Search results for: multi criteria inventory classification models
14428 Improved Wi-Fi Backscatter System for Multi-to-Multi Communication
Authors: Chang-Bin Ha, Yong-Jun Kim, Dong-Hyun Ha, Hyoung-Kyu Song
Abstract:
The conventional Wi-Fi back scatter system can only process one-to-one communication between the Wi-Fi reader and the Wi-Fi tag. For improvement of throughput of the conventional system, this paper proposes the multi-to-multi communication system. In the proposed system, the interference by the multi-to-multi communication is effectively cancelled by the orthogonal multiple access based on the identification code of the tag. Although the overhead is generated by the procedure for the multi-to-multi communication, because the procedure is processed by the Wi-Fi protocol, the overhead is insignificant for the entire communication procedure. From the numerical results, it is confirmed that the proposed system has nearly proportional increased throughput in according to the number of the tag that simultaneously participates in communication.Keywords: backscatter, multi-to-multi communication, orthogonality, Wi-Fi
Procedia PDF Downloads 51014427 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis
Procedia PDF Downloads 39414426 Food Supply Chain Optimization: Achieving Cost Effectiveness Using Predictive Analytics
Authors: Jayant Kumar, Aarcha Jayachandran Sasikala, Barry Adrian Shepherd
Abstract:
Public Distribution System is a flagship welfare programme of the Government of India with both historical and political significance. Targeted at lower sections of society,it is one of the largest supply chain networks in the world. There has been several studies by academics and planning commission about the effectiveness of the system. Our study focuses on applying predictive analytics to aid the central body to keep track of the problem of breach of service level agreement between the two echelons of food supply chain. Each shop breach is leading to a potential additional inventory carrying cost. Thus, through this study, we aim to show that aided with such analytics, the network can be made more cost effective. The methods we illustrate in this study are applicable to other commercial supply chains as well.Keywords: PDS, analytics, cost effectiveness, Karnataka, inventory cost, service level JEL classification: C53
Procedia PDF Downloads 53314425 Real-Time Inventory Management and Operational Efficiency in Manufacturing
Authors: Tom Wanyama
Abstract:
We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing
Procedia PDF Downloads 3614424 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 14014423 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions
Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag
Abstract:
Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.Keywords: GSCM solutions, multi-criteria analysis, decision support system, TOPSIS, FAHP, PROMETHEE
Procedia PDF Downloads 16314422 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 18714421 A 'Systematic Literature Review' of Specific Types of Inventory Faced by the Management of Firms
Authors: Rui Brito
Abstract:
This contribution regards a literature review of inventory management that is a relevant topic for the firms, due to its important use of capital with implications in firm’s profitability within the complexity of a more competitive and globalized world. Firms look for small inventories in order to reduce holding costs, namely opportunity cost, warehousing and handling costs, deterioration and being out of style, but larger inventories are required by some reasons, such as customer service, ordering cost, transportation cost, supplier’s payment to reduce unit costs or to take advantage of price increase in the near future, and equipment setup cost. Thus, management shall address a trade-off between small inventories and larger inventories. This literature review concerns three types of inventory (spare parts, safety stock, and vendor) whose management usually is beyond the scope of logistics. The applied methodology consisted of an online search of databases regarding scientific documents in English, namely Elsevier, Springer, Emerald, Wiley, and Taylor & Francis, but excluding books except if edited, using search engines, such as Google Scholar and B-on. The search was based on three keywords/strings (themes) which had to be included just as in the article title, suggesting themes were very relevant to the researchers. The whole search period was between 2009 and 2018 with the aim of collecting between twenty and forty studies considered relevant within each of the key words/strings specified. Documents were sorted by relevance and to prevent the exclusion of the more recent articles, based on lower quantity of citations partially due to less time to be cited in new research articles, the search period was divided into two sub-periods (2009-2015 and 2016-2018). The number of surveyed articles by theme showed a variation from 40 to 200 and the number of citations of those articles showed a wider variation from 3 to 216. Selected articles from the three themes were analyzed and the first seven of the first sub-period and the first three of the second sub-period with more citations were read in full to make a synopsis of each article. Overall, the findings show that the majority of article types were models, namely mathematical, although with different sub-types for each theme. Almost all articles suggest further studies, with some mentioning it for their own author(s), which widen the diversity of the previous research. Identified research gaps concern the use of surveys to know which are the models more used by firms, the reasons for not using the models with more performance and accuracy, and which are the satisfaction levels with the outcomes of the inventories management and its effect on the improvement of the firm’s overall performance. The review ends with the limitations and contributions of the study.Keywords: inventory management, safety stock, spare parts inventory, vendor managed inventory
