Search results for: miRNA:mRNA target prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4946

Search results for: miRNA:mRNA target prediction

2576 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis

Authors: Yazid Alkraimeen

Abstract:

Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.

Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses

Procedia PDF Downloads 125
2575 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 124
2574 Insecticide Efficacy against Jassids in Egg Plants

Authors: Zunnu Raen Akhtar, Farhan Ali, Muhammad Saeed-Ur-Rehman

Abstract:

Jassids are considered as serious sucking pests in eggplants. Jassids can be controlled using imidacloprid, but it can also result in non-target ecological impacts on eco-system. It can also result in reduced population of predators of jassids in the field. An experiment was conducted on jassids, Amrasca sp. reared on eggplant leaves were treated with insecticide imidacloprid at lower, recommended and higher doses including 1L, 2L, 3L respectively. 3rd instar larvae and adults of jassids were exposed to lower, recommended, higher doses. Mortality tests were repeated three times for each dose and insect growth stage. Imidacloprid was sprayed on the leaves followed by drying. Data was recorded for 4, 8, 12, 16, 20, 24 hours after spraying insecticide on the leaves. Results showed that higher mortality was observed in higher and recommended doses, while slow mortality was observed in the case of lower dose. It can be asserted that higher and recommended doses causing immediate mortality of insects are better to control Amrasca sp. in the field, it will not cause immediate resistance development in insects against imidacloprid.

Keywords: Amrasca sp., imidacloprid, egg plant, efficacy

Procedia PDF Downloads 208
2573 Location Management in Wireless Sensor Networks with Mobility

Authors: Amrita Anil Agashe, Sumant Tapas, Ajay Verma Yogesh Sonavane, Sourabh Yeravar

Abstract:

Due to advancement in MEMS technology today wireless sensors network has gained a lot of importance. The wide range of its applications includes environmental and habitat monitoring, object localization, target tracking, security surveillance etc. Wireless sensor networks consist of tiny sensor devices called as motes. The constrained computation power, battery power, storage capacity and communication bandwidth of the tiny motes pose challenging problems in the design and deployment of such systems. In this paper, we propose a ubiquitous framework for Real-Time Tracking, Sensing and Management System using IITH motes. Also, we explain the algorithm that we have developed for location management in wireless sensor networks with the aspect of mobility. Our developed framework and algorithm can be used to detect emergency events and safety threats and provides warning signals to handle the emergency.

Keywords: mobility management, motes, multihop, wireless sensor networks

Procedia PDF Downloads 402
2572 A Composite Beam Element Based on Global-Local Superposition Theory for Prediction of Delamination in Composite Laminates

Authors: Charles Mota Possatti Júnior, André Schwanz de Lima, Maurício Vicente Donadon, Alfredo Rocha de Faria

Abstract:

An interlaminar damage model is combined with a beam element formulation based on global-local superposition to assess delamination in composite laminates. The variations in the mechanical properties in the laminate, generated by the presence of delamination, are calculated as a function of the displacements in the interface layers. The global-local superposition of displacement fields ensures the zig-zag behaviour of stresses and displacement, and the number of degrees of freedom (DOFs) is independent of the number of layers. The displacements and stresses are calculated as a function of DOFs commonly used in traditional beam elements. Finally, the finite element(FE) formulation is extended to handle cases of different thicknesses, and then the FE model predictions are compared with results obtained from analytical solutions and commercial finite element codes.

Keywords: delamination, global-local superposition theory, single beam element, zig-zag, interlaminar damage model

Procedia PDF Downloads 102
2571 CFD Prediction of the Round Elbow Fitting Loss Coefficient

Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli

Abstract:

Pressure loss in ductworks is an important factor to be considered in design of engineering systems such as power-plants, refineries, HVAC systems to reduce energy costs. Ductwork can be composed by straight ducts and different types of fittings (elbows, transitions, converging and diverging tees and wyes). Duct fittings are significant sources of pressure loss in fluid distribution systems. Fitting losses can be even more significant than equipment components such as coils, filters, and dampers. At the present work, a conventional 90o round elbow under turbulent incompressible airflow is studied. Mass, momentum, and k-e turbulence model equations are solved employing the finite volume method. The SIMPLE algorithm is used for the pressure-velocity coupling. In order to validate the numerical tool, the elbow pressure loss coefficient is determined using the same conditions to compare with ASHRAE database. Furthermore, the effect of Reynolds number variation on the elbow pressure loss coefficient is investigated. These results can be useful to perform better preliminary design of air distribution ductworks in air conditioning systems.

