Search results for: high-speed image recordings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2995

Search results for: high-speed image recordings

2785 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks

Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia

Abstract:

This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.

Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks

Procedia PDF Downloads 336
2784 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation

Procedia PDF Downloads 177
2783 From Prince to Vampire: The Image of Vlad Tepeș Dracula in Popular Culture. Case Study: Castlevania, From Video Game to Netflix Production

Authors: Claudia Horeanu

Abstract:

Ever since the first horror films, Count Dracula, the image inspired mainly by the novel written by Bram Stoker, is an almost indispensable character in popular culture. In the shadow of his vampire image is a Romanian ruler, Vlad Țepeș, from Wallachia, a ruler who was also nicknamed Drăculea. The purpose of this research is to analyze the evolution of the image of Vlad Tepeș/Dracula in popular culture, identifying the reasons and themes associated with this character, and to explore how the figure of Vlad Tepeș/Dracula evolved according to social and political changes in different historical periods. It is also believed that there are elements that have remained constant in the depictions of Vlad the Impaler/Dracula.

Keywords: popular culture, dracula, vlad tepes, castlevania, vampire

Procedia PDF Downloads 60
2782 Impact of Brand Image, Brand Personality and Brand Love on Word of Mouth: Pakistani Fashion Brands

Authors: Amna Asif, Rabia Naseem

Abstract:

In the domain of consumer-brand relationship, love for a fashion brand is a dominant idea. Brand executives incline to build more endearing brands, for example, Levi’s “Quality never goes out of style”. Though, the significance of this notion is not often debated in the literature of marketing. Moreover, the effect of brand image and personality on brand love has not been examined in any quantitative study in Pakistan. The current research aims to fill this study gap by evolving a causal framework integrating word-of-mouth, brand love, image, and personality to examine the relationships among them. Data was gathered through questionnaires survey, and it was filled by 409 university students. AMOS 20 was used to draw a path analysis and test the hypotheses. Results discovered that brand personality and brand image leads to brand love that ultimately impacts word-of-mouth. Results give thorough suggestions on which future research can be constructed.

Keywords: brand love, brand personality, brand image, fashion brands, word-of-mouth

Procedia PDF Downloads 312
2781 Heuristic Classification of Hydrophone Recordings

Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas

Abstract:

An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.

Keywords: anthrophony, hydrophone, k-means, machine learning

Procedia PDF Downloads 170
2780 Edge Detection and Morphological Image for Estimating Gestational Age Based on Fetus Length Automatically

Authors: Retno Supriyanti, Ahmad Chuzaeri, Yogi Ramadhani, A. Haris Budi Widodo

Abstract:

The use of ultrasonography in the medical world has been very popular including the diagnosis of pregnancy. In determining pregnancy, ultrasonography has many roles, such as to check the position of the fetus, abnormal pregnancy, fetal age and others. Unfortunately, all these things still need to analyze the role of the obstetrician in the sense of image raised by ultrasonography. One of the most striking is the determination of gestational age. Usually, it is done by measuring the length of the fetus manually by obstetricians. In this study, we developed a computer-aided diagnosis for the determination of gestational age by measuring the length of the fetus automatically using edge detection method and image morphology. Results showed that the system is sufficiently accurate in determining the gestational age based image processing.

Keywords: computer aided diagnosis, gestational age, and diameter of uterus, length of fetus, edge detection method, morphology image

Procedia PDF Downloads 294
2779 Image Quality and Dose Optimisations in Digital and Computed Radiography X-ray Radiography Using Lumbar Spine Phantom

Authors: Elhussaien Elshiekh

Abstract:

