was designed for use as personal protective equipment (PPE) during the COVID-19 pandemic when there was a widespread shortage of PPE for medical personnel. Various clinical validation tests have been conducted, including the sealing capability of the mask, filter performance, CO2 buildup, and clinical usability. However, data regarding the filter efficiencies of Pneumask and multiple filter types have not been determined. Using an experimental system, we evaluated the filtration efficiency across various masks and filters during inhalation. Eighteen combinations of respirator models (5 P100 FFRs, 4 Dolfino Masks) and filters (2091, 7093, 7093CN, BB50T) were evaluated for their exposure to airborne particles sized 0.3 - 10.0 microns using an electronic airborne particle counter. All respirator model combinations provided similar performance levels for 1.0-micron, 3.0-micron, 5.0-micron, 10.0-microns, with the greatest differences in the 0.3-micron and 0.5-micron range. All models provided expected performances against all particle sizes, with Class P100 respirators providing the highest performance levels across all particle size ranges. In conclusion, the modified snorkel mask has the potential to protect providers who care for patients with COVID-19 from increased airborne particle exposure.Keywords: COVID-19, PPE, mask, filtration, efficiency
Procedia PDF Downloads 1685938 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models
Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi
Abstract:
Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel
Procedia PDF Downloads 1815937 The Kadiria Zawiya: Architecture and Islamic Sufi Paradigm
Authors: Ghada Chater, Mounir Dhouib
Abstract:
Zawiyas are mausoleums where saints called 'waly' are buried and where ritual practices of Sufi Islamic movement take place. These funerary monuments have constituted since the medieval period a fundamental component of rural and urban Islamic landscape, especially that of Tunisia.The hypothesis is that these monuments reflect in their architecture the Sufi underlying thought. The paper’s target is to verify the validity of this hypothesis and possibly show the incarnation mode of Islamic Sufi paradigm in the zawiya’s architecture. This study considers the main Zawiya of one of the most important religious brotherhoods in Tunisia, which is Kadiria. A morphological analysis has been conducted and crossed later to a spiritual hermeneutic test. The result of this confrontation was significant: the paradigmatic element of the zawiya, materialized by the esoteric / exoteric dome 'kubba', returns in its geometry and structure to one of the Sufism key concepts: the unity of the creative spirit in the diversity and plurality of evanescent bodies. Thus, the creative act finds its reflection not only in the spirit of the perfect human microcosm (the waly microcosm), but also within the building dedicated to him.Keywords: architecture, Islam, Sufism, waly, zawiya
Procedia PDF Downloads 3485936 Unleashing the Potential of Waqf: An Exploratory Study of Contemporary Waqf Models in Islamic Finance Ecosystem
Authors: Mohd Bahroddin Badri, Ridzuan Masri
Abstract:
Despite the existence of large volume of waqf assets, it is argued that the potential of these assets not fully unleashed. There are many waqf assets especially in the form of land waqf that are idle and undeveloped mainly because of the insufficient fund and lack of investment expertise. This paper attempts to explore few cases on the innovation of waqf development in Malaysia and some countries that demonstrate synergistic collaboration between stakeholders, e.g., the government, nazir, Islamic religious councils, corporate entities and Islamic financial institutions for waqf development. This paper shows that cash waqf, corporate waqf, Build-Operate-Transfer (BOT) and Sukuk are found to be contemporary mechanisms within Islamic finance ecosystem that drive and rejuvenate the development of waqf to the next level. It further highlights few samples of waqf Sukuk that were successfully issued in selected countries. This paper also demonstrates that the benefit of waqf is beyond religious matters, which may also include education, healthcare, social care, infrastructure and corporate social responsibility (CSR) activities. This research is qualitative in nature, whereby the researcher employs descriptive method on the collected data. The researcher applies case study and library research method to collect and analyse data from journal articles, research papers, conference paper and annual reports. In a nutshell, the potential of contemporary models as demonstrated in this paper is very promising, in which the practical application of those instruments should be expanded for the rejuvenation of waqf asset.Keywords: cash waqf, corporate waqf, Sukuk waqf, build-operate-transfer
Procedia PDF Downloads 1785935 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth
Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson
Abstract:
Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.Keywords: dynamic accessibility, hot spot, transport research, TomTom® API
Procedia PDF Downloads 3895934 Becoming Vegan: The Theory of Planned Behavior and the Moderating Effect of Gender
Authors: Estela Díaz
Abstract:
This article aims to make three contributions. First, build on the literature on ethical decision-making literature by exploring factors that influence the intention of adopting veganism. Second, study the superiority of extended models of the Theory of Planned Behavior (TPB) for understanding the process involved in forming the intention of adopting veganism. Third, analyze the moderating effect of gender on TPB given that attitudes and behavior towards animals are gender-sensitive. No study, to our knowledge, has examined these questions. Veganism is not a diet but a political and moral stand that exclude, for moral reasons, the use of animals. Although there is a growing interest in studying veganism, it continues being overlooked in empirical research, especially within the domain of social psychology. TPB has been widely used to study a broad range of human behaviors, including moral issues. Nonetheless, TPB has rarely been applied to examine ethical decisions about animals and, even less, to veganism. Hence, the validity of TPB in predicting the intention of adopting veganism remains unanswered. A total of 476 non-vegan Spanish university students (55.6% female; the mean age was 23.26 years, SD= 6.1) responded to online and pencil-and-paper self-reported questionnaire based on previous studies. TPB extended models incorporated two background factors: ‘general attitudes towards humanlike-attributes ascribed to animals’ (AHA) (capacity for reason/emotions/suffer, moral consideration, and affect-towards-animals); and ‘general attitudes towards 11 uses of animals’ (AUA). SPSS 22 and SmartPLS 3.0 were used for statistical analyses. This study constructed a second-order reflective-formative model and took the multi-group analysis (MGA) approach to study gender effects. Six models of TPB (the standard and five competing) were tested. No a priori hypotheses were formulated. The results gave partial support to TPB. Attitudes (ATTV) (β = .207, p < .001), subjective norms (SNV) (β = .323, p < .001), and perceived control behavior (PCB) (β = .149, p < .001) had a significant direct effect on intentions (INTV). This model accounted for 27,9% of the variance in intention (R2Adj = .275) and had a small predictive relevance (Q2 = .261). However, findings from this study reveal that contrary to what TPB generally proposes, the effect of the background factors on intentions was not fully mediated by the proximal constructs of intentions. For instance, in the final model (Model#6), both factors had significant multiple indirect effect on INTV (β = .074, 95% C = .030, .126 [AHA:INTV]; β = .101, 95% C = .055, .155 [AUA:INTV]) and significant direct effect on INTV (β = .175, p < .001 [AHA:INTV]; β = .100, p = .003 [AUA:INTV]). Furthermore, the addition of direct paths from background factors to intentions improved the explained variance in intention (R2 = .324; R2Adj = .317) and the predictive relevance (Q2 = .300) over the base-model. This supports existing literature on the superiority of enhanced TPB models to predict ethical issues; which suggests that moral behavior may add additional complexity to decision-making. Regarding gender effect, MGA showed that gender only moderated the influence of AHA on ATTV (e.g., βWomen−βMen = .296, p < .001 [Model #6]). However, other observed gender differences (e.g. the explained variance of the model for intentions were always higher for men that for women, for instance, R2Women = .298; R2Men = .394 [Model #6]) deserve further considerations, especially for developing more effective communication strategies.Keywords: veganism, Theory of Planned Behavior, background factors, gender moderation
Procedia PDF Downloads 3485933 A Time Delay Neural Network for Prediction of Human Behavior
Authors: A. Hakimiyan, H. Namazi
Abstract:
Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time
Procedia PDF Downloads 6635932 An Event-Related Potentials Study on the Processing of English Subjunctive Mood by Chinese ESL Learners
Authors: Yan Huang
Abstract:
Event-related potentials (ERPs) technique helps researchers to make continuous measures on the whole process of language comprehension, with an excellent temporal resolution at the level of milliseconds. The research on sentence processing has developed from the behavioral level to the neuropsychological level, which brings about a variety of sentence processing theories and models. However, the applicability of these models to L2 learners is still under debate. Therefore, the present study aims to investigate the neural mechanisms underlying English subjunctive mood processing by Chinese ESL learners. To this end, English subject clauses with subjunctive moods are used as the stimuli, all of which follow the same syntactic structure, “It is + adjective + that … + (should) do + …” Besides, in order to examine the role that language proficiency plays on L2 processing, this research deals with two groups of Chinese ESL learners (18 males and 22 females, mean age=21.68), namely, high proficiency group (Group H) and low proficiency group (Group L). Finally, the behavioral and neurophysiological data analysis reveals the following findings: 1) Syntax and semantics interact with each other on the SECOND phase (300-500ms) of sentence processing, which is partially in line with the Three-phase Sentence Model; 2) Language proficiency does affect L2 processing. Specifically, for Group H, it is the syntactic processing that plays the dominant role in sentence processing while for Group L, semantic processing also affects the syntactic parsing during the THIRD phase of sentence processing (500-700ms). Besides, Group H, compared to Group L, demonstrates a richer native-like ERPs pattern, which further demonstrates the role of language proficiency in L2 processing. Based on the research findings, this paper also provides some enlightenment for the L2 pedagogy as well as the L2 proficiency assessment.Keywords: Chinese ESL learners, English subjunctive mood, ERPs, L2 processing
Procedia PDF Downloads 1315931 A Non-Destructive TeraHertz System and Method for Capsule and Liquid Medicine Identification
Authors: Ke Lin, Steve Wu Qing Yang, Zhang Nan
Abstract:
The medicine and drugs has in the past been manufactured to the final products and then used laboratory analysis to verify their quality. However the industry needs crucially a monitoring technique for the final batch to batch quality check. The introduction of process analytical technology (PAT) provides an incentive to obtain real-time information about drugs on the production line, with the following optical techniques being considered: near-infrared (NIR) spectroscopy, Raman spectroscopy and imaging, mid-infrared spectroscopy with the use of chemometric techniques to quantify the final product. However, presents problems in that the spectra obtained will consist of many combination and overtone bands of the fundamental vibrations observed, making analysis difficult. In this work, we describe a non-destructive system and method for capsule and liquid medicine identification, more particularly, using terahertz time-domain spectroscopy and/or designed terahertz portable system for identifying different types of medicine in the package of capsule or in liquid medicine bottles. The target medicine can be detected directly, non-destructively and non-invasively.Keywords: terahertz, non-destructive, non-invasive, chemical identification
Procedia PDF Downloads 1315930 3D Non-Linear Analyses by Using Finite Element Method about the Prediction of the Cracking in Post-Tensioned Dapped-End Beams
Authors: Jatziri Y. Moreno-Martínez, Arturo Galván, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado
Abstract:
In recent years, for the elevated viaducts in Mexico City, a construction system based on precast/pre-stressed concrete elements has been used, in which the bridge girders are divided in two parts by imposing a hinged support in sections where the bending moments that are originated by the gravity loads in a continuous beam are minimal. Precast concrete girders with dapped ends are a representative sample of a behavior that has complex configurations of stresses that make them more vulnerable to cracking due to flexure–shear interaction. The design procedures for ends of the dapped girders are well established and are based primarily on experimental tests performed for different configurations of reinforcement. The critical failure modes that can govern the design have been identified, and for each of them, the methods for computing the reinforcing steel that is needed to achieve adequate safety against failure have been proposed. Nevertheless, the design recommendations do not include procedures for controlling diagonal cracking at the entrant corner under service loading. These cracks could cause water penetration and degradation because of the corrosion of the steel reinforcement. The lack of visual access to the area makes it difficult to detect this damage and take timely corrective actions. Three-dimensional non-linear numerical models based on Finite Element Method to study the cracking at the entrant corner of dapped-end beams were performed using the software package ANSYS v. 11.0. The cracking was numerically simulated by using the smeared crack approach. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The longitudinal post-tension was modeled using LINK8 elements with multilinear isotropic hardening behavior using von Misses plasticity. The reinforcement was introduced with smeared approach. The numerical models were calibrated using experimental tests carried out in “Instituto de Ingeniería, Universidad Nacional Autónoma de México”. In these numerical models the characteristics of the specimens were considered: typical solution based on vertical stirrups (hangers) and on vertical and horizontal hoops with a post-tensioned steel which contributed to a 74% of the flexural resistance. The post-tension is given by four steel wires with a 5/8’’ (16 mm) diameter. Each wire was tensioned to 147 kN and induced an average compressive stress of 4.90 MPa on the concrete section of the dapped end. The loading protocol consisted on applying symmetrical loading to reach the service load (180 kN). Due to the good correlation between experimental and numerical models some additional numerical models were proposed by considering different percentages of post-tension in order to find out how much it influences in the appearance of the cracking in the reentrant corner of the dapped-end beams. It was concluded that the increasing of percentage of post-tension decreases the displacements and the cracking in the reentrant corner takes longer to appear. The authors acknowledge at “Universidad de Guanajuato, Campus Celaya-Salvatierra” and the financial support of PRODEP-SEP (UGTO-PTC-460) of the Mexican government. The first author acknowledges at “Instituto de Ingeniería, Universidad Nacional Autónoma de México”.Keywords: concrete dapped-end beams, cracking control, finite element analysis, postension
Procedia PDF Downloads 2265929 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor
Authors: Yash Jain
Abstract:
The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier
Procedia PDF Downloads 1635928 Effective Communication with the Czech Customers 50+ in the Financial Market
Authors: K. Matušínská, H. Starzyczná, M. Stoklasa
Abstract:
The paper deals with finding and describing of the effective marketing communication forms relating to the segment 50+ in the financial market in the Czech Republic. The segment 50+ can be seen as a great marketing potential in the future but unfortunately the Czech financial institutions haven´t still reacted enough to this fact and they haven´t prepared appropriate marketing programs for this customers´ segment. Demographic aging is a fundamental characteristic of the current European population evolution but the perspective of further population aging is more noticeable in the Czech Republic. This paper is based on data from one part of primary marketing research. Paper determinates the basic problem areas as well as definition of marketing communication in the financial market, defining the primary research problem, hypothesis and primary research methodology. Finally suitable marketing communication approach to selected sub-segment at age of 50-60 years is proposed according to marketing research findings.Keywords: population aging in the Czech Republic, segment 50+, financial services, marketing communication, marketing research, marketing communication approach
Procedia PDF Downloads 4365927 Development of Probability Distribution Models for Degree of Bending (DoB) in Chord Member of Tubular X-Joints under Bending Loads