Keywords: duct fitting, pressure loss, elbow, thermodynamics

Procedia PDF Downloads 376
2570 The Senior Traveler Market as a Competitive Advantage for the Luxury Hotel Sector in the UK Post-Pandemic

Authors: Feyi Olorunshola

Abstract:

Over the last few years, the senior travel market has been noted for its potential in the wider tourism industry. The tourism sector includes the hotel and hospitality, travel, transportation, and several other subdivisions to make it economically viable. In particular, the hotel attracts a substantial part of the expenditure in tourism activities as when people plan to travel, suitable accommodation for relaxation, dining, entertainment and so on is paramount to their decision-making. The global retail value of the hotel as of 2018 was significant for tourism. But, despite indications of the hotel to the tourism industry at large, very few empirical studies are available to establish how this sector can leverage on the senior demographic to achieve competitive advantage. Predominantly, studies on the mature market have focused on destination tourism, with a limited investigation on the hotel which makes a significant contribution to tourism. Also, several scholarly studies have demonstrated the importance of the senior travel market to the hotel, yet there is very little empirical research in the field which has explored the driving factors that will become the accepted new normal for this niche segment post-pandemic. Giving that the hotel already operates in a highly saturated business environment, and on top of this pre-existing challenge, the ongoing global health outbreak has further put the sector in a vulnerable position. Therefore, the hotel especially the full-service luxury category must evolve rapidly for it to survive in the current business environment. The hotel can no longer rely on corporate travelers to generate higher revenue since the unprecedented wake of the pandemic in 2020 many organizations have invented a different approach of conducting their businesses online, therefore, the hotel needs to anticipate a significant drop in business travellers. However, the rooms and the rest of the facilities must be occupied to keep their business operating. The way forward for the hotel lies in the leisure sector, but the question now is to focus on the potential demographics of travelers, in this case, the seniors who have been repeatedly recognized as the lucrative market because of increase discretionary income, availability of time and the global population trends. To achieve the study objectives, a mixed-method approach will be utilized drawing on both qualitative (netnography) and quantitative (survey) methods, cognitive and decision-making theories (means-end chain) and competitive theories to identify the salient drivers explaining senior hotel choice and its influence on their decision-making. The target population are repeated seniors’ age 65 years and over who are UK resident, and from the top tourist market to the UK (USA, Germany, and France). Structural equation modelling will be employed to analyze the datasets. The theoretical implication is the development of new concepts using a robust research design, and as well as advancing existing framework to hotel study. Practically, it will provide the hotel management with the latest information to design a competitive marketing strategy and activities to target the mature market post-pandemic and over a long period.

Keywords: competitive advantage, covid-19, full-service hotel, five-star, luxury hotels

Procedia PDF Downloads 108
2569 The Tadpole-Shaped Polypeptides with Two Regulable (Alkyl Chain) Tails

Authors: Hua Jin, Il Kim

Abstract:

The biocompatible tadpole-shaped polypeptides with one cyclic polypeptides ring and two alkyl chain tails were synthesized by N-heterocyclic carbine (NHC)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). First, the NHC precursor, denoted as [NHC(H)][HCO₃], with two alkyl chains at the nitrogen was prepared by a simple anion metathesis of imidazole(in)ium chlorides with KHCO₃. Then NHC releasing from the [NHC(H)][HCO₃] directly initiated the ROP of NCA to produce the cyclic polypeptides. Finally, the tadpole-shaped polypeptides with two regulable tails were obtained. The target polypeptides were characterized by nuclear magnetic resonance spectrum (1H NMR), Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization-time of flight mass spectra (MALDI-TOF MS). This pioneering approach simplifies the synthesis procedures of tadpole-shaped polypeptides compared to other methods, which usually requires specific intramolecular ring-closure reaction.