A study was performed to management and compare radiation doses and image quality during Lumbar spine PA and Lumbar spine LAT, x- ray radiography using Computed Radiography (CR) and Digital Radiography (DR). Standard exposure factors such as kV, mAs and FFD used for imaging the Lumbar spine anthropomorphic phantom obtained from average exposure factors that were used with CR in five radiology centres. Lumbar spine phantom was imaged using CR and DR systems. Entrance surface air kerma (ESAK) was calculated X-ray tube output and patient exposure factor. Images were evaluated using visual grading system based on the European Guidelines on Quality Criteria for diagnostic radiographic images. The ESAK corresponding to each image was measured at the surface of the phantom. Six experienced specialists evaluated hard copies of all the images, the image score (IS) was calculated for each image by finding the average score of the Six evaluators. The IS value also was used to determine whether an image was diagnostically acceptable. The optimum recommended exposure factors founded here for Lumbar spine PA and Lumbar spine LAT, with respectively (80 kVp,25 mAs at 100 cm FFD) and (75 kVp,15 mAs at 100 cm FFD) for CR system, and (80 kVp,15 mAs at100 cm FFD) and (75 kVp,10 mAs at 100 cm FFD) for DR system. For Lumbar spine PA, the lowest ESAK value required to obtain a diagnostically acceptable image were 0.80 mGy for DR and 1.20 mGy for CR systems. Similarly for Lumbar spine LAT projection, the lowest ESAK values to obtain a diagnostically acceptable image were 0.62 mGy for DR and 0.76 mGy for CR systems. At standard kVp and mAs values, the image quality did not vary significantly between the CR and the DR system, but at higher kVp and mAs values, the DR images were found to be of better quality than CR images. In addition, the lower limit of entrance skin dose consistent with diagnostically acceptable DR images was 40% lower than that for CR images.

Keywords: image quality, dosimetry, radiation protection, optimization, digital radiography, computed radiography

Procedia PDF Downloads 50
2778 Quantum Entangled States and Image Processing

Authors: Sanjay Singh, Sushil Kumar, Rashmi Jain

Abstract:

Quantum registering is another pattern in computational hypothesis and a quantum mechanical framework has a few helpful properties like Entanglement. We plan to store data concerning the structure and substance of a basic picture in a quantum framework. Consider a variety of n qubits which we propose to use as our memory stockpiling. In recent years classical processing is switched to quantum image processing. Quantum image processing is an elegant approach to overcome the problems of its classical counter parts. Image storage, retrieval and its processing on quantum machines is an emerging area. Although quantum machines do not exist in physical reality but theoretical algorithms developed based on quantum entangled states gives new insights to process the classical images in quantum domain. Here in the present work, we give the brief overview, such that how entangled states can be useful for quantum image storage and retrieval. We discuss the properties of tripartite Greenberger-Horne-Zeilinger and W states and their usefulness to store the shapes which may consist three vertices. We also propose the techniques to store shapes having more than three vertices.

Keywords: Greenberger-Horne-Zeilinger, image storage and retrieval, quantum entanglement, W states

Procedia PDF Downloads 306
2777 The Effect of Compensating Filter on Image Quality in Lateral Projection of Thoracolumbar Radiography

Authors: Noor Arda Adrina Daud, Mohd Hanafi Ali

Abstract:

The compensating filter is placed between the patient and X-ray tube to compensate various density and thickness of human body. The main purpose of this project is to study the effect of compensating filter on image quality in lateral projection of thoracolumbar radiography. The study was performed by an X-ray unit where different thicknesses of aluminum were used as compensating filter. Specifically the relationship between thickness of aluminum, density and noise were evaluated. Results show different thickness of aluminum compensating filter improved the image quality of lateral projection thoracolumbar radiography. The compensating filter of 8.2 mm was considered as the optimal filter to compensate the thoracolumbar junction (T12-L1), 1 mm to compensate lumbar region and 5.9 mm to compensate thorax region. The aluminum wedge compensating filter was designed resulting in an acceptable image quality.

Keywords: compensating filter, aluminum, image quality, lateral, thoracolumbar

Procedia PDF Downloads 514
2776 AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer

Authors: Huayuan Lu, Chunfang Yang, Ma Zhu, Baojun Qi, Yaqiong Qiao, Jiangqian Xu

Abstract:

Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods.

Keywords: image geolocalization, self-attention mechanism, image resizer, geometric feature

Procedia PDF Downloads 214
2775 New Variational Approach for Contrast Enhancement of Color Image

Authors: Wanhyun Cho, Seongchae Seo, Soonja Kang

Abstract:

In this work, we propose a variational technique for image contrast enhancement which utilizes global and local information around each pixel. The energy functional is defined by a weighted linear combination of three terms which are called on a local, a global contrast term and dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that controls the departure between new pixel value and pixel value of original image while preserving original image characteristics as well as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of a proposed functional by using the fundamental lemma for the calculus of variations. And, we considered the procedure that this equation can be solved by using a gradient decent method, which is one of the dynamic approximation techniques. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of colour images better than existing techniques.

