Search results for: recast layer
2306 A Low-Cost Dye Solar Cells Based on Ordinary Glass as Substrates
Authors: Sangmo Jon, Ganghyok Kim, Kwanghyok Jong, Ilnam Jo, Hyangsun Kim, Kukhyon Pae, GyeChol Sin
Abstract:
The back contact dye solar cells (BCDSCs), in which the transparent conductive oxide (TCO) is omitted, have the potential to use intact low-cost general substrates such as glass, metal foil, and papers. Herein, we introduce a facile manufacturing method of a Ti back contact electrode for the BCDSCs. We found that the polylinkers such as poly(butyl titanate) have a strong binding property to make Ti particles connect with one another. A porous Ti film, which consists of Ti particles of ≤10㎛ size connected by a small amount of polylinkers, has an excellent low sheet resistance of 10 ohm sq⁻¹ for an efficient electron collection for DSCs. This Ti back contact electrode can be prepared by using a facile printing method under normal ambient conditions. Conjugating the new back contact electrode technology with the traditional monolithic structure using the carbon counter electrode, we fabricated all TCO-less DSCs. These four-layer structured DSCs consist of a dye-adsorbed nanocrystalline TiO₂ film on a glass substrate, a porous Ti back contact layer, a ZrO₂ spacer layer, and a carbon counter electrode in a layered structure. Under AM 1.5G and 100mWcm⁻² simulated sunlight illumination, the four-layer structured DSCs with N719 dyes and I⁻/I₃⁻ redox electrolytes achieved PCEs up to 5.21%.Keywords: dye solar cells, TCO-less, back contact, printing, porous Ti film
Procedia PDF Downloads 662305 Graphene/h-BN Heterostructure Interconnects
Authors: Nikhil Jain, Yang Xu, Bin Yu
Abstract:
The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects
Procedia PDF Downloads 3162304 Hydrodynamics of Shear Layers at River Confluences by Formation of Secondary Circulation
Authors: Ali Aghazadegan, Ali Shokri, Julia Mullarney
Abstract:
River confluences are areas where there is a lot of mixing, which is often caused by the formation of shear layers and helical motions. The hydrodynamics of secondary circulation at river confluences with low flow discharge ratios and a 90° junction angle are investigated in this study. The analysis is based on Delft 3D modelling, which includes a three-dimensional time-averaged velocity field, turbulence, and water surface levels that have been validated using laboratory data. Confluence structure was characterized by shear layer, secondary circulation, and mixing at the junction and post confluence channel. This study analysis formation of the shear layer by generation of secondary circulations in variation discharge ratios. The values of streamwise, cross-wise, and vertical components are used to estimate the secondary circulation observed within and downstream of the tributary mouth. These variables are estimated for three horizontal planes at Z = [0.14; 0.07; 0.02] and for eight cross-sections at X = [-0.1; 0.00; 0.10; 0.2; 0.30; 0.4; 0.5; 0.6] within a range of 0.05 Y 0.30.Keywords: river confluence, shear layer, secondary circulation, hydrodynamics
Procedia PDF Downloads 962303 Innate Immune Expression in Heterophils in Response to LPS
Authors: Rohita Gupta, G. S. Brah, R. Verma, C. S. Mukhopadhayay
Abstract:
Although chicken strains show differences in susceptibility to a number of diseases, the underlying immunological basis is yet to be elucidated. In the present study, heterophils were subjected to LPS stimulation and total RNA extraction, further differential gene expression was studied in broiler, layer and indigenous Aseel strain by Real Time RT-PCR at different time periods before and after induction. The expression of the 14 AvBDs and chTLR 1, 2, 3, 4, 5, 7, 15 and 21 was detectable in heterophils. The expression level of most of the AvBDs significantly increased (P<0.05) 3 hours post in vitro lipopolysaccharide challenge. Higher expression level and stronger activation of most AvBDs, NFkB-1 and IRF-3 in heterophils was observed with the stimulation of LPS in layer compared to broiler, and in Aseel compared to both layer and broiler. This investigation will allow more refined interpretation of immuno-genetic basis of the variable disease resistance/susceptibility in divergent stock of chicken including indigenous breed. Moreover, this study will be helpful in formulation of strategy for isolation of antimicrobial peptides from heterophils.Keywords: differential expression, heterophils, cytokines, defensin, TLR
Procedia PDF Downloads 4972302 The Scattering in Flexible Reactive Silencer Containing Rigid Partitioning
Authors: Muhammad Afzal, Junaid Uzair Satti
Abstract:
The noise emanating from the ducting of heating, ventilation, and air-conditioning (HVAC) system is often attenuated by using the dissipative silencers. Such devices work well for the high-frequency noise but are less operative in the low-frequency noise range. The present study analyzes a reactive silencer comprising expansion chamber of the elastic membranes partitioned symmetrically by a rigid plate. The Mode-Matching scheme has been developed to solve the governing boundary value problem. The orthogonal and non-orthogonal duct modes of acoustic pressures and normal velocities are matched at interfaces. It enables to recast the differential system into the infinite system of linear algebraic of equations, which is, then truncated and inverted for the solution. The truncated solution is validated through the conservation of energy and reconstruction of matching conditions. The results for scattering energy flux and transmission loss are shown against frequency and the dimensions of the chamber. It is seen that the stop-band of the silencer can be shifted to the broadband by changing the dimensions of the chamber and the properties of the elastic membranes. The modeled reactive silencer is more efficient in low frequency regime where the passive devices are least effective.Keywords: acoustic scattering, elastic membranes mode-matching, reactive silencer
Procedia PDF Downloads 1462301 Enhancing the Efficiency of Organic Solar Cells Using Metallic Nanoparticles
Authors: Sankara Rao Gollu, Ramakant Sharma, G. Srinivas, Souvik Kundu, Dipti Gupta
Abstract:
In recent years, bulk heterojunction organic solar cells (BHJ OSCs) based on polymer–fullerene attracted a large research attention due to their numerous advantages such as light weight, easy processability, eco-friendly, low-cost, and capability for large area roll-to-roll manufacturing. BHJ OSCs usually suffer from insufficient light absorption due to restriction on keeping thin ( < 150 nm) photoactive layer because of small exciton diffusion length ( ~ 10 nm) and low charge carrier mobilities. It is thus highly desirable that light absorption as well as charge transport properties are enhanced by alternative methods so as to improve the device efficiency. In this work, therefore, we have focused on the strategy of incorporating metallic nanostructures in the active layer or charge transport layer to enhance the absorption and improve the charge transport.Keywords: organic solar cell, efficiency, bulk heterojunction, polymer-fullerene
Procedia PDF Downloads 3972300 Experimental Investigation of Boundary Layer Instability and Transition on a Rotating Parabola in Axial Flow
Authors: Ali Kargar, Kamyar Mansour
Abstract:
In this paper the boundary layer instability and transition on a rotating parabola which is sheathed shape on a rotating 30 degrees total apex angle cone have been study by smoke visualization. The rotating cone especially 30 degrees total apex angle is a well-established subject in some previous novel works and also in our previous works. But in this paper a stabilizing effect is detected by the bluntness of nose and also surface curvature. A parabola model which is satisfying those conditions (sheathed parabola of the 30 degrees cone) has been built and studied in the wind tunnel. The results are shown that the boundary layer transition occurs at higher rotational Reynolds number in comparison by the cone. The results are shown in the visualization pictures and also are compared graphically.Keywords: transitional Reynolds number, wind tunnel, smoke visualization, rotating parabola
Procedia PDF Downloads 4162299 SPPO-Based Cation Exchange Membranes with a Positively Charged Layer for Cation Fractionation
Authors: Noor Ul Afsar, Wengen Ji, Bin Wu, Muhammad A. Shehzad, Liang Ge, Tongwen Xu
Abstract:
The synthesis of monovalent cation perm-selective membranes (MCPMs) to efficiently discriminate amongst cations from seawater is of great importance for several industrial applications. However, a technical approach is highly desired to construct MCPMs to obtain a high ionic flux and sustain perm-selectivity simultaneously. In the present work, the thickness of the quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) (QPPO) layer on the surface of the SPPO-PVA (SPVA) composite membrane was adjusted using a facile procedure to achieve high permselectivity without scarifying the ionic flux. The thickness of the selective layer was precisely controlled using various concentrations of the QPPO solution. By the introduction of the cationic layer on the SPVA membrane, the monovalent cation can be separated from the divalent cation by their difference in charge density. The influence of the selective barrier (thickness) endows MCPMs with high perm-selectivity up to 12.7 for 0.1 mol L⁻¹ Li⁺/Mg²⁺ system, which is very satisfactory for polymeric membranes. The fabricated membranes have low electrical resistance and high limiting current density (iₗᵢₘ). Keeping in view the ED results, the prepared membranes with selective surface layers could be a viable candidate for Li⁺ selective separation from divalent cation Mg²⁺.Keywords: monovalent cation perm-selective membranes, cation fractionation, perm-selectivity, ionic flux, electrodialysis