Keywords: cyclic polypeptides, α-amino acid N-carboxyanhydrides, N-heterocyclic carbene, ring-opening polymerization, tadpole-shaped

Procedia PDF Downloads 188
2568 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution

Authors: P. Zarfam, M. Mansouri Baghbaderani

Abstract:

In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.

Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution

Procedia PDF Downloads 232
2567 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 401
2566 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm

Procedia PDF Downloads 502
2565 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method

Authors: Ibrahim Cicek, Melike Nikbay

Abstract:

Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.

Keywords: optimization, e-powertrain, optimal control, electric vehicles

Procedia PDF Downloads 108
2564 Rapid Detection of MBL Genes by SYBR Green Based Real-Time PCR

Authors: Taru Singh, Shukla Das, V. G. Ramachandran

Abstract:

Objectives: To develop SYBR green based real-time PCR assay to detect carbapenemases (NDM, IMP) genes in E. coli. Methods: A total of 40 E. coli from stool samples were tested. Six were previously characterized as resistant to carbapenems and documented by PCR. The remaining 34 isolates previously tested susceptible to carbapenems and were negative for these genes. Bacterial RNA was extracted using manual method. The real-time PCR was performed using the Light Cycler III 480 instrument (Roche) and specific primers for each carbapenemase target were used. Results: Each one of the two carbapenemase gene tested presented a different melting curve after PCR amplification. The melting temperature (Tm) analysis of the amplicons identified was as follows: blaIMP type (Tm 82.18°C), blaNDM-1 (Tm 78.8°C). No amplification was detected among the negative samples. The results showed 100% concordance with the genotypes previously identified. Conclusions: The new assay was able to detect the presence of two different carbapenemase gene type by real-time PCR.

Keywords: resistance, b-lactamases, E. coli, real-time PCR

Procedia PDF Downloads 396
2563 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis

Authors: Hamd Rezaeifar, Hamid Reza Sahriari

Abstract:

Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.

Keywords: accident, data mining, neural network, GIS

Procedia PDF Downloads 33
2562 Evaluation Synthesis of Private Sector Engagement in International Development

Authors: Valerie Habbel, Magdalena Orth, Johanna Richter, Steffen Schimko

Abstract:

Cooperation between development actors and the private sector is becoming increasingly important, as it is expected to mobilize additional resources to achieve the Sustainable Development Goals (SDGs), among other things. However, whether the goals of cooperation are achieved has so far only been explored in evaluations and studies of individual projects and instruments. The evaluation synthesis attempts to close this gap by systematically analyzing existing evidence (evaluations and academic studies) from national and international development cooperation on private sector engagement. Overall, the evaluations and studies considered report mainly positive effects on investors and donors, intermediaries, partner countries, and target groups. However, various analyses, including on the quality of the evaluations, point to a positive bias in the results. The evaluation synthesis makes recommendations on the definition of indicators, the measurement and evaluation of impacts and additionality, knowledge management, and the consideration of transaction costs in cooperation with private actors.

Keywords: evaluation synthesis, private sector engagement, international development, sustainable development

Procedia PDF Downloads 188
2561 Experimentally Validated Analytical Model for Thermal Analysis of Multi-Stage Depressed Collector

Authors: Vishant Gahlaut, A Mercy Latha, Sanjay Kumar Ghosh

Abstract:

Multi-stage depressed collectors (MDC) are used as an efficiency enhancement technique in traveling wave tubes the high-energy electron beam, after its interaction with the RF signal, gets velocity sorted and collected at various depressed electrodes of the MDC. The ultimate goal is to identify an optimum thermal management scheme (cooling mechanism) that could extract the heat efficiently from the electrodes. Careful thermal analysis, incorporating the cooling mechanism is required to ensure that the maximum temperature does not exceed the safe limits. A simple analytical model for quick prediction of the thermal has been developed. The model has been developed for the worst-case un-modulated DC condition, where all the thermal power is dissipated in the last electrode (typically, fourth electrode in the case of the four-stage depressed collector). It considers the thermal contact resistances at various braze joints accounting for the practical non-uniformities. Analytical results obtained from the model have been validated with simulated and experimental results.