Keywords: color image, contrast enhancement technique, variational approach, Euler-Lagrang equation, dynamic approximation method, EME measure

Procedia PDF Downloads 449
2774 Security System for Safe Transmission of Medical Image

Authors: Mohammed Jamal Al-Mansor, Kok Beng Gan

Abstract:

This paper develops an optimized embedding of payload in medical image by using genetic optimization. The goal is to preserve region of interest from being distorted because of the watermark. By using this developed system there is no need of manual defining of region of interest through experts as the system will apply the genetic optimization to select the parts of image that can carry the watermark with guaranteeing less distortion. The experimental results assure that genetic based optimization is useful for performing steganography with less mean square error percentage.

Keywords: AES, DWT, genetic algorithm, watermarking

Procedia PDF Downloads 411
2773 The Effect of Environmental CSR on Corporate Social Performance: The Mediating Role of Green Innovation and Corporate Image

Authors: Edward Fosu

Abstract:

Green innovation has emerged as a significant environmental concern across the world. Green innovation refers to the utilization of technological developments that facilitate energy savings and waste material recycling. The stakeholder theory and resourced-based theory were used to examine how stakeholders' expectations affect corporate green innovation activities and how corporate innovation initiatives affect the corporate image and social performance. This study used structural equation modelling (SEM) and hierarchical regression to test the effects of environmental corporate social responsibility on social performance through mediators: green innovation and corporate image. A quantitative design was employed using data from Chinese companies in Ghana for this study. The study assessed. The results revealed that environmental practices promote corporate social performance (β = 0.070, t = 1.974, p = 0.049), positively affect green product innovation (β = 0.251, t = 7.478, p < 0.001), and has direct effect on green process innovation (β = 0.174, t = 6.192, p < 0.001). Green product innovation and green process innovation significantly promote corporate image respectively (β = 0.089, t = 2.581, p = 0.010), (β = 0.089, t = 2.367, p = 0.018). Corporate image has significant direct effects on corporate social performance (β = 0.146, t = 4.256, p < 0.001). Corporate environmental practices have an impact on the development of green products and processes which promote companies’ social performance. Additionally, evidence supports that corporate image influences companies’ social performance.

Keywords: environmental CSR, corporate image, green innovation, coprorate social performance

Procedia PDF Downloads 125
2772 The Mediation Effect of Customer Satisfaction in the Relationship between Service Quality, Corporate Image to Customer Loyalty

Authors: Rizwan Ali, Hammad Zafar

Abstract:

The purpose of this research is to investigate the mediation effect of customer satisfaction in the relationship between service quality, corporate image to customer loyalty, in Pakistan banking sector. The population of this research is banking customers and sample size of 210 respondents. This research uses the SPSS, Correlation, ANOVA and regression analysis techniques along with AMOS methods. The service quality and corporate image applied by the banks are not all variables can directly affect customer loyalty, but must first going through satisfaction. Which means that banks must first need to understand what the customer basic needs through variable service quality and corporate image so that the customers feel loyal when the level of satisfaction is resolved. The service quality provided by the banking industry needs to be improved in order to improve customer satisfaction and loyalty of banking services, especially for banks in Pakistan.

Keywords: customer loyalty, service quality, corporate image, customer satisfaction

Procedia PDF Downloads 103
2771 Rehabilitation of the Blind Using Sono-Visualization Tool

Authors: Ashwani Kumar

Abstract:

In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.

Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness

Procedia PDF Downloads 388
2770 On Dynamic Chaotic S-BOX Based Advanced Encryption Standard Algorithm for Image Encryption

Authors: Ajish Sreedharan

Abstract:

Security in transmission and storage of digital images has its importance in today’s image communications and confidential video conferencing. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. Advanced Encryption Standard (AES) is a well known block cipher that has several advantages in data encryption. However, it is not suitable for real-time applications. This paper presents modifications to the Advanced Encryption Standard to reflect a high level security and better image encryption. The modifications are done by adjusting the ShiftRow Transformation and using On Dynamic chaotic S-BOX. In AES the Substitute bytes, Shift row and Mix columns by themselves would provide no security because they do not use the key. In Dynamic chaotic S-BOX Based AES the Substitute bytes provide security because the S-Box is constructed from the key. Experimental results verify and prove that the proposed modification to image cryptosystem is highly secure from the cryptographic viewpoint. The results also prove that with a comparison to original AES encryption algorithm the modified algorithm gives better encryption results in terms of security against statistical attacks.

Keywords: advanced encryption standard (AES), on dynamic chaotic S-BOX, image encryption, security analysis, ShiftRow transformation

Procedia PDF Downloads 437
2769 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering

Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song

Abstract:

The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.

