Search results for: robust penalized regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4607

Search results for: robust penalized regression

4397 The Relationship Between Hourly Compensation and Unemployment Rate Using the Panel Data Regression Analysis

Authors: S. K. Ashiquer Rahman

Abstract:

the paper concentrations on the importance of hourly compensation, emphasizing the significance of the unemployment rate. There are the two most important factors of a nation these are its unemployment rate and hourly compensation. These are not merely statistics but they have profound effects on individual, families, and the economy. They are inversely related to one another. When we consider the unemployment rate that will probably decline as hourly compensations in manufacturing rise. But when we reduced the unemployment rates and increased job prospects could result from higher compensation. That’s why, the increased hourly compensation in the manufacturing sector that could have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, we use panel data regression models to evaluate the expected link between hourly compensation and unemployment rate in order to determine the effect of hourly compensation on unemployment rate. We estimate the fixed effects model, evaluate the error components, and determine which model (the FEM or ECM) is better by pooling all 60 observations. We then analysis and review the data by comparing 3 several countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of the extensive research on how the hourly compensation effects on the unemployment rate. Additionally, this paper offers relevant and useful informational to help the government and academic community use an econometrics and social approach to lessen on the effect of the hourly compensation on Unemployment rate to eliminate the problem.

Keywords: hourly compensation, Unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model

Procedia PDF Downloads 81
4396 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression

Procedia PDF Downloads 304
4395 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems

Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis

Abstract:

Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.

Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties

Procedia PDF Downloads 153
4394 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 392
4393 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria

Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah

Abstract:

The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.

Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models

Procedia PDF Downloads 35
4392 Non-Linear Regression Modeling for Composite Distributions

Authors: Mostafa Aminzadeh, Min Deng

Abstract:

Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.

Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions

Procedia PDF Downloads 32
4391 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce

Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron

Abstract:

This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.

Keywords: e-commerce, statistical modeling, regression, empirical research

Procedia PDF Downloads 226
4390 The Magnitude and Associated Factors of Immune Hemolytic Anemia among Human Immuno Deficiency Virus Infected Adults Attending University of Gondar Comprehensive Specialized Hospital North West Ethiopia 2021 GC, Cross Sectional Study Design

Authors: Samul Sahile Kebede

Abstract:

Back ground: -Immune hemolytic anemia commonly affects human immune deficiency, infected individuals. Among anemic HIV patients in Africa, the burden of IHA due to autoantibody was ranged from 2.34 to 3.06 due to the drug was 43.4%. IHA due to autoimmune is potentially a fatal complication of HIV, which accompanies the greatest percent from acquired hemolytic anemia. Objective: -The main aim of this study was to determine the magnitude and associated factors of immune hemolytic anemia among human immuno deficiency virus infected adults at the university of Gondar comprehensive specialized hospital north west Ethiopia from March to April 2021. Methods: - An institution-based cross-sectional study was conducted on 358 human immunodeficiency virus-infected adults selected by systematic random sampling at the University of Gondar comprehensive specialized hospital from March to April 2021. Data for socio-demography, dietary and clinical data were collected by structured pretested questionnaire. Five ml of venous blood was drawn from each participant and analyzed by Unicel DHX 800 hematology analyzer, blood film examination, and antihuman globulin test were performed to the diagnosis of immune hemolytic anemia. Data was entered into Epidata version 4.6 and analyzed by STATA version 14. Descriptive statistics were computed and firth penalized logistic regression was used to identify predictors. P value less than 0.005 interpreted as significant. Result; - The overall prevalence of immune hemolytic anemia was 2.8 % (10 of 358 participants). Of these, 5 were males, and 7 were in the 31 to 50 year age group. Among individuals with immune hemolytic anemia, 40 % mild and 60 % moderate anemia. The factors that showed association were family history of anemia (AOR 8.30 at 95% CI 1.56, 44.12), not eating meat (AOR 7.39 at 95% CI 1.25, 45.0), and high viral load 6.94 at 95% CI (1.13, 42.6). Conclusion and recommendation; Immune hemolytic anemia is less frequent condition in human immunodeficiency virus infected adults, and moderate anemia was common in this population. The prevalence was increased with a high viral load, a family history of anemia, and not eating meat. In these patients, early detection and treatment of immune hemolytic anemia is necessary.

