Search results for: neural interface
828 Counter-Terrorism and Civil Society in Nigeria
Authors: Emeka Thaddues Njoku
Abstract:
Since 2009, the Nigerian Government has established diverse counter-terrorism legislations and practices in response terrorism in North Eastern part of the country. However, these measures have hampered not only the ability of civil society organizations to sustain the autonomous spaces that define/locate them at the intersection between the state and public but also the balance between freedom and security. Hence, this study examines the various elements associated with the interface between the counter terrorism security framework of the government and the capacity of civil society organizations to carry out their mandates in Nigeria. In order to achieve this, the survey research of the ex-post facto type will be adopted using the multi-stage sampling technique. A total of two hundred (200) copies of questionnaire will be administered to members of the civil society organizations and 24 In-Depth Interviews (IDI) will be conducted for officials of security agencies, Ministry of Defence and operators of civil society organizations. Fifty respondents will be drawn from each civil society organisations in the areas of humanitarian assistance, human rights Advocacy, development-oriented, peace-building. Moreover, 24 interviewees drawn from the key members of the security agencies (6), Ministry of Defence (6) and 12 operators of civil society organizations-three respondents each will represent the four civil society organizations mentioned above. Also, secondary data will be used to complement In-depth Interview (IDI) sessions. All collected data will be coded and analysed using descriptive statistics of frequency counts and simple percentage in the Statistical Package for Social Science (SPSS). Content analysis will be used for the In-depth interview and secondary data.Keywords: counter-terrorism, civil society organizations, freedom, terrorism
Procedia PDF Downloads 395827 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 484826 Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds
Authors: Qiming Wang
Abstract:
Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds.Keywords: self-healing polymers, dynamic covalent bonds, hydrogen bonds, ionic bonds
Procedia PDF Downloads 189825 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 49824 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses
Authors: Nuri Caglayan, H. Kursat Celik
Abstract:
There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.Keywords: air quality, fuzzy logic model, livestock housing, fan speed
Procedia PDF Downloads 377823 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-By-Wire ECU Development
Authors: Ananchai Ukaew, Choopong Chauypen
Abstract:
Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual drive-by-wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.Keywords: drive-by-wire ECU, in-the-loop testing, model-based design, real-time embedded system
Procedia PDF Downloads 356822 The Effect and Mechanisms of Electroacupuncture on Motion Sickness in Mice
Authors: Chanya Inprasit, Yi-Wen Lin
Abstract:
Motion sickness (MS) is an acute disorder that occurs in healthy persons without considering gender, age or ethnicity worldwide. All signs and symptoms of MS are the results of confliction and mismatch among neural signal inputs. It is known that no singular remedy works for everybody, and electroacupuncture (EA) is one of the popular alternative therapies used for MS. Our study utilized a mouse model in order to exclude any psychological factors of MS and EA. Mice lack an emetic reflex. Therefore pica behavior, which is a normal consumption of non-nutritive substances, was found to measure the response of MS in mice. In the laboratory, Kaolin was used as a non-nutrient food substance instead of natural substances lacking nutritional value such as wood, cloth, charcoal, soil or grass. It was hypothesized that EA treatment could reduce the symptoms of MS through the TRPV1 pathways. The results of pica behavior showed a significantly increased intake of kaolin in the MS group throughout the experiment period. Moreover, the Kaolin intake of the EA group decreased to the average baseline of the control group. There was no recorded difference in the food and water intake of each group. The results indicated an increase of the TRPV1, pERK, pJNK and pmTOR protein levels in the thalamus after MS stimulation, and a significant decrease in the EA group compared with that of the control group. These findings suggest that TRPV1 pathways are associated in MS mechanisms and can be reduced by EA.Keywords: electroacupuncture, motion sickness, Thalamus, TRPV1
Procedia PDF Downloads 256821 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 146820 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics
Authors: S. M. Giripunje, Shikha Jindal
Abstract:
Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.Keywords: graphene, heterojunction, quantum confinement effect, quantum dots(QDs), zinc sulphide(ZnS)
Procedia PDF Downloads 155819 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning
Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam
Abstract:
Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped
Procedia PDF Downloads 319818 Understanding the Popularity of Historical Conservation in China: The Depoliticized Narratives as a Counter-Insurgency Strategy in Guangzhou
Authors: Luxi Chen
Abstract:
The land finance in China in recent years has propelled urban renewals in the name of historical conservation and led to massive gentrification and compulsory relocation. Such inequalities cause insurgence. Drawing on public planning information, ethnographic field notes, and online interview data about Guangzhou's Enninglu Area, this paper aims to present how such insurgence has been contained and put down gradually through depoliticization narratives represented by "improving living conditions," "conserving historical culture," and "public participation”. This paper's findings include that 1) Besides economic growth, maintaining social stability in alignment with the central government are equally important to local government, reveals the latter efforts to mediate the growth coalition, residents, media, and academics so as to reconstruct the interface between state and society; 2) To empower the insurgence, the media and academics use public interests for propaganda, that diverts attention away from its political dimension; 3) In response, the government introduces improved regulations and planning, turning social inequalities into technical inadequacy so as to become the defender of public interests, which justifies the incoming renewal and prevents public questioning. By comparing regime changes among governments, developers, residents, media, and academics caused by renewal policies, this paper presents the depoliticized narrative as a counter-insurgence strategy to contain social conflicts and to boost inner-city renewal.Keywords: inner city renewal, depoliticization, historical conservation, public participation
Procedia PDF Downloads 244817 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 342816 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)
Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean
Abstract:
The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.Keywords: pan evaporation, intelligent methods, shahroud, mayamey
Procedia PDF Downloads 79815 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.Keywords: national development, granite, profitability assessment, ANN models
Procedia PDF Downloads 105814 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain
Procedia PDF Downloads 292813 Mobile Augmented Reality for Collaboration in Operation
Authors: Chong-Yang Qiao
Abstract:
Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.Keywords: mobile augmented reality, remote collaboration, user experience, cognition model
Procedia PDF Downloads 198812 Monitorization of Junction Temperature Using a Thermal-Test-Device
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Due to the higher power loss levels in electronic components, the thermal design of PCBs (Printed Circuit Boards) of an assembled device becomes one of the most important quality factors in electronics. Nonetheless, some of leading causes of the microelectronic component failures are due to higher temperatures, the leakages or thermal-mechanical stress, which is a concern, is the reliability of microelectronic packages. This article presents an experimental approach to measure the junction temperature of exposed pad packages. The implemented solution is in a prototype phase, using a temperature-sensitive parameter (TSP) to measure temperature directly on the die, validating the numeric results provided by the Mechanical APDL (Ansys Parametric Design Language) under same conditions. The physical device-under-test is composed by a Thermal Test Chip (TTC-1002) and assembly in a QFN cavity, soldered to a test-board according to JEDEC Standards. Monitoring the voltage drop across a forward-biased diode, is an indirectly method but accurate to obtain the junction temperature of QFN component with an applied power range between 0,3W to 1.5W. The temperature distributions on the PCB test-board and QFN cavity surface were monitored by an infra-red thermal camera (Goby-384) controlled and images processed by the Xeneth software. The article provides a set-up to monitorize in real-time the junction temperature of ICs, namely devices with the exposed pad package (i.e. QFN). Presenting the PCB layout parameters that the designer should use to improve thermal performance, and evaluate the impact of voids in solder interface in the device junction temperature.Keywords: quad flat no-Lead packages, exposed pads, junction temperature, thermal management and measurements
Procedia PDF Downloads 287811 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction
Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li
Abstract:
Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable
Procedia PDF Downloads 80810 A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing
Authors: Jimmy Jiun-Ming Su, Yuan-Min Lin
Abstract:
Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future.Keywords: bioprinting, cell encapsulation, digital light processing, GelMA hydrogel
Procedia PDF Downloads 186809 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing
Authors: Seyong Oh, Jin-Hong Park
Abstract:
Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing
Procedia PDF Downloads 176808 Co-Creating Value between Public Financial Management Institutions: An Integrated Approach towards Financial Sustainability
Authors: Pascal Horni, Sandro Fuchs
Abstract:
In presence of increasing deficits and public debt among OECD countries, the debate on fiscal disciple and mechanisms to constrain public spending policy heated up and gave rise to the institutionalization of fiscal rules. Considering the notions from political economy literature and the therein advocated axiom of maximization of votes, introduction of institutional mechanisms and rules to govern public spending is likely to be coined by electoral motives. While there exists a series of research concerned with the rise of creative accounting in the presence fiscal rules, implementation of accrual government accounting and its impact on the biting of fiscal rules has to authors’ best knowledge never been explored. This paper serves the illumination of the connection between debt break mechanisms and the adoption of accrual public sector accounting standards such as the IPSAS in the interface of political economy in the Swiss context. By explicitly considering the technical accounting dimension, this paper develops an integrated conceptual view on well-established Public Financial Management (PFM) institutions and elaborates how their interdependencies can co-create value with regard to the contemporary challenge of fiscal sustainability. Derivation of this integrated view follows an explorative approach, taking into account expert interviews with director level staff from cantonal finance administrations and policy documents, as well as literature from both research areas – public sector accounting and political economy.Keywords: accounting, fiscal rules, International Public Sector Accounting Standards (IPSAS), public financial management
Procedia PDF Downloads 160807 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 320806 Web-Based Cognitive Writing Instruction (WeCWI): A Theoretical-and-Pedagogical e-Framework for Language Development
Authors: Boon Yih Mah
Abstract:
Web-based Cognitive Writing Instruction (WeCWI)’s contribution towards language development can be divided into linguistic and non-linguistic perspectives. In linguistic perspective, WeCWI focuses on the literacy and language discoveries, while the cognitive and psychological discoveries are the hubs in non-linguistic perspective. In linguistic perspective, WeCWI draws attention to free reading and enterprises, which are supported by the language acquisition theories. Besides, the adoption of process genre approach as a hybrid guided writing approach fosters literacy development. Literacy and language developments are interconnected in the communication process; hence, WeCWI encourages meaningful discussion based on the interactionist theory that involves input, negotiation, output, and interactional feedback. Rooted in the e-learning interaction-based model, WeCWI promotes online discussion via synchronous and asynchronous communications, which allows interactions happened among the learners, instructor, and digital content. In non-linguistic perspective, WeCWI highlights on the contribution of reading, discussion, and writing towards cognitive development. Based on the inquiry models, learners’ critical thinking is fostered during information exploration process through interaction and questioning. Lastly, to lower writing anxiety, WeCWI develops the instructional tool with supportive features to facilitate the writing process. To bring a positive user experience to the learner, WeCWI aims to create the instructional tool with different interface designs based on two different types of perceptual learning style.Keywords: WeCWI, literacy discovery, language discovery, cognitive discovery, psychological discovery
Procedia PDF Downloads 564805 Possibilities and Challenges of Using Machine Translation in Foreign Language Education
Authors: Miho Yamashita
Abstract:
In recent years, there have been attempts to introduce Machine Translation (MT) into foreign language teaching, especially in writing instructions. This is because the performance of neural machine translation has improved dramatically since 2016, and some university instructors started to introduce MT translations to their students as a "good model" to learn from. However, MT is still not perfect, and there are many incorrect translations. In order to translate the intended text into a foreign language, it is necessary to edit the original manuscript written in the native language (pre-edit) and revise the translated foreign language text (post-edit). The latter is considered especially difficult for users without a high proficiency level of foreign language. Therefore, the author allowed her students to use MT in her writing class in one of the private universities in Japan and investigated 1) how groups of students with different English proficiency levels revised MT translations when translating Japanese manuscripts into English and 2) whether the post-edit process differed when the students revised alone or in pairs. The results showed that in 1), certain non-post-edited grammatical errors were found regardless of their proficiency levels, indicating the need for teacher intervention, and in 2), more appropriate corrections were found in pairs, and their frequent use of a dictionary was also observed. In this presentation, the author will discuss how MT writing instruction can be integrated effectively in an aim to achieve multimodal foreign language education.Keywords: machine translation, writing instruction, pre-edit, post-edit
Procedia PDF Downloads 68804 Electroencephalogram Study of Change Blindness in Mindful Subjects
Authors: Lea Lachaud, Aida Raoult, Marion Trousselard, Francois B. Vialatte
Abstract:
This paper addresses mindfulness from a psychological and neuroscientific perspective, by studying how it modulates attention. Being mindful defines a state characterized by 1-an attention directed to the subjective experience of present moment, 2-an unconditional acceptance of this experience, and 3-the rejection of systematic rationalization in favor of plain awareness. The aim of this study is to investigate whether perceptual salience filters are lowered in a ‘mindful’ condition by exploring the role of being mindful in focused visual attention. Over the past decade, mindfulness therapies have seen a surge in popularity. While the outcomes of these therapies have been widely discussed, the mechanisms whereby meditation affects the brain remain mostly unknown. To explore the role of mindfulness in focused visual attention, we conducted a change blindness experiment on 24 subjects, 12 of them being mindful according to the Freiburg Mindfulness Inventory (FMI) scale. Our results suggest that mindful subjects are less affected by change blindness than non-mindful subjects. Furthermore, EEG measurements performed during the experiments may expose neural correlates specific to the mindful state on P300 evoked potentials. Finally, the analysis of both amplitude and latency caused by the perception of a change over 864 recordings may reveal biomarkers that are typical of this state. The paper concludes by discussing the implications of these results for further research.Keywords: EEG, change blindness, mindfulness, p300, perception, visual attention
Procedia PDF Downloads 260803 Agile Smartphone Porting and App Integration of Signal Processing Algorithms Obtained through Rapid Development
Authors: Marvin Chibuzo Offiah, Susanne Rosenthal, Markus Borschbach
Abstract:
Certain research projects in Computer Science often involve research on existing signal processing algorithms and developing improvements on them. Research budgets are usually limited, hence there is limited time for implementing the algorithms from scratch. It is therefore common practice, to use implementations provided by other researchers as a template. These are most commonly provided in a rapid development, i.e. 4th generation, programming language, usually Matlab. Rapid development is a common method in Computer Science research for quickly implementing and testing new developed algorithms, which is also a common task within agile project organization. The growing relevance of mobile devices in the computer market also gives rise to the need to demonstrate the successful executability and performance measurement of these algorithms on a mobile device operating system and processor, particularly on a smartphone. Open mobile systems such as Android, are most suitable for this task, which is to be performed most efficiently. Furthermore, efficiently implementing an interaction between the algorithm and a graphical user interface (GUI) that runs exclusively on the mobile device is necessary in cases where the project’s goal statement also includes such a task. This paper examines different proposed solutions for porting computer algorithms obtained through rapid development into a GUI-based smartphone Android app and evaluates their feasibilities. Accordingly, the feasible methods are tested and a short success report is given for each tested method.Keywords: SMARTNAVI, Smartphone, App, Programming languages, Rapid Development, MATLAB, Octave, C/C++, Java, Android, NDK, SDK, Linux, Ubuntu, Emulation, GUI
Procedia PDF Downloads 481802 An In-Depth Conceptual Framework for the Development of Prosthetic Hands: Emphasizing Transradial Prostheses
Authors: Touil Issam, Bouraghda Skander
Abstract:
The human hand is a vital yet intricate organ, essential for tasks ranging from grasping to executing fine motor skills. It serves as the most advanced and natural interface for interaction between humans and their surroundings. Upper-limb deficiencies, caused by conditions such as illness, accidents, or congenital factors, are prevalent worldwide. These deficiencies are categorized into seven types: partial hand, wrist disarticulation, transradial, elbow disarticulation, transhumeral, shoulder disarticulation, and forequarter, with transradial amputations being the most common and often well-suited for prosthetic hands. Advancements in technology and healthcare services have amplified the need for affordable, user-friendly, and functional prosthetic hands capable of restoring essential hand and finger functions. As a critical subset of medical robotics, prosthetic hands have seen notable design and development progress. However, challenges remain in achieving widespread user acceptance and satisfaction, highlighting the need for a holistic approach to their design and implementation. This study aims to consolidate the various factors involved in the development of prosthetic hands, focusing particularly on transradial prosthetics. It considers all types of prosthetic hands, whether actively powered, passively powered, or nonpowered. By presenting a comprehensive concept map, we aim to integrate these factors into a cohesive framework, guiding the development of prosthetic hands that offer enhanced functionality, improved user acceptance, and better alignment with user.Keywords: prosthetic hands, user-centeren design, human machine interaction design, assistive technologies, meical robotics
Procedia PDF Downloads 9801 An MrPPG Method for Face Anti-Spoofing
Authors: Lan Zhang, Cailing Zhang
Abstract:
In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG
Procedia PDF Downloads 184800 A Human Centered Design of an Exoskeleton Using Multibody Simulation
Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann
Abstract:
Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation
Procedia PDF Downloads 168799 The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study
Abstract:
Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground.Keywords: resin, floor, damage, durability
Procedia PDF Downloads 165