Keywords: multi-stage depressed collector, TWTs, thermal contact resistance, thermal management

Procedia PDF Downloads 208
2560 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network

Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi

Abstract:

The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.

Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design

Procedia PDF Downloads 254
2559 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm

Procedia PDF Downloads 412
2558 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.

Keywords: indoor positioning system, wireless sensor networks, measurement delay

Procedia PDF Downloads 466
2557 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 418
2556 Nuclear Powered UAV for Surveillances and Aerial Photography

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.

Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line

Procedia PDF Downloads 400
2555 Study the Action of Malathion Induced Enzymatic Changes in the Target Organ of Fish Labeo Rohita

Authors: Sudha Summarwar, Jyotsana Pandey, Deepali Lall

Abstract:

The Malathion compound has the great tendency to be accumulated in the organs of the fishes both if it is present in traces or in higher amount in the aquatic environment. It has the tendency to be accumulated more in quantity in the organs directly exposed to it. The accumulation was found to be time and concentration dependent. The accumulation of malathion was maximum in gills and is the minimum in the brain. Effect of different sub-lethal concentrations (l/5th, l/l0th, l/15th, l/20th, and 1/25th fractions of 96 hr. LC50) of malathion compound on acid phosphatase (AcPase), alkaline phosphatase (AlPase), serum glutamic oxalacetic transaminase (SGOT) and Serum Glucose-6-Phosphatase (S-G-6-Pase), serum glutamic pyruvic transaminase (SGPT) in blood of Labeo rohita exposed for the period of 15. 30, 45, and 60 days, have been studied in present investigations. In general the alterations were concentrations and duration dependent.

Keywords: AcPase, AlPase, Labeo rohita, malathion, S-G-6-Pase, SGOT, SGPT

Procedia PDF Downloads 306
2554 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology

Authors: I. F. Ejim, F. L. Kamen

Abstract:

Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.

Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction

Procedia PDF Downloads 317
2553 Group Decision Making through Interval-Valued Intuitionistic Fuzzy Soft Set TOPSIS Method Using New Hybrid Score Function

Authors: Syed Talib Abbas Raza, Tahseen Ahmed Jilani, Saleem Abdullah

Abstract:

This paper presents interval-valued intuitionistic fuzzy soft sets based TOPSIS method for group decision making. The interval-valued intuitionistic fuzzy soft set is a mutation of an interval-valued intuitionistic fuzzy set and soft set. In group decision making problems IVIFSS makes the process much more algebraically elegant. We have used weighted arithmetic averaging operator for aggregating the information and define a new Hybrid Score Function as metric tool for comparison between interval-valued intuitionistic fuzzy values. In an illustrative example we have applied the developed method to a criminological problem. We have developed a group decision making model for integrating the imprecise and hesitant evaluations of multiple law enforcement agencies working on target killing cases in the country.

Keywords: group decision making, interval-valued intuitionistic fuzzy soft set, TOPSIS, score function, criminology

Procedia PDF Downloads 573
2552 Automatic Censoring in K-Distribution for Multiple Targets Situations

Authors: Naime Boudemagh, Zoheir Hammoudi

Abstract:

The parameters estimation of the K-distribution is an essential part in radar detection. In fact, presence of interfering targets in reference cells causes a decrease in detection performances. In such situation, the estimate of the shape and the scale parameters are far from the actual values. In the order to avoid interfering targets, we propose an Automatic Censoring (AC) algorithm of radar interfering targets in K-distribution. The censoring technique used in this work offers a good discrimination between homogeneous and non-homogeneous environments. The homogeneous population is then used to estimate the unknown parameters by the classical Method of Moment (MOM). The AC algorithm does not need any prior information about the clutter parameters nor does it require both the number and the position of interfering targets. The accuracy of the estimation parameters obtained by this algorithm are validated and compared to various actual values of the shape parameter, using Monte Carlo simulations, this latter show that the probability of censing in multiple target situations are in good agreement.