Authors: Hamid Ahmadi, Amirreza Ghaffari
Abstract:
Fatigue life of tubular joints in offshore structures is not only dependent on the value of hot-spot stress, but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The DoB exhibits considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the DoB in tubular X-joints. What has been used so far as the probability distribution of the DoB in reliability analyses is mainly based on assumptions and limited observations, especially in terms of distribution parameters. In the present paper, results of parametric equations available for the calculation of the DoB have been used to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. The maximum likelihood method was utilized to determine the parameters of fitted distributions. In each case, Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads.Keywords: tubular X-joint, degree of bending (DoB), probability density function (PDF), Kolmogorov-Smirnov goodness-of-fit test
Procedia PDF Downloads 7195926 A Study of Evolutional Control Systems
Authors: Ti-Jun Xiao, Zhe Xu
Abstract:
Controllability is one of the fundamental issues in control systems. In this paper, we study the controllability of second order evolutional control systems in Hilbert spaces with memory and boundary controls, which model dynamic behaviors of some viscoelastic materials. Transferring the control problem into a moment problem and showing the Riesz property of a family of functions related to Cauchy problems for some integrodifferential equations, we obtain a general boundary controllability theorem for these second order evolutional control systems. This controllability theorem is applicable to various concrete 1D viscoelastic systems and recovers some previous related results. It is worth noting that Riesz sequences can be used for numerical computations of the control functions and the identification of new Riesz sequence is of independent interest for the basis-function theory. Moreover, using the Riesz sequences, we obtain the existence and uniqueness of (weak) solutions to these second order evolutional control systems in Hilbert spaces. Finally, we derive the exact boundary controllability of a viscoelastic beam equation, as an application of our abstract theorem.Keywords: evolutional control system, controllability, boundary control, existence and uniqueness
Procedia PDF Downloads 2225925 Development of Building Information Modeling in Property Industry: Beginning with Building Information Modeling Construction
Authors: B. Godefroy, D. Beladjine, K. Beddiar
Abstract:
In France, construction BIM actors commonly evoke the BIM gains for exploitation by integrating of the life cycle of a building. The standardization of level 7 of development would achieve this stage of the digital model. The householders include local public authorities, social landlords, public institutions (health and education), enterprises, facilities management companies. They have a dual role: owner and manager of their housing complex. In a context of financial constraint, the BIM of exploitation aims to control costs, make long-term investment choices, renew the portfolio and enable environmental standards to be met. It assumes a knowledge of the existing buildings, marked by its size and complexity. The information sought must be synthetic and structured, it concerns, in general, a real estate complex. We conducted a study with professionals about their concerns and ways to use it to see how householders could benefit from this development. To obtain results, we had in mind the recurring interrogation of the project management, on the needs of the operators, we tested the following stages: 1) Inculcate a minimal culture of BIM with multidisciplinary teams of the operator then by business, 2) Learn by BIM tools, the adaptation of their trade in operations, 3) Understand the place and creation of a graphic and technical database management system, determine the components of its library so their needs, 4) Identify the cross-functional interventions of its managers by business (operations, technical, information system, purchasing and legal aspects), 5) Set an internal protocol and define the BIM impact in their digital strategy. In addition, continuity of management by the integration of construction models in the operation phase raises the question of interoperability in the control of the production of IFC files in the operator’s proprietary format and the export and import processes, a solution rivaled by the traditional method of vectorization of paper plans. Companies that digitize housing complex and those in FM produce a file IFC, directly, according to their needs without recourse to the model of construction, they produce models business for the exploitation. They standardize components, equipment that are useful for coding. We observed the consequences resulting from the use of the BIM in the property industry and, made the following observations: a) The value of data prevail over the graphics, 3D is little used b) The owner must, through his organization, promote the feedback of technical management information during the design phase c) The operator's reflection on outsourcing concerns the acquisition of its information system and these services, observing the risks and costs related to their internal or external developments. This study allows us to highlight: i) The need for an internal organization of operators prior to a response to the construction management ii) The evolution towards automated methods for creating models dedicated to the exploitation, a specialization would be required iii) A review of the communication of the project management, management continuity not articulating around his building model, it must take into account the environment of the operator and reflect on its scope of action.Keywords: information system, interoperability, models for exploitation, property industry
Procedia PDF Downloads 144