Search results for: pile load formula
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3241

Search results for: pile load formula

3031 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

Authors: Bushra Suhail, Laith Kadim

Abstract:

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 40%, and an uplift pressure decrease of 10% to 30%.

Keywords: expansive soil, piles, under reamed, structural and geotechnical engineering

Procedia PDF Downloads 297
3030 Development of a Testing Rig for a Cold Formed-Hot Rolled Steel Hybrid Wall Panel System

Authors: Mina Mortazavi, Hamid Ronagh, Pezhman Sharafi

Abstract:

The new concept of a cold formed-hot rolled hybrid steel wall panel system is introduced to overcome the deficiency in lateral load resisting capacity of cold-formed steel structures. The hybrid system is composed of a cold-formed steel part laterally connected to hot rolled part. The hot rolled steel part is responsible for carrying the whole lateral load; while the cold formed steel part is only required to transfer the lateral load to the hot rolled part without any local failure. The vertical load is beared by both hot rolled, and cold formed steel part, proportionally. In order to investigate the lateral performance of the proposed system, it should be tested under simultaneous lateral and vertical load. The main concern is to deliver the loads to each part during the test to simulate the real load distribution in the structure. In this paper, a detailed description of the proposed wall panel system and the designed testing rig is provided.

Keywords: cold-formed steel, hybrid system, wall panel system, testing rig design

Procedia PDF Downloads 393
3029 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile

Procedia PDF Downloads 218
3028 Effect of Parameters for Exponential Loads on Voltage Transmission Line with Compensation

Authors: Benalia Nadia, Bensiali Nadia, Zerzouri Noura

Abstract:

This paper presents an analysis of the effects of parameters np and nq for exponential load on the transmission line voltage profile, transferred power and transmission losses for different shunt compensation size. For different values for np and nq in which active and reactive power vary with it is terminal voltages as in exponential form, variations of the load voltage for different sizes of shunt capacitors are simulated with a simple two-bus power system using Matlab SimPowerSystems Toolbox. It is observed that the compensation level is significantly affected by the voltage sensitivities of loads.

Keywords: static load model, shunt compensation, transmission system, exponentiel load model

Procedia PDF Downloads 344
3027 Axial Load Capacity of Drilled Shafts from In-Situ Test Data at Semani Site, in Albania

Authors: Neritan Shkodrani, Klearta Rrushi, Anxhela Shaha

Abstract:

Generally, the design of axial load capacity of deep foundations is based on the data provided from field tests, such as SPT (Standard Penetration Test) and CPT (Cone Penetration Test) tests. This paper reports the results of axial load capacity analysis of drilled shafts at a construction site at Semani, in Fier county, Fier prefecture in Albania. In this case, the axial load capacity analyses are based on the data of 416 SPT tests and 12 CPTU tests, which are carried out in this site construction using 12 boreholes (10 borings of a depth 30.0 m and 2 borings of a depth of 80.0m). The considered foundation widths range from 0.5m to 2.5 m and foundation embedment lengths is fixed at a value of 25m. SPT – based analytical methods from the Japanese practice of design (Building Standard Law of Japan) and CPT – based analytical Eslami and Fellenius methods are used for obtaining axial ultimate load capacity of drilled shafts. The considered drilled shaft (25m long and 0.5m - 2.5m in diameter) is analyzed for the soil conditions of each borehole. The values obtained from sets of calculations are shown in different charts. Then the reported axial load capacity values acquired from SPT and CPTU data are compared and some conclusions are found related to the mentioned methods of calculations.

Keywords: deep foundations, drilled shafts, axial load capacity, ultimate load capacity, allowable load capacity, SPT test, CPTU test

Procedia PDF Downloads 82
3026 High-Voltage Resonant Converter with Extreme Load Variation: Design Criteria and Applications

Authors: Jose A. Pomilio, Olavo Bet, Mateus P. Vieira

Abstract:

The power converter that feeds high-frequency, high-voltage transformers must be carefully designed due to parasitic components, mainly the secondary winding capacitance and the leakage inductance, that introduces resonances in relatively low-frequency range, next to the switching frequency. This paper considers applications in which the load (resistive) has an unpredictable behavior, changing from open to short-circuit condition faster than the output voltage control loop could react. In this context, to avoid over voltage and over current situations, that could damage the converter, the transformer or the load, it is necessary to find an operation point that assure the desired output voltage in spite of the load condition. This can done adjusting the frequency response of the transformer adding an external inductance, together with selecting the switching frequency to get stable output voltage independently of the load.

