Search results for: virtual hands-on learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8090

Search results for: virtual hands-on learning

5720 Teachers' Emphatic Concern for Their Learners

Authors: Prakash Singh

Abstract:

The focus of this exploratory study is on whether teachers demonstrate emphatic concern for their learners in planning, implementing and assessing learning outcomes in their regular classrooms. Empathy must be shown to all learners equally and not only for high-risk learners at the expense of other ability learners. Empathy demonstrated by teachers allows them to build a stronger bond with all their learners. This bond based on trust leads to positive outcomes for learners to be able to excel in their work. Empathic teachers must make every effort to simplify the subject matter for high risk learners so that these learners not only enjoy their learning activities but are also successful like their more able peers. A total of 87.5% of the participants agreed that empathy allows teachers to demonstrate humanistic values in their choice of learning materials for learners of different abilities. It is therefore important for teachers to select content and instructional materials that will contribute to the learners’ success in the mainstream of education. It is also imperative for teachers to demonstrate empathic skills and consequently, to be attuned to the emotions and emotional needs of their learners. Schools need to be reformed, not by simply lengthening the school day or by simply adding more content in the curriculum, but by making school more satisfying to learners. This must be consistent with their diverse learning needs and interests so that they gain a sense of power, fulfillment, and importance in their regular classrooms. Hence, teacher - pupil relationships based on empathic concern for the latter’s educational needs lays the foundation for quality education to be offered.

Keywords: emotional intelligence, empathy, learners’ emotional needs, teachers’ empathic skills

Procedia PDF Downloads 436
5719 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 177
5718 A Pragmatic Approach of Memes Created in Relation to the COVID-19 Pandemic

Authors: Alexandra-Monica Toma

Abstract:

Internet memes are an element of computer mediated communication and an important part of online culture that combines text and image in order to generate meaning. This term coined by Richard Dawkings refers to more than a mere way to briefly communicate ideas or emotions, thus naming a complex and an intensely perpetuated phenomenon in the virtual environment. This paper approaches memes as a cultural artefact and a virtual trope that mirrors societal concerns and issues, and analyses the pragmatics of their use. Memes have to be analysed in series, usually relating to some image macros, which is proof of the interplay between imitation and creativity in the memes’ writing process. We believe that their potential to become viral relates to three key elements: adaptation to context, reference to a successful meme series, and humour (jokes, irony, sarcasm), with various pragmatic functions. The study also uses the concept of multimodality and stresses how the memes’ text interacts with the image, discussing three types of relations: symmetry, amplification, and contradiction. Moreover, the paper proves that memes could be employed as speech acts with illocutionary force, when the interaction between text and image is enriched through the connection to a specific situation. The features mentioned above are analysed in a corpus that consists of memes related to the COVID-19 pandemic. This corpus shows them to be highly adaptable to context, which helps build the feeling of connection and belonging in an otherwise tremendously fragmented world. Some of them are created based on well-known image macros, and their humour results from an intricate dialogue between texts and contexts. Memes created in relation to the COVID-19 pandemic can be considered speech acts and are often used as such, as proven in the paper. Consequently, this paper tackles the key features of memes, makes a thorough analysis of the memes sociocultural, linguistic, and situational context, and emphasizes their intertextuality, with special accent on their illocutionary potential.

Keywords: context, memes, multimodality, speech acts

Procedia PDF Downloads 200
5717 The Use of Project to Enhance Learning Domains Stated by National Qualifications Framework: TQF

Authors: Duangkamol Thitivesa

Abstract:

This paper explores the use of project work in a content-based instruction in a Rajabhat University, Thailand. The use of project is to promote kinds of learning expected of student teachers as stated by Thailand Quality Framework: TQF. The kinds of learning are grouped into five domains: Ethical and moral development, knowledge, cognitive skill, interpersonal skills and responsibility, and analytical and communication skills. The content taught in class is used to lead the student teachers to relate their previously-acquired linguistic knowledge to meaningful realizations of the language system in passages of immediate relevance to their professional interests, teaching methods in particular. Two research questions are formulate to guide this study: 1) To what degree are the five domains of learning expected of student teachers after the use of project in a content class?, and 2) What is the academic achievement of the students’ writing skills, as part of the learning domains stated by TQF, against the 70% attainment target after the use of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of a summative achievement test, student writing works, an observation checklist, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students’ record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students’ ability to attend to, recognize, and focus on meaningful patterns of language forms.