Procedia PDF Downloads 722298 Improved Performance of AlGaN/GaN HEMTs Using N₂/NH₃ Pretreatment before Passivation
Authors: Yifan Gao
Abstract:
Owing to the high breakdown field, high saturation drift velocity, 2DEG with high density and mobility and so on, AlGaN/GaN HEMTs have been widely used in high-frequency and high-power applications. To acquire a higher power often means higher breakdown voltage and higher drain current. Surface leakage current is usually the key issue affecting the breakdown voltage and power performance. In this work, we have performed in-situ N₂/NH₃ pretreatment before the passivation to suppress the surface leakage and achieve device performance enhancement. The AlGaN/GaN HEMT used in this work was grown on a 3-in. SiC substrate, whose epitaxial structure consists of a 3.5-nm GaN cap layer, a 25-nm Al₀.₂₅GaN barrier layer, a 1-nm AlN layer, a 400-nm i-GaN layer and a buffer layer. In order to analyze the mechanism for the N-based pretreatment, the details are measured by XPS analysis. It is found that the intensity of Ga-O bonds is decreasing and the intensity of Ga-N bonds is increasing, which means with the supplement of N, the dangling bonds on the surface are indeed reduced with the forming of Ga-N bonds, reducing the surface states. The surface states have a great influence on the leakage current, and improved surface states represent a better off-state of the device. After the N-based pretreatment, the breakdown voltage of the device with Lₛ𝒹=6 μm increased from 93V to 170V, which increased by 82.8%. Moreover, for HEMTs with Lₛ𝒹 of 6-μm, we can obtain a peak output power (Pout) of 12.79W/mm, power added efficiency (PAE) of 49.84% and a linear gain of 20.2 dB at 60V under 3.6GHz. Comparing the result with the reference 6-μm device, Pout is increased by 16.5%. Meanwhile, PAE and the linear gain also have a slight increase. The experimental results indicate that using N₂/NH₃ pretreatment before passivation is an attractive approach to achieving power performance enhancement.Keywords: AlGaN/GaN HEMT, N-based pretreatment, output power, passivation
Procedia PDF Downloads 3172297 Optical Breather in Phosphorene Monolayer
Authors: Guram Adamashvili
Abstract:
Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons
Procedia PDF Downloads 1492296 Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather
Authors: Usama Mohamed Ahamed
Abstract:
This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather.Keywords: concrete, bond, hot weather and carbon fiber, carbon fiber reinforced polymers
Procedia PDF Downloads 1062295 Independent Control over Surface Charge and Wettability Using Polyelectrolyte Architecture
Authors: Shanshan Guo, Xiaoying Zhu, Dominik Jańczewski, Koon Gee Neoh
Abstract:
Surface charge and wettability are two prominent physical factors governing cell adhesion and have been extensively studied in the literature. However, a comparison between the two driving forces in terms of their independent and cooperative effects in affecting cell adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol which allows two-dimensional and independent control over both surface charge and wettability. This protocol enables the unambiguous comparison of the effects of these two properties on cell adhesion. This strategy is implemented by controlling both the relative thickness of polyion layers in the layer-by-layer assembly and the polyion side chain chemical structures. The 2D property matrix spans surface isoelectric point ranging from 5 to 9 and water contact angle from 35º to 70º, with other interferential factors (e.g. roughness) eliminated. The interplay between these two surface variables influences 3T3 fibroblast cell adhesion. The results show that both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity led to the highest cell adhesion whereas negative charge and hydrophobicity led to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serving as a reference in future studies assessing cell adhesion to surfaces with known charge and wettability within the property range studied here.Keywords: cell adhesion, layer-by-layer, surface charge, surface wettability
Procedia PDF Downloads 2702294 Automatic API Regression Analyzer and Executor
Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty
Abstract:
As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.Keywords: automation impact regression, java doc, executor, analyzer, layers
