Search results for: one side class algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7723

Search results for: one side class algorithm

7513 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm

Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang

Abstract:

The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.

Keywords: degree, initial cluster center, k-means, minimum spanning tree

Procedia PDF Downloads 411
7512 Assessing Student Collaboration in Music Ensemble Class: From the Formulation of Grading Rubrics to Their Effective Implementation

Authors: Jason Sah

Abstract:

Music ensemble class is a non-traditional classroom in the sense that it is always a group effort during rehearsal. When measuring student performance ability in class, it is imperative that the grading rubric includes a collaborative skill component. Assessments that stop short of testing students' ability to make music with others undermine the group mentality by elevating individual prowess. Applying empirical and evidence-based methodology, this research develops a grading rubric that defines the criteria for assessing collaborative skill, and then explores different strategies for implementing this rubric in a timely and effective manner. Findings show that when collaborative skill is regularly tested, students gradually shift their attention from playing their own part well to sharing their part with others.

Keywords: assessment, ensemble class, grading rubric, student collaboration

Procedia PDF Downloads 136
7511 The Application of Lesson Study Model in Writing Review Text in Junior High School

Authors: Sulastriningsih Djumingin

Abstract:

This study has some objectives. It aims at describing the ability of the second-grade students to write review text without applying the Lesson Study model at SMPN 18 Makassar. Second, it seeks to describe the ability of the second-grade students to write review text by applying the Lesson Study model at SMPN 18 Makassar. Third, it aims at testing the effectiveness of the Lesson Study model in writing review text at SMPN 18 Makassar. This research was true experimental design with posttest Only group design involving two groups consisting of one class of the control group and one class of the experimental group. The research populations were all the second-grade students at SMPN 18 Makassar amounted to 250 students consisting of 8 classes. The sampling technique was purposive sampling technique. The control class was VIII2 consisting of 30 students, while the experimental class was VIII8 consisting of 30 students. The research instruments were in the form of observation and tests. The collected data were analyzed using descriptive statistical techniques and inferential statistical techniques with t-test types processed using SPSS 21 for windows. The results shows that: (1) of 30 students in control class, there are only 14 (47%) students who get the score more than 7.5, categorized as inadequate; (2) in the experimental class, there are 26 (87%) students who obtain the score of 7.5, categorized as adequate; (3) the Lesson Study models is effective to be applied in writing review text. Based on the comparison of the ability of the control class and experimental class, it indicates that the value of t-count is greater than the value of t-table (2.411> 1.667). It means that the alternative hypothesis (H1) proposed by the researcher is accepted.

Keywords: application, lesson study, review text, writing

Procedia PDF Downloads 202
7510 An Optimized Association Rule Mining Algorithm

Authors: Archana Singh, Jyoti Agarwal, Ajay Rana

Abstract:

Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.

Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph

Procedia PDF Downloads 422
7509 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 440
7508 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 24
7507 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities

Authors: J. Kaabi, Y. Harrath

Abstract:

This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm.

Keywords: flow shop scheduling, genetic algorithm, maintenance, priority rules

Procedia PDF Downloads 471
7506 Memetic Algorithm for Solving the One-To-One Shortest Path Problem

Authors: Omar Dib, Alexandre Caminada, Marie-Ange Manier

Abstract:

The purpose of this study is to introduce a novel approach to solve the one-to-one shortest path problem. A directed connected graph is assumed in which all edges’ weights are positive. Our method is based on a memetic algorithm in which we combine a genetic algorithm (GA) and a variable neighborhood search method (VNS). We compare our approximate method with two exact algorithms Dijkstra and Integer Programming (IP). We made experimentations using random generated, complete and real graph instances. In most case studies, numerical results show that our method outperforms exact methods with 5% average gap to the optimality. Our algorithm’s average speed is 20-times faster than Dijkstra and more than 1000-times compared to IP. The details of the experimental results are also discussed and presented in the paper.