Keywords: Thailand quality framework, project Work, writing skill, summative

Procedia PDF Downloads 150
5716 The Role of Learning in Stimulation Policies to Increase Participation in Lifelong Development: A Government Policy Analysis

Authors: Björn de Kruijf, Arjen Edzes, Sietske Waslander

Abstract:

In an ever-quickly changing society, lifelong development is seen as a solution to labor market problems by politicians and policymakers. In this paper, we investigate how policy instruments are used to increase participation in lifelong development and on which behavioral principles policy is based. Digitization, automation, and an aging population change society and the labor market accordingly. Skills that were once most sought after in the workforce can become abundantly present. For people to remain relevant in the working population, they need to continue adapting new skills useful in the current labor market. Many reports have been written that focus on the role of lifelong development in this changing society and how lifelong development can help keep people adapt and stay relevant. Inspired by these reports, governments have implemented a broad range of policies to support participation in lifelong development. The question we ask ourselves is how government policies promote participation in lifelong development. This stems from a complex interplay of policy instruments and learning. Regulation, economic and soft instruments can be combined to promote lifelong development, and different types of education further complex policies on lifelong development. Literature suggests that different stages in people’s lives might warrant different methods of learning. Governments could anticipate this in their policies. In order to influence people’s behavior, the government can tap into a broad range of sociological, psychological, and (behavioral) economic principles. The traditional economic assumption that behavior is rational is known to be only partially true, and the government can use many biases in human behavior to stimulate participation in lifelong development. In this paper, we also try to find which biases the government taps into to promote participation if they tap into any of these biases. The goal of this paper is to analyze government policies intended to promote participation in lifelong development. To do this, we develop a framework to analyze the policies on lifelong development. We specifically incorporate the role of learning and the behavioral principles underlying policy instruments in the framework. We apply this framework to the case of the Netherlands, where we examine a set of policy documents. We single out the policies the government has put in place and how they are vertically and horizontally related. Afterward, we apply the framework and classify the individual policies by policy instrument and by type of learning. We find that the Dutch government focuses on formal and non-formal learning in their policy instruments. However, the literature suggests that learning at a later age is mainly done in an informal manner through experiences.

Keywords: learning, lifelong development, policy analysis, policy instruments

Procedia PDF Downloads 82
5715 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 127
5714 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning

Authors: Hong Zhang

Abstract:

The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.

Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning

Procedia PDF Downloads 144
5713 i2kit: A Tool for Immutable Infrastructure Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservice architectures are increasingly in distributed cloud applications due to the advantages on the software composition, development speed, release cycle frequency and the business logic time to market. On the other hand, these architectures also introduce some challenges on the testing and release phases of applications. Container technology solves some of these issues by providing reproducible environments, easy of software distribution and isolation of processes. However, there are other issues that remain unsolved in current container technology when dealing with multiple machines, such as networking for multi-host communication, service discovery, load balancing or data persistency (even though some of these challenges are already solved by traditional cloud vendors in a very mature and widespread manner). Container cluster management tools, such as Kubernetes, Mesos or Docker Swarm, attempt to solve these problems by introducing a new control layer where the unit of deployment is the container (or the pod — a set of strongly related containers that must be deployed on the same machine). These tools are complex to configure and manage and they do not follow a pure immutable infrastructure approach since servers are reused between deployments. Indeed, these tools introduce dependencies at execution time for solving networking or service discovery problems. If an error on the control layer occurs, which would affect running applications, specific expertise is required to perform ad-hoc troubleshooting. As a consequence, it is not surprising that container cluster support is becoming a source of revenue for consulting services. This paper presents i2kit, a deployment tool based on the immutable infrastructure pattern, where the virtual machine is the unit of deployment. The input for i2kit is a declarative definition of a set of microservices, where each microservice is defined as a pod of containers. Microservices are built into machine images using linuxkit —- a tool for creating minimal linux distributions specialized in running containers. These machine images are then deployed to one or more virtual machines, which are exposed through a cloud vendor load balancer. Finally, the load balancer endpoint is set into other microservices using an environment variable, providing service discovery. The toolkit i2kit reuses the best ideas from container technology to solve problems like reproducible environments, process isolation, and software distribution, and at the same time relies on mature, proven cloud vendor technology for networking, load balancing and persistency. The result is a more robust system with no learning curve for troubleshooting running applications. We have implemented an open source prototype that transforms i2kit definitions into AWS cloud formation templates, where each microservice AMI (Amazon Machine Image) is created on the fly using linuxkit. Even though container cluster management tools have more flexibility for resource allocation optimization, we defend that adding a new control layer implies more important disadvantages. Resource allocation is greatly improved by using linuxkit, which introduces a very small footprint (around 35MB). Also, the system is more secure since linuxkit installs the minimum set of dependencies to run containers. The toolkit i2kit is currently under development at the IMDEA Software Institute.

Keywords: container, deployment, immutable infrastructure, microservice

Procedia PDF Downloads 179
5712 Solving Mean Field Problems: A Survey of Numerical Methods and Applications

Authors: Amal Machtalay

Abstract:

In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.

Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning

Procedia PDF Downloads 113
5711 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 69
5710 Education, Learning and Management: Empowering Individuals for the Future

Authors: Ngong Eugene Ekia

Abstract:

Education is the foundation for the success of any society as its impact transcends across all sectors, including economics, politics, and social welfare. It is through education that individuals acquire the necessary knowledge and skills to succeed in life and contribute meaningfully to society. However, the world is changing rapidly, and it is vital for education systems to adapt to these changes to remain relevant. In this paper, we will discuss the current trends and challenges in education and management and propose solutions that can enable individuals to thrive in an ever-evolving world.

Keywords: access to education, effective teaching and learning, strong management practices, and empowering and personal development

Procedia PDF Downloads 141
5709 The Impact of Artificial Intelligence on Pharmacy and Pharmacology

Authors: Mamdouh Milad Adly Morkos

Abstract:

Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global health

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, virtual learning low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways

Procedia PDF Downloads 81
5708 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach

Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana

Abstract:

This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.

Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation

Procedia PDF Downloads 187
5707 Creation and Management of Knowledge for Organization Sustainability and Learning

Authors: Deepa Kapoor, Rajshree Singh

Abstract:

This paper appreciates the emergence and growing importance as a new production factor makes the development of technologies, methodologies and strategies for measurement, creation, and diffusion into one of the main priorities of the organizations in the knowledge society. There are many models for creation and management of knowledge and diverse and varied perspectives for study, analysis, and understanding. In this article, we will conduct a theoretical approach to the type of models for the creation and management of knowledge; we will discuss some of them and see some of the difficulties and the key factors that determine the success of the processes for the creation and management of knowledge.

Keywords: knowledge creation, knowledge management, organizational development, organization learning

Procedia PDF Downloads 345
5706 Automated Detection of Women Dehumanization in English Text

Authors: Maha Wiss, Wael Khreich

Abstract:

Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.

Keywords: gender bias, machine learning, NLP, women dehumanization

Procedia PDF Downloads 80
5705 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem

Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.

Keywords: alzheimer's disease, missing value, machine learning, performance evaluation

Procedia PDF Downloads 250
5704 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity

Authors: Linnea Stenliden

Abstract:

The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.

Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation

Procedia PDF Downloads 376
5703 Proposal for a Mobile Application with Augmented Reality to Improve School Interest

Authors: Mamani Acurio Alex, Aguilar Alonso Igor

Abstract:

The lack of interest and the lack of motivation are related. The lack of both in school generates serious problems such as school dropout or a low level of learning. Augmented reality has been very useful in different areas, and in this research, it was implemented in the area of education. Information necessary for the correct development of this mobile application with augmented reality was searched using six different research repositories. It was concluded that the application must be immersive, attractive, and fun for students, and the necessary technologies for its construction were defined.

Keywords: augmented reality, Vuforia, school interest, learning

Procedia PDF Downloads 87
5702 Introducing the Concept of Sustainable Learning: Redesigning the Social Studies and Citizenship Education Curriculum in the Context of Saudi Arabia

Authors: Aiydh Aljeddani, Fran Martin

Abstract:

Sustainable human development is an essential component of a sustainable economic, social and environmental development. Addressing sustainable learning only through the addition of new teaching methods, or embedding certain approaches, is not sufficient on its own to support the goals of sustainable human development. This research project seeks to explore how the process of redesigning the current principles of curriculum based on the concept of sustainable learning could contribute to preparing a citizen who could later contribute towards sustainable human development. Multiple qualitative methodologies were employed in order to achieve the aim of this study. The main research methods were teachers’ field notes, artefacts, informal interviews (unstructured interview), a passive participant observation, a mini nominal group technique (NGT), a weekly diary, and weekly meeting. The study revealed that the integration of a curriculum for sustainable development, in addition to the use of innovative teaching approaches, highly valued by students and teachers in social studies’ sessions. This was due to the fact that it created a positive atmosphere for interaction and aroused both teachers and students’ interest. The content of the new curriculum also contributed to increasing students’ sense of shared responsibility through involving them in thinking about solutions for some global issues. This was carried out through addressing these issues through the concept of sustainable development and the theory of Thinking Activity in a Social Context (TASC). Students had interacted with sustainable development sessions intellectually and they also practically applied it through designing projects and cut-outs. Ongoing meetings and workshops to develop work between both the researcher and the teachers, and by the teachers themselves, played a vital role in implementing the new curriculum. The participation of teachers in the development of the project through working papers, exchanging experiences and introducing amendments to the students' environment was also critical in the process of implementing the new curriculum. Finally, the concept of sustainable learning can contribute to the learning outcomes much better than the current curriculum and it can better develop the learning objectives in educational institutions.

Keywords: redesigning, social studies and citizenship education curriculum, sustainable learning, thinking activity in a social context

Procedia PDF Downloads 231
5701 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 142
5700 The Development of Chinese-English Homophonic Word Pairs Databases for English Teaching and Learning

Authors: Yuh-Jen Wu, Chun-Min Lin

Abstract:

Homophonic words are common in Mandarin Chinese which belongs to the tonal language family. Using homophonic cues to study foreign languages is one of the learning techniques of mnemonics that can aid the retention and retrieval of information in the human memory. When learning difficult foreign words, some learners transpose them with words in a language they are familiar with to build an association and strengthen working memory. These phonological clues are beneficial means for novice language learners. In the classroom, if mnemonic skills are used at the appropriate time in the instructional sequence, it may achieve their maximum effectiveness. For Chinese-speaking students, proper use of Chinese-English homophonic word pairs may help them learn difficult vocabulary. In this study, a database program is developed by employing Visual Basic. The database contains two corpora, one with Chinese lexical items and the other with English ones. The Chinese corpus contains 59,053 Chinese words that were collected by a web crawler. The pronunciations of this group of words are compared with words in an English corpus based on WordNet, a lexical database for the English language. Words in both databases with similar pronunciation chunks and batches are detected. A total of approximately 1,000 Chinese lexical items are located in the preliminary comparison. These homophonic word pairs can serve as a valuable tool to assist Chinese-speaking students in learning and memorizing new English vocabulary.

Keywords: Chinese, corpus, English, homophonic words, vocabulary

Procedia PDF Downloads 182
5699 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills

Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li

Abstract:

Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.