Procedia PDF Downloads 4882293 The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading
Authors: Peyman Aela, Lu Zong, Guoqing Jing
Abstract:
Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box.Keywords: ballast, contact model, cyclic loading, DEM
Procedia PDF Downloads 1962292 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging
Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig
Abstract:
A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.Keywords: clogging, continuous casting, inclusion, simulation, submerged entry nozzle
Procedia PDF Downloads 2832291 Potentiostatic Growth of Hazenite Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K₂HPO₄/0.1 M Na₂HPO₄ Solution
Authors: Liping Wu, Durga Bhakta Pokharel, Junhua Dong, Changgang Wang, Lin Zhao, Wei Ke, Nan Chen
Abstract:
Hazenite conversion coating was deposited on AZ31 Mg alloy in a deaerated phosphate solution containing 0.1 M K₂HPO₄ and 0.1 M Na₂HPO₄ (Na₀.₁K0₀.₁) with pH 9 at −0.8 V. The coating mechanism of hazenite was elucidated by in situ potentiostatic current decay, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The volume of H₂ evolved during potentiostatic polarization was measured by a gas collection apparatus. The degradation resistance of the hazenite coating was evaluated in simulated body fluid (SBF) at 37℃ by using potentiodynamic polarization (PDP). The results showed that amorphous Mg(OH)₂ was deposited first, followed by the transformation of Mg(OH)₂ to amorphous MgHPO₄, subsequently the conversion of MgHPO₄ to crystallized K-struvite (KMgPO₄·6H₂O), finally the crystallization of crystallized hazenite (NaKMg₂(PO₄)₂·14H₂O). The deposited coating was composed of four layers where the inner layer is comprised of Mg(OH)₂, the middle layer of Mg(OH)₂ and MgHPO₄, the top layer of Mg(OH)₂, MgHPO₄ and K-struvite, the topmost layer of Mg(OH)₂, MgHPO₄, K-struvite and hazenite (NaKMg₂(PO₄)₂·14H₂O). The PD results showed that the hazenite coating decreased the corrosion rate by two orders of magnitude.Keywords: magnesium alloy, potentiostatic technique, hazenite, mineral conversion coating
Procedia PDF Downloads 1862290 Structural Evolution of Electrodeposited Ni Coating on Ti-6Al-4V Alloy during Heat Treatment
Authors: M. Abdoos, A. Amadeh, M. Adabi
Abstract:
In recent decades, the use of titanium and its alloys due to their high mechanical properties, light weight and their corrosion resistance has increased in military and industry applications. However, the poor surface properties can limit their widely usage. Many researches were carried out to improve their surface properties. The most effective technique is based on solid-state diffusion of elements that can form intermetallic compounds with the substrate. In the present work, inter-diffusion of nickel and titanium and formation of Ni-Ti intermetallic compounds in nickel-coated Ti-6Al-4V alloy have been studied. Initially, nickel was electrodeposited on the alloy using Watts bath at a current density of 20 mA/cm2 for 1 hour. The coated specimens were then heat treated in a tubular furnace under argon atmosphere at different temperatures near Ti β-transus to maximize the diffusion rate for various durations in order to improve the surface properties of the Ti-6Al-4V alloy. The effect of temperature and time on the thickness of diffusion layer and characteristics of intermetallic phases was studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and microhardness test. The results showed that a multilayer structure was formed after heat treatment: an outer layer of remaining nickel, an area of intermetallic layers with different compositions and solid solution of Ni-Ti. Three intermetallic layers was detected by EDS analysis, namely an outer layer with about 75 at.% Ni (Ni3Ti), an intermediate layer with 50 at.% Ni (NiTi) and finally an inner layer with 36 at.% Ni (NiTi2). It was also observed that the increase in time or temperature led to the formation of thicker intermetallic layers. Meanwhile, the microhardness of heat treated samples increased with formation of Ni-Ti intermetallics; however, its value depended on heat treatment parameters.Keywords: heat treatment, microhardness, Ni coating, Ti-6Al-4V
Procedia PDF Downloads 4342289 Security Architecture for Cloud Networking: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
In the cloud computing hierarchy IaaS is the lowest layer, all other layers are built over it. Thus it is the most important layer of cloud and requisite more importance. Along with advantages IaaS faces some serious security related issue. Mainly Security focuses on Integrity, confidentiality and availability. Cloud computing facilitate to share the resources inside as well as outside of the cloud. On the other hand, cloud still not in the state to provide surety to 100% data security. Cloud provider must ensure that end user/client get a Quality of Service. In this report we describe possible aspects of cloud related security.Keywords: cloud computing, cloud networking, IaaS, PaaS, SaaS, cloud security