Keywords: parameters estimation, method of moments, automatic censoring, K distribution

Procedia PDF Downloads 363
2551 Prediction and Analysis of Human Transmembrane Transporter Proteins Based on SCM

Authors: Hui-Ling Huang, Tamara Vasylenko, Phasit Charoenkwan, Shih-Hsiang Chiu, Shinn-Ying Ho

Abstract:

The knowledge of the human transporters is still limited due to technically demanding procedure of crystallization for the structural characterization of transporters by spectroscopic methods. It is desirable to develop bioinformatics tools for effective analysis of available sequences in order to identify human transmembrane transporter proteins (HMTPs). This study proposes a scoring card method (SCM) based method for predicting HMTPs. We estimated a set of propensity scores of dipeptides to be HMTPs using SCM from the training dataset (HTS732) consisting of 366 HMTPs and 366 non-HMTPs. SCM using the estimated propensity scores of 20 amino acids and 400 dipeptides -as HMTPs, has a training accuracy of 87.63% and a test accuracy of 66.46%. The five top-ranked dipeptides include LD, NV, LI, KY, and MN with scores 996, 992, 989, 987, and 985, respectively. Five amino acids with the highest propensity scores are Ile, Phe, Met, Gly, and Leu, that hydrophobic residues are mostly highly-scored. Furthermore, obtained propensity scores were used to analyze physicochemical properties of human transporters.

Keywords: dipeptide composition, physicochemical property, human transmembrane transporter proteins, human transmembrane transporters binding propensity, scoring card method

Procedia PDF Downloads 358
2550 A Socio-Technical Approach to Cyber-Risk Assessment

Authors: Kitty Kioskli, Nineta Polemi

Abstract:

Evaluating the levels of cyber-security risks within an enterprise is most important in protecting its information system, services and all its digital assets against security incidents (e.g. accidents, malicious acts, massive cyber-attacks). The existing risk assessment methodologies (e.g. eBIOS, OCTAVE, CRAMM, NIST-800) adopt a technical approach considering as attack factors only the capability, intention and target of the attacker, and not paying attention to the attacker’s psychological profile and personality traits. In this paper, a socio-technical approach is proposed in cyber risk assessment, in order to achieve more realistic risk estimates by considering the personality traits of the attackers. In particular, based upon principles from investigative psychology and behavioural science, a multi-dimensional, extended, quantifiable model for an attacker’s profile is developed, which becomes an additional factor in the cyber risk level calculation.

Keywords: attacker, behavioural models, cyber risk assessment, cybersecurity, human factors, investigative psychology, ISO27001, ISO27005

Procedia PDF Downloads 142
2549 River Bank Erosion Studies: A Review on Investigation Approaches and Governing Factors

Authors: Azlinda Saadon

Abstract:

This paper provides detail review on river bank erosion studies with respect to their processes, methods of measurements and factors governing river bank erosion. Bank erosion processes are commonly associated with river changes initiation and development, through width adjustment and planform evolution. It consists of two main types of erosion processes; basal erosion due to fluvial hydraulic force and bank failure under the influence of gravity. Most studies had only focused on one factor rather than integrating both factors. Evidences of previous works have shown integration between both processes of fluvial hydraulic force and bank failure. Bank failure is often treated as probabilistic phenomenon without having physical characteristics and the geotechnical aspects of the bank. This review summarizes the findings of previous investigators with respect to measurement techniques and prediction rates of river bank erosion through field investigation, physical model and numerical model approaches. Factors governing river bank erosion considering physical characteristics of fluvial erosion are defined.

Keywords: river bank erosion, bank erosion, dimensional analysis, geotechnical aspects

Procedia PDF Downloads 414
2548 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 22
2547 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 210