Keywords: high-voltage transformer, resonant converter, soft-commutation, external inductance

Procedia PDF Downloads 458
3025 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values

Authors: Muhammad A. Alsubaie

Abstract:

An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.

Keywords: iterative learning control, singular values, state feedback, load disturbance

Procedia PDF Downloads 146
3024 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 168
3023 The Inclusion of the Cabbage Waste in Buffalo Ration Made of Sugarcane Waste and Its Effect on Characteristics of the Silage

Authors: Adrizal, Irsan Ryanto, Sri Juwita, Adika Sugara, Tino Bapirco

Abstract:

The objective of the research was to study the influence of the inclusion of the cabbage waste into a buffalo rations made of sugarcane waste on the feed formula and characteristic of complete feed silage. Research carried out a two-stage i.e. the feed formulation and experiment of making complete feed silage. Feed formulation is done by linear programming. Data input is the price of feed stuffs and their nutrient contents as well as requirements for rations, while the output is the use of each feed stuff and the price of complete feed. The experiment of complete feed silage was done by a completely random design 4 x 4. The treatments were 4 inclusion levels of the cabbage waste i.e. 0%,(T1) 5%(T2), 10%(T3) and 15% (T4), with 4 replications. The result of feed formulation for T1 was cabbage (0%), sugarcane top (17.9%), bagasse (33.3%), Molasses (5.0%), cabagge (0%), Thitonia sp (10.0%), rice brand (2.7%), palm kernel cake (20.0%), corn meal (9.1%), bond meal (1.5%) and salt (0.5%). The formula of T2 was cabagge (5%), sugarcane top (1.7%), bagasse (45.2%), Molasses (5.0%), , Thitonia sp (10.0%), rice brand (3.6%), palm kernel cake (20.0%), corn meal (7.5%), bond meal (1.5%) and salt (0.5%). The formula of T3 was cabbage (10%), sugarcane top (0%), bagasse (45.3%), Molasses (5.0%), Thitonia sp (10.0%), rice brand (3.8%), palm kernel cake (20.0%), corn meal (3.9%), bond meal (1.5%) and salt(0.5%). The formula of T4 was cabagge (15.0%), sugarcane top (0%), bagasse (44.1%), Molasses (5.0%), Thitonia sp (10.0%), rice brand (3.9%), palm kernel cake (20.0%), corn meal (0%), bond meal (1.5%) and salt (0.5%). An increase in the level of inclusion of the cabbage waste can decrease the cost of rations. The cost of rations (IDR/kg on DM basis) were 1442, 1367, 1333, and 1300 respectively. The rations formula were not significantly (P > 0.05) influent the on fungal colonies, smell, texture and color of the complete ration silage, but the pH increased significantly (P < 0.05). It concluded that inclusion of cabbage waste can minimize the cost of buffalo ration, without decreasing the silage quality of complete feed.

Keywords: buffalo, cabbage, complete feed, sillage characteristic, sugarcane waste

Procedia PDF Downloads 230
3022 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm

Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar

Abstract:

This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.

Keywords: load frequency control, fuzzy-pid controller, type 2 fuzzy system, harmony search algorithm

Procedia PDF Downloads 250
3021 Pandemic-Era WIC Participation in Delaware, U.S.: Participants' Experiences and Challenges

Authors: McKenna Halverson, Allison Karpyn

Abstract:

Introduction: The COVID-19 pandemic posed unprecedented challenges for families with young children in the United States. The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), a federal nutrition assistance program that provides low-income mothers and young children with access to healthy foods (e.g., infant formula, milk, and peanut butter), mitigated some financial challenges for families. However, the U.S. experienced a national infant formula shortage and rising inflation rates during the pandemic, which likely impacted WIC participants’ shopping experiences and well-being. As such, this study aimed to characterize how the COVID-19 pandemic and related events impacted Delaware WIC participants’ in-store benefit redemption experiences and overall well-being. Method: The authors conducted semi-structured interviews with 51 WIC participants in Wilmington, Delaware. Survey measures included demographic questions and open-ended questions regarding participants’ experiences with WIC benefit redemption during the COVID-19 pandemic. Data were analyzed using a hybrid inductive and deductive coding approach. Findings: The COVID-19 pandemic significantly impacted WIC participants’ shopping experiences and well-being. Specifically, participants were forced to alter their shopping behaviors to account for rising food prices (e.g., used coupons, bought less food, used food banks). Additionally, WIC participants experienced significant distress during the national infant formula shortage resulting from difficulty finding formula to feed their children. Participants also struggled with in-store benefit redemption due to inconsistencies in shelf labelling, the WIC app, and low stock of WIC foods. These findings highlight the need to reexamine WIC operations and emergency food response policy in the United States during times of crisis to optimize public health and ensure federal nutrition assistance programs meeting the needs of low-income families with young children.