Procedia PDF Downloads 5302288 Anatomical, Light and Scanning Electron Microscopical Study of Ostrich (Struthio camelus) Integument
Authors: Samir El-Gendy, Doaa Zaghloul
Abstract:
The current study dealt with the gross and microscopic anatomy of the integument of male ostrich in addition to the histological features of different areas of skin by light and SEM. The ostrich skin is characterized by prominent feather follicles and bristles. The number of feather follicles was determined per cm2 in different regions. The integument of ostrich had many modifications which appeared as callosities and scales, nail and toe pads. They were sternal, pubic and Achilles tendon callosities. The vacuolated epidermal cells were seen mainly in the skin of legs and to a lesser extent in the skin of back and Achilles areas. Higher lipogenic potential was expressed by epidermis from glabrous areas of ostrich skin. The dermal papillae were found in the skin of feathered area of neck and back and this was not a common finding in bird's skin which may give resistance against shearing forces in these regions of ostrich skin. The thickness of the keratin layer of ostrich varied, being thick and characteristically loose in the skin at legs, very thin and wavy at neck, while at Achilles skin area, scale and toe pad were thick and more compact, with the thickest very dense and wavy keratin layer at the nail. The dermis consisted of superficial layer of dense irregular connective tissue characterized by presence of many vacuoles of different sizes just under the basal lamina of the epithelium of epidermis and deep layer of dense regular connective tissue. This result suggested presence of fat droplets in this layer which may be to overcome the lack of good barrier of cutaneous water loss in epidermis.Keywords: ostrich, light microscopy, scanning electron microscopy, integument, skin modifications
Procedia PDF Downloads 2442287 Two-Dimensional Nanostack Based On Chip Wiring
Authors: Nikhil Jain, Bin Yu
Abstract:
The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h-BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h-BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects
Procedia PDF Downloads 4532286 Lipopolysaccharide Induced Avian Innate Immune Expression in Heterophils
Authors: Rohita Gupta, G. S. Brah, R. Verma, C. S. Mukhopadhayay
Abstract:
Although chicken strains show differences in susceptibility to a number of diseases, the underlying immunological basis is yet to be elucidated. In the present study, heterophils were subjected to LPS stimulation and total RNA extraction, further differential gene expression was studied in broiler, layer and indigenous Aseel strain by Real Time RT-PCR at different time periods before and after induction. The expression of the 14 AvBDs and chTLR 1, 2, 3, 4, 5, 7, 15 and 21 was detectable in heterophils. The expression level of most of the AvBDs significantly increased (P<0.05) 3 hours post in vitro lipopolysaccharide challenge. Higher expression level and stronger activation of most AvBDs, NFkB-1 and IRF-3 in heterophils was observed, with the stimulation of LPS in layer compared to broiler, and in Aseel compared to both layer and broiler. This investigation will allow more refined interpretation of immuno-genetic basis of the variable disease resistance/susceptibility in divergent stock of chicken including indigenous breed. Moreover this study will be helpful in formulation of strategy for isolation of antimicrobial peptides from heterophils.Keywords: differential expression, heterophils, cytokines, defensin, TLR
Procedia PDF Downloads 6172285 Preparation and Study of Pluronic F127 Monolayers at Air-Water Interface
Authors: Neha Kanodia, M. Kamil
Abstract:
Properties of mono layers of Pluronic F127 at air/water interface have been investigated by using Langmuir trough method. Pluronic F127 is a triblock copolymer of poly (ethyleneoxide) (PEO groups)– poly (propylene oxide) (PO groups)–poly(ethylene oxide) (PEO groups). Surface pressure versus mean molecular area isotherms is studied. The isotherm of the mono layer showed the characteristics of a pancake-to-brush transition upon compression of the mono layer. The effect of adding surfactant (SDS) to polymer and the effect of increasing loading on polymer was also studied. The effect of repeated compression and expansion cycle (or hysteresis curve) is investigated to know about stability of the film formed. Static elasticity of mono layer gives information about molecular arrangement, phase structure and phase transition.Keywords: surface-pressure, mean molecular area isotherms, hysteresis, static elasticity