Keywords: nanotechnology, science education, project-based learning, information and communication technology

Procedia PDF Downloads 375
5698 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 28
5697 The Construction of Research-Oriented/Practice-Oriented Engineering Testing and Measurement Technology Course under the Condition of New Technology

Authors: He Lingsong, Wang Junfeng, Tan Qiong, Xu Jiang

Abstract:

The paper describes efforts on reconstruction methods of engineering testing and measurement technology course by applying new techniques and applications. Firstly, flipped classroom was introduced. In-class time was used for in-depth discussions and interactions while theory concept teaching was done by self-study course outside of class. Secondly, two hands-on practices of technique applications, including the program design of MATLAB Signal Analysis and the measurement application of Arduino sensor, have been covered in class. Class was transformed from an instructor-centered teaching process into an active student-centered learning process, consisting of the pre-class massive open online course (MOOC), in-class discussion and after-class practice. The third is to change sole written homework to the research-oriented application practice assignments, so as to enhance the breadth and depth of the course.

Keywords: testing and measurement, flipped classroom, MOOC, research-oriented learning, practice-oriented learning

Procedia PDF Downloads 147
5696 Application of Deep Learning in Colorization of LiDAR-Derived Intensity Images

Authors: Edgardo V. Gubatanga Jr., Mark Joshua Salvacion

Abstract:

Most aerial LiDAR systems have accompanying aerial cameras in order to capture not only the terrain of the surveyed area but also its true-color appearance. However, the presence of atmospheric clouds, poor lighting conditions, and aerial camera problems during an aerial survey may cause absence of aerial photographs. These leave areas having terrain information but lacking aerial photographs. Intensity images can be derived from LiDAR data but they are only grayscale images. A deep learning model is developed to create a complex function in a form of a deep neural network relating the pixel values of LiDAR-derived intensity images and true-color images. This complex function can then be used to predict the true-color images of a certain area using intensity images from LiDAR data. The predicted true-color images do not necessarily need to be accurate compared to the real world. They are only intended to look realistic so that they can be used as base maps.

Keywords: aerial LiDAR, colorization, deep learning, intensity images

Procedia PDF Downloads 166
5695 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 538
5694 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 24
5693 Hard and Soft Skills in Marketing Education: Using Serious Games to Engage Higher Order Processing

Authors: Ann Devitt, Mairead Brady, Markus Lamest, Stephen Gomez

Abstract:

This study set out to explore the use of an online collaborative serious game for student learning in a postgraduate introductory marketing module. The simulation game aimed to bridge the theory-practice divide in marketing by allowing students to apply theory in a safe, simulated marketplace. This study addresses the following research questions: Does an online marketing simulation game engage students higher order cognitive skills? Does collaborative activity required develop students’ “soft” skills, such as communication and negotiation? What specific affordances of the online simulation promote learning? This qualitative case study took place in 2014 with 40 postgraduate students on a Business Masters Programme. The two-week intensive module combined lectures with collaborative activity on a marketing simulation game, MMX from Pearsons. The game requires student teams to compete against other teams in a marketplace and design a marketing plan to maximize key performance indicators. The data for this study comprise essays written by students after the module reflecting on their learning on the module. A thematic analysis was conducted of the essays using the following a priori theme sets: 6 levels of the cognitive domain of Blooms taxonomy; 5 principles of Cooperative Learning; affordances of simulation environments including experiential learning; motivation and engagement; goal orientation. Preliminary findings would strongly suggest that the game facilitated students identifying the value of theory in practice, in particular for future employment; enhanced their understanding of group dynamics and their role within that; and impacted very strongly, both positively and negatively on motivation. In particular the game mechanics of MMX, which hinges on the correct identification of a target consumer group, was identified as a key determinant of extrinsic and intrinsic motivation for learners. The findings also suggest that the situation of the simulation game within a broader module which required post-game reflection was valuable in identifying key learning of marketing concepts in both the positive and the negative experiences of the game.