Keywords: benefit redemption, COVID-19 pandemic, infant formula shortage, inflation, shopping, WIC

Procedia PDF Downloads 57
3020 Understanding Seismic Behavior of Masonry Buildings in Earthquake

Authors: Alireza Mirzaee, Soosan Abdollahi, Mohammad Abdollahi

Abstract:

Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls.

Keywords: masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column

Procedia PDF Downloads 229
3019 New Approach for Load Modeling

Authors: Slim Chokri

Abstract:

Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression

Procedia PDF Downloads 416
3018 Lessons from Vernacular Architecture for Lightweight Construction

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With the gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, light-weighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 512
3017 Sensitivity Analysis of Movable Bed Roughness Formula in Sandy Rivers

Authors: Mehdi Fuladipanah

Abstract:

Sensitivity analysis as a technique is applied to determine influential input factors on model output. Variance-based sensitivity analysis method has more application compared to other methods because of including linear and non-linear models. In this paper, van Rijn’s movable bed roughness formula was selected to evaluate because of its reasonable results in sandy rivers. This equation contains four variables as: flow depth, sediment size,bBed form height and bed form length. These variable’s importance was determined using the first order of Fourier Amplitude Sensitivity Test. Sensitivity index was applied to evaluate importance of factors. The first order FAST based sensitivity indices test, explain 90% of the total variance that is indicating acceptance criteria of FAST application. More value of this index is indicating more important variable. Results show that bed form height, bed form length, sediment size and flow depth are more influential factors with sensitivity index: 32%, 24%, 19% and 15% respectively.

Keywords: sdensitivity analysis, variance, movable bed roughness formula, Sandy River

Procedia PDF Downloads 236
3016 Effect of Adding Horizontal Steel Bracing System to Ordinary Moment Steel Frames Subjected to Wind Load

Authors: Yousef Al-Qaryouti, Besan Alagawani

Abstract:

The main concern of this study is to evaluate the effect of adding horizontal steel bracing system to ordinary moment resisting steel frames subjected to wind load. Similar frames without bracing systems are also to be compared. A general analytical study was carried out to obtain the influence of such system in resisting wind load. Linear static analysis has been carried out using ETABS software by applying fixed wind load defined according to ASCE7-10 for three-, six-, nine-, and twelve-story ordinary moment steel frame buildings including and not including horizontal steel bracing system. The results showed that the lateral drift due to wind load decreased by adding horizontal bracing system. Also, the results show that effect of such system is more efficient to low-rise buildings.

Keywords: horizontal bracing system, steel moment frames, wind load resisting system, linear static analysis

Procedia PDF Downloads 268
3015 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh

Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun

Abstract:

Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.

Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization

Procedia PDF Downloads 146
3014 Effect of Elastic Modulus Anisotropy on Helical Piles Behavior in Sandy Soil

Authors: Reza Ziaie Moayed, Javad Shamsi Soosahab

Abstract:

Helical piles are being used extensively in engineering applications all over the world. There are insufficient studies on the helical piles' behavior in anisotropic soils. In this paper, numerical modeling was adopted to investigate the effect of elastic modulus anisotropy on helical pile behavior resting on anisotropic sand by using a finite element limit analysis. The load-displacement behavior of helical piles under compression and tension loads is investigated in different relative densities of soils, and the effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) is evaluated. The obtained results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of helical piles in different relative density. Therefore, it may be recommended that the effect of anisotropic condition of soil elastic modulus should be considered in helical piles behavior.