Keywords: anemia, hemolytic, immune, auto immune, HIV/AIDS

Procedia PDF Downloads 106
4389 Financial Inclusion and Modernization: Secure Energy Performance in Shanghai Cooperation Organization

Authors: Shama Urooj

Abstract:

The present work investigates the relationship among financial inclusion, modernization, and energy performance in SCO member countries during the years 2011–2021. PCA is used to create composite indexes of financial inclusion, modernization, and energy performance. We used panel regression models that are both reliable and heteroscedasticity-consistent to look at the relationship among variables. The findings indicate that financial inclusion (FI) and modernization, along with the increased FDI, all appear to contribute to the energy performance in the SCO member countries. However, per capita GDP has a negative impact on energy performance. These results are unbiased and consistent with the robust results obtained by applying different econometric models. Feasible Generalized Least Square (FGLS) estimation is also used for checking the uniformity of the main model results. This research work concludes that there has been no policy coherence in SCO member countries regarding the coordination of growing financial inclusion and modernization for energy sustainability in recent years. In order to improve energy performance with modern development, policies regarding financial inclusion and modernization need be integrated both at national as well as international levels.

Keywords: financial inclusion, energy performance, modernization, technological development, SCO.

Procedia PDF Downloads 75
4388 The Need for a More Robust Legal Framework to Curb the Rise in Violence against Game Officials

Authors: A. Roomy

Abstract:

The dramatic rise in violence against game officials has affected all levels of sports including recreational, amateur, and professional sports. One way to combat this rise in violence is through the creation of laws specifically aimed at preventing and punishing this kind of violence. This paper will use related legal cases as a starting point to explore possible ways of better protecting the safety of game officials. It will do this by looking at relevant cases, related legal issues, and two specific ways of reducing violence against game officials. In closing, it will be argued that there needs to be a more robust legal approach with emphasis on criminal and civil penalties for assault and battery, and a more comprehensive social approach with emphasis on raising social awareness on the need to protect game officials from violence.

Keywords: game officials, legal issues, safety, violence

Procedia PDF Downloads 374
4387 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Viktor M. Denisov

Abstract:

A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.

Keywords: guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture

Procedia PDF Downloads 430
4386 Opportunities for Lesbian/Gay/Bisexual/Transgender/Queer/Questioning Tourism in Vietnam

Authors: Eric D. Olson

Abstract:

The lesbian/gay/bisexual/transgender/queer/questioning tourist (LGBTQ+) travels more frequently, spends more money on travel, and is more likely to travel internationally compared to their straight/heterosexual counterparts. For Vietnam, this represents a huge opportunity to increase international tourism, considering social advancements and recognition of the LGBTQ+ have greatly increased in the past few years in Vietnam. For example, Vietnam’s Health Ministry confirmed in 2022 that same-sex attraction and being transgender is not a mental health condition. A robust hospitality ecosystem of LGBTQ+ tourism suppliers already exists in Vietnam catering to LGBTQ+ tourists (e.g., Gay Hanoi Tours, VietPride). Vietnam is a safe and welcoming destination with incredible nature, cosmopolitan cities, and friendly people; however, there is a dearth of academic and industry research that has examined how LGBTQ+ international tourists perceive Vietnam as an LGBTQ+ friendly destination. To rectify this gap, this research examines Vietnam as an LGBTQ+ destination in order to provide government officials, destination marketers, and industry practitioners with insight into this increasingly visible tourist market segment. A self-administered survey instrument was administered to n=375 international LGBTQ+ tourists to examine their perceptions of Vietnam. A factor analysis found three categories of LGBTQ+ factors of visitation to Vietnam: safety and security (Eigenvalue = 4.12, variance = 32.45, α = .82); LGBTQ+ attractions (Eigenvalue = 3.65 variance = 24.23, α = .75); and friendly interactions (Eigenvalue = 3.71, variance = 10.45, α = .96). Multiple regression was used to examine LGBTQ+ visitation factors and intention to visit Vietnam, F=12.20 (2, 127), p < .001, R2 = .56. Safety and security (β = 0.42, p < .001), LGBTQ+ attractions (β = 0.61, p < .001) and friendly interactions (β = 0.42, p < .001) are predictors to visit Vietnam. Results are consistent with previous research that highlight safety/security is of utmost importance to the community when traveling. Attractions, such as LGBTQ+ tours, suppliers, and festivals can also be used as a pull factor in encouraging tourism. Implications/limitations will be discussed.

Keywords: tourism, LGBTQ, vietnam, regression

Procedia PDF Downloads 67
4385 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study

Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming

Abstract:

Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.

Keywords: binary outcomes, statistical methods, clinical trials, simulation study

Procedia PDF Downloads 114
4384 Five Pitfalls in Defining a Health System and Implications for Research and Management

Authors: Macdonald Kanyangale, Sandram Naluso

Abstract:

Globally, researchers have struggled over time to adequately define the notion of health system to inform research. This study is significant because it proposes an integrative framework for a robust definition of the health system. The objective of this article is to examine major pitfalls in definitions of health system used in prior literature and implications of these for research and management. The study used methodological steps of a scoping review proposed by Arksey and O'Malley to identify and examine 24 definitions of a health system in articles selected from six databases and web search engines. Thematic analysis was used to delineate and categorise definitional pitfalls into broader themes. There are a plethora of five major pitfalls in the extant definitions of a health system which may easily scupper any unsuspecting researcher if not avoided or addressed in research. These definitional pitfalls are reductionist assumptions which ignore dynamic and complex connections, overly wide boundary and lack of specification of levels in a health system, and limited focus on process in a health system. In addition, there is the tendency of treating different components of the health system as equal and simplifying of the ontological complexity of the health system. Future scholars are advised to avoid or address the identified five major pitfalls if they are to develop robust definitions of an HS. The use of an integrative framework for a robust definition of a health system is recommended, while implications of the pitfalls are discussed as a basis and catalyst for complexity-informed research and managing interactively.