Procedia PDF Downloads 9614420 Multi-Criteria Decision Support System for Modeling of Civic Facilities Using GIS Applications: A Case Study of F-11, Islamabad
Authors: Asma Shaheen Hashmi, Omer Riaz, Khalid Mahmood, Fahad Ullah, Tanveer Ahmad
Abstract:
The urban landscapes are being change with the population growth and advancements in new technologies. The urban sprawl pattern and utilizes are related to the local socioeconomic and physical condition. Urban policy decisions are executed mostly through spatial planning. A decision support system (DSS) is very powerful tool which provides flexible knowledge base method for urban planning. An application was developed using geographical information system (GIS) for urban planning. A scenario based DSS was developed to integrate the hierarchical muti-criteria data of different aspects of urban landscape. These were physical environment, the dumping site, spatial distribution of road network, gas and water supply lines, and urban watershed management, selection criteria for new residential, recreational, commercial and industrial sites. The model provided a framework to incorporate the sustainable future development. The data can be entered dynamically by planners according to the appropriate criteria for the management of urban landscapes.Keywords: urban, GIS, spatial, criteria
Procedia PDF Downloads 63714419 Inventory Management to Minimize Storage Costs and Improve Delivery Time in a Pharmaceutical Industry
Authors: Israel Becerril Rosales, Manuel González De La Rosa, Gerardo Villa Sánchez
Abstract:
In this work, the effects that produce not having a good inventory management is analyzed, in addition of the way that how it affects the storage costs. The research began conducting the historical analysis about stored products, its storage capacity, and distribution. The results were not optimal, since in all its raw materials (RM) have overstocking, the warehouse capacity is only used by 61%, does not have a specific place for each of its RM, causing that the delivery times increases and makes difficult a cyclical inventory. These shortcomings allowed to view and select as design alternatives the inventory ABC, so that depending on the consumption of each RM would be redistributed by using economic amount requested. Also, the Delphi method to ensure the practical applicability of the proposed tool was used, taking in account comments and suggestions of the involved experts, as well as the compliance of NOM-059-SSA1-2015 good manufacturing practices of drug. With the actions implemented, the utilization rate drops of 61% to 32% capacity, it shows that the warehouse was not designed properly due to there is not an industrial engineering area.Keywords: lead time, improve delivery, storage costs, inventory management
Procedia PDF Downloads 23314418 Requirements Definitions of Real-Time System Using the Behavioral Patterns Analysis (BPA) Approach: The Healthcare Multi-Agent System
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach using the Healthcare Multi-Agent System. The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are: The Behavioral Pattern Analysis (BPA) modeling methodology. The development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases, Healthcare Multi-Agent System
Procedia PDF Downloads 55114417 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data
Authors: S. H. Lee, M. J. Park, O. M. Kwon
Abstract:
In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria.Keywords: multi-agent, linear matrix inequalities (LMIs), kronecker product, sampled-data, Lyapunov method
Procedia PDF Downloads 52814416 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy
Authors: Kemal Polat
Abstract:
In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.Keywords: machine learning, data weighting, classification, data mining
Procedia PDF Downloads 32614415 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 12914414 Analysis of Particle Reinforced Metal Matrix Composite Crankshaft
Authors: R. S. Vikaash, S. Vinodh, T. S. Sai Prashanth
Abstract:
Six sigma is a defect reduction strategy enabling modern organizations to achieve business prosperity. The practitioners are in need to select best six sigma project among the available alternatives to achieve customer satisfaction. In this circumstance, this article presents a study in which six sigma project selection is formulated as Multi-Criteria Decision-Making(MCDM) problem and the best project has been found using AHP. Five main governing criteria and 14 sub criteria are being formulated. The decision maker’s inputs were gathered and computations were performed. The project with the high values from the set of projects is selected as the best project. Based on calculations, Project “P1”is found to be the best and further deployment actions have been undertaken in the organization.Keywords: six Sigma, project selection, MCDM, analytic hierarchy process, business prosperity
Procedia PDF Downloads 34214413 Detection of Flood Prone Areas Using Multi Criteria Evaluation, Geographical Information Systems and Fuzzy Logic. The Ardas Basin Case
Authors: Vasileiou Apostolos, Theodosiou Chrysa, Tsitroulis Ioannis, Maris Fotios
Abstract:
The severity of extreme phenomena is due to their ability to cause severe damage in a small amount of time. It has been observed that floods affect the greatest number of people and induce the biggest damage when compared to the total of annual natural disasters. The detection of potential flood-prone areas constitutes one of the fundamental components of the European Natural Disaster Management Policy, directly connected to the European Directive 2007/60. The aim of the present paper is to develop a new methodology that combines geographical information, fuzzy logic and multi-criteria evaluation methods so that the most vulnerable areas are defined. Therefore, ten factors related to geophysical, morphological, climatological/meteorological and hydrological characteristics of the basin were selected. Afterwards, two models were created to detect the areas pronest to flooding. The first model defined the gravitas of each factor using Analytical Hierarchy Process (AHP) and the final map of possible flood spots were created using GIS and Boolean Algebra. The second model made use of the fuzzy logic and GIS combination and a respective map was created. The application area of the aforementioned methodologies was in Ardas basin due to the frequent and important floods that have taken place these last years. Then, the results were compared to the already observed floods. The result analysis shows that both models can detect with great precision possible flood spots. As the fuzzy logic model is less time-consuming, it is considered the ideal model to apply to other areas. The said results are capable of contributing to the delineation of high risk areas and to the creation of successful management plans dealing with floods.Keywords: analytical hierarchy process, flood prone areas, fuzzy logic, geographic information system
Procedia PDF Downloads 37914412 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences
Procedia PDF Downloads 12914411 Review on Effective Texture Classification Techniques
Authors: Sujata S. Kulkarni
Abstract:
Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.Keywords: compressed sensing, feature extraction, image classification, texture analysis
Procedia PDF Downloads 43514410 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters
Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu
Abstract:
An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters
Procedia PDF Downloads 30914409 Digital Library Evaluation by SWARA-WASPAS Method
Authors: Mehmet Yörükoğlu, Serhat Aydın
Abstract:
Since the discovery of the manuscript, mechanical methods for storing, transferring and using the information have evolved into digital methods over the time. In this process, libraries that are the center of the information have also become digitized and become accessible from anywhere and at any time in the world by taking on a structure that has no physical boundaries. In this context, some criteria for information obtained from digital libraries have become more important for users. This paper evaluates the user criteria from different perspectives that make a digital library more useful. The Step-Wise Weight Assessment Ratio Analysis-Weighted Aggregated Sum Product Assessment (SWARA-WASPAS) method is used with flexibility and easy calculation steps for the evaluation of digital library criteria. Three different digital libraries are evaluated by information technology experts according to five conflicting main criteria, ‘interface design’, ‘effects on users’, ‘services’, ‘user engagement’ and ‘context’. Finally, alternatives are ranked in descending order.Keywords: digital library, multi criteria decision making, SWARA-WASPAS method
Procedia PDF Downloads 15114408 Characteristics of Inclusive Circular Business Models in Social Entrepreneurship
Authors: Svitlana Yermak, Olubukola Aluko
Abstract:
The purpose of this study was a literature review on the topic of social entrepreneurship, a review of new trends and best practices, the study of existing inclusive business models and their interaction with the principles of the circular economy for possible implementation in the practice of Ukraine in war and post-war times in conditions of scarce resources. Thus, three research questions were identified and substantiated: to determine the characteristics of social entrepreneurship, consider the features in Ukraine and the UK; highlight the criteria for inclusion in social entrepreneurship and its legal support; explore examples of existing inclusive circular business models to illustrate how the two concepts may be combined. A detailed review of the literature selected from the Scopus and Web of Science databases was carried out. The study revealed signs of social entrepreneurship, the main of which are doing business and making a profit, as well as the social orientation of the business, which is prescribed in the constituent documents of the enterprise immediately upon its creation. Considered are the characteristics of social entrepreneurship in the UK and Ukraine. It has been established that in the UK, social entrepreneurship is clearly regulated by the state; there are special legislative norms and support programs, in contrast to Ukraine, where these processes are only partially regulated. The study identified the main criteria for inclusion in inclusive circular business models: economic (sustainability and efficiency, job creation and economic growth, promotion of local development), social (accessibility, equity and fairness, inclusion and participation), and resources in their interconnection. It is substantiated that the resource criterion is especially important for this type of business model. It provides for the efficient and sustainable use of resources, as well as the cyclical nature of resources. And it was concluded that the principles of the circular economy not only do not contradict but, on the contrary, complement and expand the inclusive business models on which social entrepreneurship is based.Keywords: social entrepreneurship, inclusive business models, circular economy, inclusion criteria
Procedia PDF Downloads 10114407 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system
Procedia PDF Downloads 26214406 Comprehensive Risk Assessment Model in Agile Construction Environment
Authors: Jolanta Tamošaitienė
Abstract:
The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.Keywords: assessment, environment, agile, model, risk
Procedia PDF Downloads 25514405 Integrated Location-Allocation Planning in Multi Product Multi Echelon Single Period Closed Loop Supply Chain Network Design
Authors: Santhosh Srinivasan, Vipul Garhiya, Shahul Hamid Khan
Abstract:
Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Single objective mathematical models for a total cost for the entire forward supply chain and reverse chain are considered. Here five different problems are considered by varying the number of facilities for illustration. M-MOGA, Shuffle Frog Leaping algorithm (SFLA) and CPLEX are used for finding the optimal solution for the mathematical model.Keywords: closed loop supply chain, genetic algorithm, random search, multi period, green supply chain
Procedia PDF Downloads 39114404 2D Point Clouds Features from Radar for Helicopter Classification
Authors: Danilo Habermann, Aleksander Medella, Carla Cremon, Yusef Caceres
Abstract:
This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal.Keywords: helicopter classification, point clouds features, radar, supervised classifiers
Procedia PDF Downloads 22714403 A Systems Approach to Modelling Emergent Behaviour in Maritime Control Systems Using the Composition, Environment, Structure, and Mechanisms Metamodel
Authors: Odd Ivar Haugen
Abstract:
Society increasingly relies on complex systems whose behaviour is determined, not by the properties of each part, but by the interaction between them. The behaviour of such systems is emergent. Modelling emergent system behaviour requires a systems approach that incorporates the necessary concepts that are capable of determining such behaviour. The CESM metamodel is a model of system models. A set of system models needs to address the elements of CESM at different levels of abstraction to be able to model the behaviour of a complex system. Modern ships contain numerous sophisticated equipment, often accompanied by a local safety system to protect its integrity. These control systems are then connected into a larger integrated system in order to achieve the ship’s objective or mission. The integrated system becomes what is commonly known as a system of systems, which can be termed a complex system. Examples of such complex systems are the dynamic positioning system and the power management system. Three ship accidents are provided as examples of how system complexity may contribute to accidents. Then, the three accidents are discussed in terms of how the Multi-Level/Multi-Model Safety Analysis might catch scenarios such as those leading to the accidents described.Keywords: emergent properties, CESM metamodel, multi-level/multi-model safety analysis, safety, system complexity, system models, systems thinking
Procedia PDF Downloads 1114402 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 41914401 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry
Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak
Abstract:
Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.Keywords: supply chain performance, performance measurement, data mining, automotive
Procedia PDF Downloads 51314400 Third Party Logistics (3PL) Selection Criteria for an Indian Heavy Industry Using SEM
Authors: Nadama Kumar, P. Parthiban, T. Niranjan
Abstract:
In the present paper, we propose an incorporated approach for 3PL supplier choice that suits the distinctive strategic needs of the outsourcing organization in southern part of India. Four fundamental criteria have been used in particular Performance, IT, Service and Intangible. These are additionally subdivided into fifteen sub-criteria. The proposed strategy coordinates Structural Equation Modeling (SEM) and Non-additive Fuzzy Integral strategies. The presentation of fluffiness manages the unclearness of human judgments. The SEM approach has been used to approve the determination criteria for the proposed show though the Non-additive Fuzzy Integral approach uses the SEM display contribution to assess a supplier choice score. The case organization has a exclusive vertically integrated assembly that comprises of several companies focusing on a slight array of the value chain. To confirm manufacturing and logistics proficiency, it significantly relies on 3PL suppliers to attain supply chain superiority. However, 3PL supplier selection is an intricate decision-making procedure relating multiple selection criteria. The goal of this work is to recognize the crucial 3PL selection criteria by using the non-additive fuzzy integral approach. Unlike the outmoded multi criterion decision-making (MCDM) methods which frequently undertake independence among criteria and additive importance weights, the nonadditive fuzzy integral is an effective method to resolve the dependency among criteria, vague information, and vital fuzziness of human judgment. In this work, we validate an empirical case that engages the nonadditive fuzzy integral to assess the importance weight of selection criteria and indicate the most suitable 3PL supplier.Keywords: 3PL, non-additive fuzzy integral approach, SEM, fuzzy
Procedia PDF Downloads 28114399 A Review of the Parameters Used in Gateway Selection Schemes for Internet Connected MANETs
Authors: Zainab S. Mahmood, Aisha H. Hashim, Wan Haslina Hassan, Farhat Anwar
Abstract:
The wide use of the internet-based applications bring many challenges to the researchers to guarantee the continuity of the connections needed by the mobile hosts and provide reliable Internet access for them. One of proposed solutions by Internet Engineering Task Force (IETF) is to connect the local, multi-hop, and infrastructure-less Mobile Ad hoc Network (MANET) with Internet structure. This connection is done through multi-interface devices known as Internet Gateways. Many issues are related to this connection like gateway discovery, hand off, address auto-configuration and selecting the optimum gateway when multiple gateways exist. Many studies were done proposing gateway selection schemes with a single selection criterion or weighted multiple criteria. In this research, a review of some of these schemes is done showing the differences, the features, the challenges and the drawbacks of each of them.Keywords: Internet Gateway, MANET, mobility, selection criteria
Procedia PDF Downloads 424