Keywords: shortest path problem, Dijkstra’s algorithm, integer programming, memetic algorithm

Procedia PDF Downloads 467
7505 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data

Authors: Arman S. Kussainov, Altynbek K. Beisekov

Abstract:

This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.

Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm

Procedia PDF Downloads 412
7504 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm

Procedia PDF Downloads 433
7503 Upon One Smoothing Problem in Project Management

Authors: Dimitri Golenko-Ginzburg

Abstract:

A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm.

Keywords: resource smoothing problem, CPM network, lookover algorithm, lexicographical order, approximate algorithm, accuracy estimate

Procedia PDF Downloads 302
7502 Constructing the Cult of the Self: on White, Working-class Males And The Neoliberalisation Of Identities – An Autoethnographic Study

Authors: Dane Morace-Court

Abstract:

This paper offers a reflective and reflexive examination of the lived experience of a group of young, white, working-class males engaging in secondary-education in England at a time when this population is widely recognised as the lowest attaining ethnic group within British schools. The focus of the paper is an exploration of the development of identities and aspirations, alongside contemporary demographic and ideological shifts in the British population, in their intersection with neoliberal education policies and the emerging ideological conflict between identity conservatism and liberalism. The construction and performance of intersecting social-class, gender, ethnic and national identities is considered as well as the process through which socially constructed narratives inform identities, values, and aspirations. Evocative autoethnography is then employed to offer reflections on working-class habitus and, in particular, classed and gendered codes that underpin expectations of manhood in post-industrial culture within an education system which seemingly requires the abandonment of aspects of a working-class background. Findings from the study identify the emergence of a culture of hyper-individualisation amongst white, working-class males in schools and a belief in the meritocratic ideologies of the New Right. In particular, the breakdown of the social contract, including notions of political and civic responsibility, coupled with the symbolic violence perpetrated against working-class culture and solidarity in British schools, have all informed the construction of a working-class masculinity which values the individual entrepreneur over the collective, and depoliticizes students to an extent where a focus on the spectacle and performance of success has replaced individual and collective investment in community.

Keywords: education, identity, masculinity, neoliberalism, working-class, intersectionality, autoethnography

Procedia PDF Downloads 106
7501 Implementation of CNV-CH Algorithm Using Map-Reduce Approach

Authors: Aishik Deb, Rituparna Sinha

Abstract:

We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.

Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing

Procedia PDF Downloads 136
7500 Flipped Learning in the Delivery of Structural Analysis

Authors: Ali Amin

Abstract:

This paper describes a flipped learning initiative which was trialed in the delivery of the course: structural analysis and modelling. A short series of interactive videos were developed, which introduced the key concepts of each topic. The purpose of the videos was to introduce concepts and give the students more time to develop their thoughts prior to the lecture. This allowed more time for face to face engagement during the lecture. As part of the initial study, videos were developed for half the topics covered. The videos included a short summary of the key concepts ( < 10 mins each) as well as fully worked-out examples (~30mins each). Qualitative feedback was attained from the students. On a scale from strongly disagree to strongly agree, students were rate statements such as 'The pre-class videos assisted your learning experience', 'I felt I could appreciate the content of the lecture more by watching the videos prior to class'. As a result of the pre-class engagement, the students formed more specific and targeted questions during class, and this generated greater comprehension of the material. The students also scored, on average, higher marks in questions pertaining to topics which had videos assigned to them.

Keywords: flipped learning, structural analysis, pre-class videos, engineering education

Procedia PDF Downloads 91
7499 Increasing the Speed of the Apriori Algorithm by Dimension Reduction

Authors: A. Abyar, R. Khavarzadeh

Abstract:

The most basic and important decision-making tool for industrial and service managers is understanding the market and customer behavior. In this regard, the Apriori algorithm, as one of the well-known machine learning methods, is used to identify customer preferences. On the other hand, with the increasing diversity of goods and services and the speed of changing customer behavior, we are faced with big data. Also, due to the large number of competitors and changing customer behavior, there is an urgent need for continuous analysis of this big data. While the speed of the Apriori algorithm decreases with increasing data volume. In this paper, the big data PCA method is used to reduce the dimension of the data in order to increase the speed of Apriori algorithm. Then, in the simulation section, the results are examined by generating data with different volumes and different diversity. The results show that when using this method, the speed of the a priori algorithm increases significantly.