Keywords: complexity management, health system, pitfalls, reductionism, research

Procedia PDF Downloads 135
4383 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.

Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE

Procedia PDF Downloads 428
4382 Robust Speed Sensorless Control to Estimated Error for PMa-SynRM

Authors: Kyoung-Jin Joo, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Recently, the permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) that can be substituted for the induction motor has been studying because of the needs of the development of the premium high efficiency motor for the minimum energy performance standard (MEPS). PMa-SynRM is required to the speed and position information for motor speed and torque controls. However, to apply the sensors has many problems that are sensor mounting space shortage and additional cost, etc. Therefore, in this paper, speed-sensorless control based on model reference adaptive system (MRAS) is introduced to eliminate the sensor. The sensorless method is constructed in a reference model as standard and an adaptive model as the state observer. The proposed algorithm is verified by the simulation.

Keywords: PMa-SynRM, sensorless control, robust estimation, MRAS method

Procedia PDF Downloads 404
4381 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius

Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė

Abstract:

With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.

Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter

Procedia PDF Downloads 52
4380 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques

Authors: Jonathan Iworiso

Abstract:

Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.

Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains

Procedia PDF Downloads 107
4379 Self-Image of Police Officers

Authors: Leo Carlo B. Rondina

Abstract:

Self-image is an important factor to improve the self-esteem of the personnel. The purpose of the study is to determine the self-image of the police. The respondents were the 503 policemen assigned in different Police Station in Davao City, and they were chosen with the used of random sampling. With the used of Exploratory Factor Analysis (EFA), latent construct variables of police image were identified as follows; professionalism, obedience, morality and justice and fairness. Further, ordinal regression indicates statistical characteristics on ages 21-40 which means the age of the respondent statistically improves self-image.

Keywords: police image, exploratory factor analysis, ordinal regression, Galatea effect

Procedia PDF Downloads 287
4378 Regression Analysis of Travel Indicators and Public Transport Usage in Urban Areas

Authors: Mehdi Moeinaddini, Zohreh Asadi-Shekari, Muhammad Zaly Shah, Amran Hamzah

Abstract:

Currently, planners try to have more green travel options to decrease economic, social and environmental problems. Therefore, this study tries to find significant urban travel factors to be used to increase the usage of alternative urban travel modes. This paper attempts to identify the relationship between prominent urban mobility indicators and daily trips by public transport in 30 cities from various parts of the world. Different travel modes, infrastructures and cost indicators were evaluated in this research as mobility indicators. The results of multi-linear regression analysis indicate that there is a significant relationship between mobility indicators and the daily usage of public transport.

Keywords: green travel modes, urban travel indicators, daily trips by public transport, multi-linear regression analysis

Procedia PDF Downloads 548
4377 Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin

Authors: A. Ishag Mohamed, A. A. Rabah

Abstract:

The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data.

Keywords: N-Alkanes, N-Alkenes, nonparametric, regression

Procedia PDF Downloads 654
4376 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: ballistic velocity, stainless steel, numerical approaches, security screen

Procedia PDF Downloads 163
4375 Robust Control of Cyber-Physical System under Cyber Attacks Based on Invariant Tubes

Authors: Bruno Vilić Belina, Jadranko Matuško

Abstract:

The rapid development of cyber-physical systems significantly influences modern control systems introducing a whole new range of applications of control systems but also putting them under new challenges to ensure their resiliency to possible cyber attacks, either in the form of data integrity attacks or deception attacks. This paper presents a model predictive approach to the control of cyber-physical systems robust to cyber attacks. We assume that a cyber attack can be modelled as an additive disturbance that acts in the measuring channel. For such a system, we designed a tube-based predictive controller based. The performance of the designed controller has been verified in Matlab/Simulink environment.