Procedia PDF Downloads 4492284 Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films
Authors: Guo Lei, Wang Yue, Nakamura Yoshio, Shi Ji
Abstract:
Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films.Keywords: perpendicular exchange bias, magnetoelastically induced perpendicular magnetic anisotropy, CoO5nm/CoPt5nm]5 multilayer film with in-plane stress, perpendicular magnetic tunneling junction
Procedia PDF Downloads 4622283 Application of the Shallow Seismic Refraction Technique to Characterize the Foundation Rocks at the Proposed Tushka New City Site, South Egypt
Authors: Abdelnasser Mohamed, R. Fat-Helbary, H. El Khashab, K. EL Faragawy
Abstract:
Tushka New City is one of the proposed new cities in South Egypt. It is located in the eastern part of the western Desert of Egypt between latitude 22.878º and 22.909º N and longitude 31.525º and 31.635º E, about 60 kilometers far from Abu Simble City. The main target of the present study is the investigation of the shallow subsurface structure conditions and the dynamic characteristics of subsurface rocks using the shallow seismic refraction technique. Forty seismic profiles were conducted to calculate the P- and S-waves velocity at the study area. P- and SH-waves velocities can be used to obtain the geotechnical parameters and also SH-wave can be used to study the vibration characteristics of the near surface layers, which are important for earthquakes resistant structure design. The output results of the current study indicated that the P-waves velocity ranged from 450 to 1800 m/sec and from 1550 to 3000 m/sec for the surface and bedrock layer respectively. The SH-waves velocity ranged from 300 to 1100 m/sec and from 1000 to 1800 m/sec for the surface and bedrock layer respectively. The thickness of the surface layer and the depth to the bedrock layer were determined along each profile. The bulk density ρ of soil layers that used in this study was calculated for all layers at each profile in the study area. In conclusion, the area is mainly composed of compacted sandstone with high wave velocities, which is considered as a good foundation rock. The south western part of the study area has minimum values of the computed P- and SH-waves velocities, minimum values of the bulk density and the maximum value of the mean thickness of the surface layer.Keywords: seismic refraction, Tushak new city, P-waves, SH-waves
Procedia PDF Downloads 3812282 Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures
Authors: A. C. Sarmah
Abstract:
The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses.Keywords: debye length, depletion width, flat band capacitance, impurity concentration
Procedia PDF Downloads 4512281 Desalination Performance of a Passive Solar-Driven Membrane Distiller: Effect of Middle Layer Material and Thickness
Authors: Glebert C. Dadol, Pamela Mae L. Ucab, Camila Flor Y. Lobarbio, Noel Peter B. Tan
Abstract:
Water scarcity is a global problem and membrane-based desalination technologies are one of the promising solutions to this problem. In this study, a passive solar-driven membrane distiller was fabricated and tested for its desalination performance. The distiller was composed of a TiNOX plate solar absorber, cellulose-based upper and lower hydrophilic layers, a hydrophobic middle layer, and aluminum heatsinks. The effect of the middle layer material and thickness on the desalination performance was investigated in terms of distillate productivity and salinity. The materials used for the middle layer were a screen mesh (2 mm, 4 mm, 6 mm thickness) to generate an air gap, a PTFE membrane (0.3 mm thickness)), and a combination of the screen mesh and the PTFE membrane (2.3 mm total thickness). Salt water (35 g/L NaCl) was desalinated using the distiller at a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate productivity of 1.08 L/m2-h was achieved using a 2-mm screen mesh (air gap) but it also resulted in a high distillate salinity of 25.20 g/L. Increasing the thickness of the air gap lowered the distillate salinity but also decreased the distillate productivity. The lowest salinity of 1.07 g/L was achieved using a 6-mm air gap but the productivity was reduced to 0.08 L/m2-h. The use of the hydrophobic PTFE membrane increased the productivity (0.44 L/m2-h) compared to a 6-mm air gap but produced a distillate with high salinity (16.68 g/L). When using a combination of the screen mesh and the PTFE membrane, the productivity was 0.13 L/m2-h and a distillate salinity of 1.61 g/L. The distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. The use of a combination of the air gap and PTFE membrane slightly increased the productivity with comparable distillate salinity. Modifications and optimizations to the distiller can be done to improve further its performance.Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation
Procedia PDF Downloads 1182280 Curved Rectangular Patch Array Antenna Using Flexible Copper Sheet for Small Missile Application
Authors: Jessada Monthasuwan, Charinsak Saetiaw, Chanchai Thongsopa
Abstract:
This paper presents the development and design of the curved rectangular patch arrays antenna for small missile application. This design uses a 0.1mm flexible copper sheet on the front layer and back layer, and a 1.8mm PVC substrate on a middle layer. The study used a small missile model with 122mm diameter size with speed 1.1 Mach and frequency range on ISM 2.4 GHz. The design of curved antenna can be installation on a cylindrical object like a missile. So, our proposed antenna design will have a small size, lightweight, low cost, and simple structure. The antenna was design and analysis by a simulation result from CST microwave studio and confirmed with a measurement result from a prototype antenna. The proposed antenna has a bandwidth covering the frequency range 2.35-2.48 GHz, the return loss below -10 dB and antenna gain 6.5 dB. The proposed antenna can be applied with a small guided missile effectively.Keywords: rectangular patch arrays, small missile antenna, antenna design and simulation, cylinder PVC tube
Procedia PDF Downloads 3132279 Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application
Authors: Thierry Pauporté, Sana Koussi, Fabrice Odobel
Abstract:
The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described.Keywords: NiO, layer, p-type sensitized solar cells, electrodeposition
Procedia PDF Downloads 2972278 Perfectly Matched Layer Boundary Stabilized Using Multiaxial Stretching Functions
Authors: Adriano Trono, Federico Pinto, Diego Turello, Marcelo A. Ceballos
Abstract:
Numerical modeling of dynamic soil-structure interaction problems requires an adequate representation of the unbounded characteristics of the ground, material non-linearity of soils, and geometrical non-linearities such as large displacements due to rocking of the structure. In order to account for these effects simultaneously, it is often required that the equations of motion are solved in the time domain. However, boundary conditions in conventional finite element codes generally present shortcomings in fully absorbing the energy of outgoing waves. In this sense, the Perfectly Matched Layers (PML) technique allows a satisfactory absorption of inclined body waves, as well as surface waves. However, the PML domain is inherently unstable, meaning that it its instability does not depend upon the discretization considered. One way to stabilize the PML domain is to use multiaxial stretching functions. This development is questionable because some Jacobian terms of the coordinate transformation are not accounted for. For this reason, the resulting absorbing layer element is often referred to as "uncorrected M-PML” in the literature. In this work, the strong formulation of the "corrected M-PML” absorbing layer is proposed using multiaxial stretching functions that incorporate all terms of the coordinate transformation. The results of the stable model are compared with reference solutions obtained from extended domain models.Keywords: mixed finite elements, multiaxial stretching functions, perfectly matched layer, soil-structure interaction
Procedia PDF Downloads 692277 Nice Stadium: Design of a Flat Single Layer ETFE Roof
Authors: A. Escoffier, A. Albrecht, F. Consigny
Abstract:
In order to host the Football Euro in 2016, many French cities have launched architectural competitions in recent years to improve the quality of their stadiums. The winning project in Nice was designed by Wilmotte architects together with Elioth structural engineers. It has a capacity of 35,000 seats. Its roof structure consists of a complex 3D shape timber and steel lattice and is covered by 25,000m² of ETFE, 10,500m² of PES-PVC fabric and 8,500m² of photovoltaic panels. This paper focuses on the ETFE part of the cover. The stadium is one of the first constructions to use flat single layer ETFE on such a big area. Due to its relatively recent appearance in France, ETFE structures are not yet covered by any regulations and the existing codes for fabric structures cannot be strictly applied. Rather, they are considered as cladding systems and therefore have to be approved by an “Appréciation Technique d’Expérimentation” (ATEx), during which experimental tests have to be performed. We explain the method that we developed to justify the ETFE, which eventually led to bi-axial tests to clarify the allowable stress in the film.Keywords: biaxial test, creep, ETFE, single layer, stadium roof
Procedia PDF Downloads 244