Keywords: association rules, Apriori algorithm, big data, big data PCA, market basket analysis

Procedia PDF Downloads 3
7498 Simulation, Optimization, and Analysis Approach of Microgrid Systems

Authors: Saqib Ali

Abstract:

Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.

Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management

Procedia PDF Downloads 98
7497 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm

Authors: Kristian Bautista, Ruben A. Idoy

Abstract:

A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.

Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization

Procedia PDF Downloads 233
7496 Hardware for Genetic Algorithm

Authors: Fariborz Ahmadi, Reza Tati

Abstract:

Genetic algorithm is a soft computing method that works on set of solutions. These solutions are called chromosome and the best one is the absolute solution of the problem. The main problem of this algorithm is that after passing through some generations, it may be produced some chromosomes that had been produced in some generations ago that causes reducing the convergence speed. From another respective, most of the genetic algorithms are implemented in software and less works have been done on hardware implementation. Our work implements genetic algorithm in hardware that doesn’t produce chromosome that have been produced in previous generations. In this work, most of genetic operators are implemented without producing iterative chromosomes and genetic diversity is preserved. Genetic diversity causes that not only do not this algorithm converge to local optimum but also reaching to global optimum. Without any doubts, proposed approach is so faster than software implementations. Evaluation results also show the proposed approach is faster than hardware ones.

Keywords: hardware, genetic algorithm, computer science, engineering

Procedia PDF Downloads 509
7495 A Kruskal Based Heuxistic for the Application of Spanning Tree

Authors: Anjan Naidu

Abstract:

In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree.

Keywords: Minimum Spanning tree, algorithm, Heuxistic, application, classification of Sub 97K90

Procedia PDF Downloads 444
7494 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile

Authors: Vahid Rashtchi, Ashkan Pirooz

Abstract:

This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.

Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile

Procedia PDF Downloads 606
7493 Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control

Authors: Bogusław Schreyer

Abstract:

The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking.

Keywords: select-high, select-low, torque distribution, wheeled robots

Procedia PDF Downloads 120
7492 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm

Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang

Abstract:

In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.

Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm

Procedia PDF Downloads 152
7491 Mixed Traffic Speed–Flow Behavior under Influence of Road Side Friction and Non-Motorized Vehicles: A Comparative Study of Arterial Roads in India

Authors: Chetan R. Patel, G. J. Joshi

Abstract:

The present study is carried out on six lane divided urban arterial road in Patna and Pune city of India. Both the road having distinct differences in terms of the vehicle composition and the road side parking. Arterial road in Patan city has 33% of non-motorized mode, whereas Pune arterial road dominated by 65% of Two wheeler. Also road side parking is observed in Patna city. The field studies using vidiographic techniques are carried out for traffic data collection. Data are extracted for one minute duration for vehicle composition, speed variation and flow rate on selected arterial road of the two cities. Speed flow relationship is developed and capacity is determine. Equivalency factor in terms of dynamic car unit is determine to represent the vehicle is single unit. The variation in the capacity due to side friction, presence of non motorized traffic and effective utilization of lane width is compared at concluding remarks.

Keywords: arterial road, capacity, dynamic equivalency factor, effect of non motorized mode, side friction

Procedia PDF Downloads 350
7490 Teaching Method for a Classroom of Students at Different Language Proficiency Levels: Content and Language Integrated Learning in a Japanese Culture Classroom

Authors: Yukiko Fujiwara

Abstract:

As a language learning methodology, Content and Language Integrated Learning (CLIL) has become increasingly prevalent in Japan. Most CLIL classroom practice and its research are conducted in EFL fields. However, much less research has been done in the Japanese language learning setting. Therefore, there are still many issues to work out using CLIL in the Japanese language teaching (JLT) setting. it is expected that more research will be conducted on both authentically and academically. Under such circumstances, this is one of the few classroom-based CLIL researches experiments in JLT and aims to find an effective course design for a class with students at different proficiency levels. The class was called ‘Japanese culture A’. This class was offered as one of the elective classes for International exchange students at a Japanese university. The Japanese proficiency level of the class was above the Japanese Language Proficiency Test Level N3. Since the CLIL approach places importance on ‘authenticity’, the class was designed with materials and activities; such as books, magazines, a film and TV show and a field trip to Kyoto. On the field trip, students experienced making traditional Japanese desserts, by receiving guidance directly from a Japanese artisan. Through the course, designated task sheets were used so the teacher could get feedback from each student to grasp what the class proficiency gap was. After reading an article on Japanese culture, students were asked to write down the words they did not understand and what they thought they needed to learn. It helped both students and teachers to set learning goals and work together for it. Using questionnaires and interviews with students, this research examined whether the attempt was effective or not. Essays they wrote in class were also analyzed. The results from the students were positive. They were motivated by learning authentic, natural Japanese, and they thrived setting their own personal goals. Some students were motivated to learn Japanese by studying the language and others were motivated by studying the cultural context. Most of them said they learned better this way; by setting their own Japanese language and culture goals. These results will provide teachers with new insight towards designing class materials and activities that support students in a multilevel CLIL class.

Keywords: authenticity, CLIL, Japanese language and culture, multilevel class

Procedia PDF Downloads 253
7489 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference to signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: noise signal, pulse interference, signal power, spectrum width, detection

Procedia PDF Downloads 337
7488 A Tagging Algorithm in Augmented Reality for Mobile Device Screens

Authors: Doga Erisik, Ahmet Karaman, Gulfem Alptekin, Ozlem Durmaz Incel

Abstract:

Augmented reality (AR) is a type of virtual reality aiming to duplicate real world’s environment on a computer’s video feed. The mobile application, which is built for this project (called SARAS), enables annotating real world point of interests (POIs) that are located near mobile user. In this paper, we aim at introducing a robust and simple algorithm for placing labels in an augmented reality system. The system places labels of the POIs on the mobile device screen whose GPS coordinates are given. The proposed algorithm is compared to an existing one in terms of energy consumption and accuracy. The results show that the proposed algorithm gives better results in energy consumption and accuracy while standing still, and acceptably accurate results when driving. The technique provides benefits to AR browsers with its open access algorithm. Going forward, the algorithm will be improved to more rapidly react to position changes while driving.

Keywords: accurate tagging algorithm, augmented reality, localization, location-based AR

Procedia PDF Downloads 375
7487 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 84
7486 Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC

Authors: Gürol Önal, Kevser Dinçer, Salih Yayla

Abstract:

In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC.

Keywords: fuel cell, Polymer Electrolyte Membrane (PEM), membrane, spin method

Procedia PDF Downloads 562
7485 A Supervised Face Parts Labeling Framework

Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad

Abstract:

Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.

Keywords: face labeling, semantic segmentation, classification, face segmentation

Procedia PDF Downloads 257
7484 Subclass of Close-To-Convex Harmonic Mappings

Authors: Jugal K. Prajapat, Manivannan M.

Abstract:

In this article we have studied a class of sense preserving harmonic mappings in the unit disk D. Let B⁰H (α, β) denote the class of sense-preserving harmonic mappings f=h+g ̅ in the open unit disk D and satisfying the condition |z h״(z)+α (h׳(z)-1) | ≤ β - |z g″(z)+α g′(z)| (α > -1, β > 0). We have proved that B⁰H (α, β) is close-to-convex in D. We also prove that the functions in B⁰H (α, β) are stable harmonic univalent, stable harmonic starlike and stable harmonic convex in D for different values of its parameters. Further, the coefficient estimates, growth results, area theorem, boundary behavior, convolution and convex combination properties of the class B⁰H (α, β) of harmonic mapping are obtained.

Keywords: analytic, univalent, starlike, convex and close-to-convex

Procedia PDF Downloads 177