Keywords: helical piles, bearing capacity, numerical modeling, soil anisotropy

Procedia PDF Downloads 141
3013 Applied Methods for Lightweighting Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 493
3012 Ground States of Structure of Even ¹⁰⁴-¹⁰⁶ Ru Isotopes

Authors: I. Hossain, Huda H. Kassim, Fadhil I. Sharrad, Said A. Mansour

Abstract:

In this conference, we apply the interacting boson model-1 (IBM-1) formula for U(5) symmetry in order to calculate the energy levels and reduced transition probabilities for a few yrast transitions in Ru with neutron N=60, 62. The neutron rich even-even isotopes of Ru are very interesting to investigate using IBM-1, because even 104,106Ru isotopes are great consequence due to excited near the magic number 50. The calculation of ground state band and B(E2) values using IBM-1 for Z=44 are not calculated to describe the valuable information of nuclear structure by U(5) limit. The parameters in the formula are deduced based on the experimental energy level and value of B(E2, 2+->0+). The yrast states and transition strength B(E2) from 1st 4+ to 1st 2+, 1st 6+ to 1st 4+ and 1st 8+ to 1st 6+ states of Ru for even N= 60, 62 were calculated. The quadrupole moments, deformation parameters and U(5) limit were discussed for those nuclei.

Keywords: B(E2), energy level, ¹⁰⁴Ru, ¹⁰⁶Ru

Procedia PDF Downloads 323
3011 Slope Stability Considering the Top Building Load

Authors: Micke Didit, Xiwen Zhang, Weidong Zhu

Abstract:

Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. Therefore, it is of great importance to study the relationship between the load and the stability of the slope. This study aims to analyze the influence of the building load applied on the top of the slope and deduces its effect on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (fos) increases with the increase of the distance between the top-loading and the slope shoulder, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder.

Keywords: building load, finite-difference analysis, FLAC3D software, slope factor of safety, slope stability

Procedia PDF Downloads 156
3010 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand

Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi

Abstract:

It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.

Keywords: digital image correlation, piles, sand, shaft resistance

Procedia PDF Downloads 248
3009 A Study of Cracking Behavior in Concrete Beams Reinforced With Two Different Grades of Steel

Authors: Nihal Abdel Hamid Taha

Abstract:

Crack evaluation of flexure reinforced concrete (RC) member is considered an important step in the design process, since the formation of concrete cracks depends on the possibility of exposure to various conditions(pollution, humidity,..etc.). Because of the disparity between different grades of steel in the service load stresses, this affects the cracking behavior. This paper is concerned with the crack pattern and cracking load for concrete beams with T-section reinforced with two different grades of steel at the service load levels stages up to ultimate load. A practical program has been put up to investigate the difference between reinforced steel bars with yield strength 420 N/mm2 and 500 N/mm2 through six T-section reinforced beams. The beams were tested under static- monotonic two– point service loading up to ultimate failure under flexural stresses. The influence of parameters such as clear concrete cover and concrete compressive strength are considered for each of the two grades of steel used. Cracking load, spacing and width were determined. The experimental results demonstrated that increasing the concrete strength results in both of cracking and ultimate load increase, while no significant difference in yield load for the two steel grades used. It has also become obvious, that the number of cracks was more for the lower steel strength, which is followed by decrease in crack width and spacing.

Keywords: RC beams, cracking behavior, steel stress, crack width, crack spacing

Procedia PDF Downloads 38
3008 The Load Balancing Algorithm for the Star Interconnection Network

Authors: Ahmad M. Awwad, Jehad Al-Sadi

Abstract:

The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.

Keywords: load balancing, star network, interconnection networks, algorithm

Procedia PDF Downloads 299
3007 Worst-Case Load Shedding in Electric Power Networks

Authors: Fu Lin

Abstract:

We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.

Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis

Procedia PDF Downloads 120
3006 The Effect of Traffic Load on the Maximum Response of a Cable-Stayed Bridge under Blast Loads

Authors: S. K. Hashemi, M. A. Bradford, H. R. Valipour

Abstract:

The Recent collapse of bridges has raised the awareness about safety and robustness of bridges subjected to extreme loading scenarios such as intentional/unintentional blast loads. The air blast generated by the explosion of bombs or fuel tankers leads to high-magnitude short-duration loading scenarios that can cause severe structural damage and loss of critical structural members. Hence, more attentions need to put towards bridge structures to develop guidelines to increase the resistance of such structures against the probable blast. Recent advancements in numerical methods have brought about the viable and cost effective facilities to simulate complicated blast scenarios and subsequently provide useful reference for safeguarding design of critical infrastructures. In the previous studies common bridge responses to blast load, the traffic load is sometimes not included in the analysis. Including traffic load will increase the axial compression in bridge piers especially when the axial load is relatively small. Traffic load also can reduce the uplift of girders and deck when the bridge experiences under deck explosion. For more complicated structures like cable-stayed or suspension bridges, however, the effect of traffic loads can be completely different. The tension in the cables increase and progressive collapse is likely to happen while traffic loads exist. Accordingly, this study is an attempt to simulate the effect of traffic load cases on the maximum local and global response of an entire cable-stayed bridge subjected to blast loadings using LS-DYNA explicit finite element code. The blast loads ranged from small to large explosion placed at different positions above the deck. Furthermore, the variation of the traffic load factor in the load combination and its effect on the dynamic response of the bridge under blast load is investigated.

Keywords: blast, cable-stayed bridge, LS-DYNA, numerical, traffic load

Procedia PDF Downloads 312
3005 Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper

Authors: Carolina Senabre, Sergio Valero, Miguel Lopez, Antonio Gabaldon

Abstract:

This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research.

Keywords: short-term load forecasting, power demand, neural networks, load forecasting

Procedia PDF Downloads 160
3004 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement

Procedia PDF Downloads 125
3003 Comparative Study of Free Vibrational Analysis and Modes Shapes of FSAE Car Frame Using Different FEM Modules

Authors: Rajat Jain, Himanshu Pandey, Somesh Mehta, Pravin P. Patil

Abstract:

Formula SAE cars are the student designed and fabricated formula prototype cars, designed according to SAE INTERNATIONAL design rules which compete in the various national and international events. This paper shows a FEM based comparative study of free vibration analysis of different mode shapes of a formula prototype car chassis frame. Tubing sections of different diameters as per the design rules are designed in such a manner that the desired strength can be achieved. Natural frequency of first five mode was determined using finite element analysis method. SOLIDWORKS is used for designing the frame structure and SOLIDWORKS SIMULATION and ANSYS WORKBENCH 16.2 are used for the modal analysis. Mode shape results of ANSYS and SOLIDWORKS were compared. Fixed –fixed boundary conditions are used for fixing the A-arm wishbones. The simulation results were compared for the validation of the study. First five modes were compared and results were found within the permissible limits. The AISI4130 (CROMOLY- chromium molybdenum steel) material is used and the chassis frame is discretized with fine quality QUAD mesh followed by Fixed-fixed boundary conditions. The natural frequency of the chassis frame is 53.92-125.5 Hz as per the results of ANSYS which is found within the permissible limits. The study is concluded with the light weight and compact chassis frame without compensation with strength. This design allows to fabricate an extremely safe driver ergonomics, compact, dynamically stable, simple and light weight tubular chassis frame with higher strength.

Keywords: FEM, modal analysis, formula SAE cars, chassis frame, Ansys

Procedia PDF Downloads 317
3002 Numerical Study on the Ultimate Load of Offshore Two-Planar Tubular KK-Joints at Fire-Induced Elevated Temperatures

Authors: Hamid Ahmadi, Neda Azari-Dodaran

Abstract:

A total of 270 nonlinear steady-state finite element (FE) analyses were performed on 54 FE models of two-planar circular hollow section (CHS) KK-joints subjected to axial loading at five different temperatures (20 ºC, 200 ºC, 400 ºC, 550 ºC, and 700 ºC). The primary goal was to investigate the effects of temperature and geometrical characteristics on the ultimate strength, modes of failure, and initial stiffness of the KK-joints. Results indicated that on an average basis, the ultimate load of a two-planar tubular KK-joint at 200 ºC, 400 ºC, 550 ºC, and 700 ºC is 90%, 75%, 45%, and 16% of the joint’s ultimate load at ambient temperature, respectively. Outcomes of the parametric study showed that replacing the yield stress at ambient temperature with the corresponding value at elevated temperature to apply the EN 1993-1-8 equations for the calculation of the joint’s ultimate load at elevated temperatures may lead to highly unconservative results that might endanger the safety of the structure. Results of the parametric study were then used to develop a set of design formulas, through nonlinear regression analyses, to calculate the ultimate load of two-planar tubular KK-joints subjected to axial loading at elevated temperatures.

Keywords: ultimate load, two-planar tubular KK-joint, axial loading, elevated temperature, parametric equation

Procedia PDF Downloads 129