Keywords: control systems, cyber attacks, resiliency, robustness, tube based model predictive control

Procedia PDF Downloads 67
4374 Two-stage Robust Optimization for Collaborative Distribution Network Design Under Uncertainty

Authors: Reza Alikhani

Abstract:

This research focuses on the establishment of horizontal cooperation among companies to enhance their operational efficiency and competitiveness. The study proposes an approach to horizontal collaboration, called coalition configuration, which involves partnering companies sharing distribution centers in a network design problem. The paper investigates which coalition should be formed in each distribution center to minimize the total cost of the network. Moreover, potential uncertainties, such as operational and disruption risks, are considered during the collaborative design phase. To address this problem, a two-stage robust optimization model for collaborative distribution network design under surging demand and facility disruptions is presented, along with a column-and-constraint generation algorithm to obtain exact solutions tailored to the proposed formulation. Extensive numerical experiments are conducted to analyze solutions obtained by the model in various scenarios, including decisions ranging from fully centralized to fully decentralized settings, collaborative versus non-collaborative approaches, and different amounts of uncertainty budgets. The results show that the coalition formation mechanism proposes some solutions that are competitive with the savings of the grand coalition. The research also highlights that collaboration increases network flexibility and resilience while reducing costs associated with demand and capacity uncertainties.

Keywords: logistics, warehouse sharing, robust facility location, collaboration for resilience

Procedia PDF Downloads 69
4373 Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties

Authors: Vedat Senol, Gursoy Turan, Anders Helmersson, Vortechz Andersson

Abstract:

In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented.

Keywords: uncertainty modeling, structural control, MR Damper, H∞, robust control

Procedia PDF Downloads 138
4372 Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type

Authors: S. Bangphan, P. Bangphan, C. Ketsombun, T. Sammana

Abstract:

Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice.

Keywords: brown rice, response surface methodology (RSM), peeling machine, optimization, paddy husker

Procedia PDF Downloads 574
4371 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero

Abstract:

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries

Procedia PDF Downloads 618
4370 V0 Physics at LHCb. RIVET Analysis Module for Z Boson Decay to Di-Electron

Authors: A. E. Dumitriu

Abstract:

The LHCb experiment is situated at one of the four points around CERN’s Large Hadron Collider, being a single-arm forward spectrometer covering 10 mrad to 300 (250) mrad in the bending (non-bending) plane, designed primarily to study particles containing b and c quarks. Each one of LHCb’s sub-detectors specializes in measuring a different characteristic of the particles produced by colliding protons, its significant detection characteristics including a high precision tracking system and 2 ring-imaging Cherenkov detectors for particle identification. The major two topics that I am currently concerned in are: the RIVET project (Robust Independent Validation of Experiment and Theory) which is an efficient and portable tool kit of C++ class library useful for validation and tuning of Monte Carlo (MC) event generator models by providing a large collection of standard experimental analyses useful for High Energy Physics MC generator development, validation, tuning and regression testing and V0 analysis for 2013 LHCb NoBias type data (trigger on bunch + bunch crossing) at √s=2.76 TeV.

Keywords: LHCb physics, RIVET plug-in, RIVET, CERN

Procedia PDF Downloads 428
4369 Preliminary Design Considerations for Achieving Stabilized Orbit, Telemetary, Command, and Ranging for HTS Communication Satellite

Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Samson Olufunmilayo Abodunrin, Muhammad Dokko Zubairu, Moshood Kareem

Abstract:

This paper discusses the consideration and trade-offs used for the implementation of robust systems for orbit stability; Telemetry, Command and Ranging (TC& R) for Nigcomsat-1R and applicability for planned NigComSat-2 satellites. NigComSat-1R satellite was built by China Academy of Space Technology (CAST). The Satellite designed with quad-band payload (L, C, Ku, and Ka) was launched on the 20th of December 2011. The functionality of all satellite is driven by robust systems including Attitude & Orbit Control System (AOCS) and TC&R. The planned Nigcomsat-2 is a high throughput Satellite expected to function with better AOCS and TC&R.

Keywords: AOCS, CAST, Nigcomsat-1R, TC&R

Procedia PDF Downloads 116
4368 On the Performance of Improvised Generalized M-Estimator in the Presence of High Leverage Collinearity Enhancing Observations

Authors: Habshah Midi, Mohammed A. Mohammed, Sohel Rana

Abstract:

Multicollinearity occurs when two or more independent variables in a multiple linear regression model are highly correlated. The ridge regression is the commonly used method to rectify this problem. However, the ridge regression cannot handle the problem of multicollinearity which is caused by high leverage collinearity enhancing observation (HLCEO). Since high leverage points (HLPs) are responsible for inducing multicollinearity, the effect of HLPs needs to be reduced by using Generalized M estimator. The existing GM6 estimator is based on the Minimum Volume Ellipsoid (MVE) which tends to swamp some low leverage points. Hence an improvised GM (MGM) estimator is presented to improve the precision of the GM6 estimator. Numerical example and simulation study are presented to show how HLPs can cause multicollinearity. The numerical results show that our MGM estimator is the most efficient method compared to some existing methods.

Keywords: identification, high leverage points, multicollinearity, GM-estimator, DRGP, DFFITS

Procedia PDF Downloads 262