Keywords: simulation, marketing, serious game, cooperative learning, bloom's taxonomy

Procedia PDF Downloads 551
5692 The Effects of Virtual Reality Technology in Maternity Delivery: A Systematic Review and Meta-Analysis

Authors: Nuo Xu, Sijing Chen

Abstract:

Background: Childbirth is considered a critical traumatic event throughout our lives, positively or negatively impacting the mother's physiology, psychology, and even the whole family. Adverse birth experiences, such as labor pain, anxiety, and fear can negatively impact the mother. Studies had shown that the immersive nature of VR can distract attention from pain and increase focus on interventions for pain relief. However, the existing studies that applied VR to maternal delivery were still in their infancy and showed disparate results, and the small sample size is not representative, so this review analyzed the effects of VR in labor, such as on maternal pain and anxiety, with a view to providing a basis for future applications. Search strategy: We searched Pubmed, Embase, Web of Science, the Cochrane Library, CINAHL, China National Knowledge Infrastructure, Wan-Fang database from the building to November 17, 2021. Selection Criteria: Randomized controlled trials (RCTs) that intervened the pregnant women aged 18-35 years with gestational >34 weeks and without complications with VR technology were contained within this review. Data Collection and Analysis: Two researchers completed the study selection, data extraction, and assessment of study quality. For quantitative data we used MD or SMD, and RR (risk ratio) for qualitative data. Random-effects model and 95% confidence interval (95% CI) were used. Main Results: 12 studies were included. Using VR could relieve pain during labor (MD=-1.81, 95% CI (-2.04, -1.57), P< 0.00001) and active period (SMD=-0.41, 95% CI (-0.68, -0.14), P= 0.003), reduce anxiety (SMD=-1.39, 95% CI (-1.99, -0.78), P< 0.00001) and improve satisfaction (RR = 1.32; 95% CI (1.10, 1.59); P = 0.003), but the effect on the duration of first (SMD=-1.12, 95% CI (-2.38, 0.13), P=0.08) and second (SMD=-0.22, 95% CI (-0.67, 0.24), P=0.35) stage of labor was not statistically significant. Conclusions: Compared with conventional care, VR technology can relieve labor pain and anxiety and improve satisfaction. However, extensive experimental validation is still needed.

Keywords: virtual reality, delivery, labor pain, anxiety, meta-analysis, systematic review

Procedia PDF Downloads 92
5691 Palestine Smart Tourism Augmented Reality Mobile Application

Authors: Murad Al-Rajab, Sherin Hazboun, Azhar Al-Hamamreh, Nirmeen Odeh, Siham Halaseh

Abstract:

Tourism is considered an important sector for most countries, while maintaining good tourism attractions can promote national economic development. The State of Palestine is historically considered a wealthy country full of many archaeological places. In the city of Bethlehem, for example, the Church of the Nativity is the most important touristic site, but it does not have enough technology development to attract tourists. In this paper, we propose a smart mobile application named “Pal-STAR” (Palestine Smart Tourist Augmented Reality) as an innovative solution which targets tourists and assists them to make a visit inside the Church of the Nativity. The application will use augmented reality and feature a virtual tourist guide showing views of the church while providing historical information in a smart, easy, effective and user-friendly way. The proposed application is compatible with multiple mobile platforms and is considered user friendly. The findings show that this application will improve the practice of the tourism sector in the Holy Land, it will also increase the number of tourists visiting the Church of the Nativity and it will facilitate access to historical data that have been difficult to obtain using traditional tourism guidance. The value that tourism adds to a country cannot be denied, and the more technological advances are incorporated in this sector, the better the country’s tourism sector can be served. Palestine’s economy is heavily dependent on tourism in many of its main cities, despite several limitations, and technological development is needed to enable this sector to flourish. The proposed mobile application would definitely have a good impact on the development of the tourism sector by creating an Augmented Reality environment for tourists inside the church, helping them to navigate and learn about holy places in a non-traditional way, using a virtual tourist guide.

Keywords: smartphones, tourism, tourists guide, augmented reality, Palestine

Procedia PDF Downloads 171