Keywords: contour filtering, linear array, photoacoustic tomography, universal back projection

Procedia PDF Downloads 400
2768 3D Images Representation to Provide Information on the Type of Castella Beams Hole

Authors: Cut Maisyarah Karyati, Aries Muslim, Sulardi

Abstract:

Digital image processing techniques to obtain detailed information from an image have been used in various fields, including in civil engineering, where the use of solid beam profiles in buildings and bridges has often been encountered since the early development of beams. Along with this development, the founded castellated beam profiles began to be more diverse in shape, such as the shape of a hexagon, triangle, pentagon, circle, ellipse and oval that could be a practical solution in optimizing a construction because of its characteristics. The purpose of this research is to create a computer application to edge detect the profile of various shapes of the castella beams hole. The digital image segmentation method has been used to obtain the grayscale images and represented in 2D and 3D formats. This application has been successfully made according to the desired function, which is to provide information on the type of castella beam hole.

Keywords: digital image, image processing, edge detection, grayscale, castella beams

Procedia PDF Downloads 141
2767 Medical Image Classification Using Legendre Multifractal Spectrum Features

Authors: R. Korchiyne, A. Sbihi, S. M. Farssi, R. Touahni, M. Tahiri Alaoui

Abstract:

Trabecular bone structure is important texture in the study of osteoporosis. Legendre multifractal spectrum can reflect the complex and self-similarity characteristic of structures. The main objective of this paper is to develop a new technique of medical image classification based on Legendre multifractal spectrum. Novel features have been developed from basic geometrical properties of this spectrum in a supervised image classification. The proposed method has been successfully used to classify medical images of bone trabeculations, and could be a useful supplement to the clinical observations for osteoporosis diagnosis. A comparative study with existing data reveals that the results of this approach are concordant.

Keywords: multifractal analysis, medical image, osteoporosis, fractal dimension, Legendre spectrum, supervised classification

Procedia PDF Downloads 514
2766 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: magnetic resonance image (MRI), c-means model, image segmentation, information entropy

Procedia PDF Downloads 225
2765 The Relationship between Exercise Attitude and Performance with Self-Image in Elderly Men in Iran

Authors: Hadis Mahmoodsalehi, Elham Shakoor, Maryam Koushkie Jahromi

Abstract:

Background and aims: Given the importance of health promotion in elderly and attention to health factors including physical activity and self-image reinforcing, this study aimed to investigate the relationship between exercise attitude and performance with self-image concept in elderly men. Methods: In this descriptive–correlational study, 50 different daily exercise activities of the elderly men living in Iran (mean age: 60.94 years) were selected through simple sampling method. Participants completed a questionnaire regarding exercise attitude and performance and Beck self-image concept. Pearson correlation test was used for analysis of the data. Results: The results showed the significant correlation between optimism and exercise performance (p = 0.012) and exercise attitude (p = 0.005). Conclusion: Findings show that exercise performance and attitude are associated positively with optimism in elderly women. So, increasing exercise or improving attitude toward exercise can lead to improving optimism.

Keywords: elderly, exercise performance and attitude, self-image, descriptive–correlational study

Procedia PDF Downloads 563
2764 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 371
2763 On Musical Information Geometry with Applications to Sonified Image Analysis

Authors: Shannon Steinmetz, Ellen Gethner

Abstract:

In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content.

Keywords: sonification, musical information geometry, image, content extraction, automated quantification, audio segmentation, pattern recognition

Procedia PDF Downloads 237
2762 Color Image Compression/Encryption/Contour Extraction using 3L-DWT and SSPCE Method

Authors: Ali A. Ukasha, Majdi F. Elbireki, Mohammad F. Abdullah

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. This paper is divided into two parts. This work interests with the color image which is decomposed into red, green and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using the key image that has same original size and are generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours from color images recovery can be obtained with accepted level of distortion using single step parallel contour extraction (SSPCE) method. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Color images and completely reconstructed without any distortion. Also shown that the analyzed algorithm has extremely large security against some attacks like salt and pepper and Jpeg compression. Its proof that the color images can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression and salt and peppers attacks, bitplanes decomposition, Arnold transform, color image, wavelet transform, lossless image encryption

Procedia PDF Downloads 518
2761 A Survey on Lossless Compression of Bayer Color Filter Array Images

Authors: Alina Trifan, António J. R. Neves

Abstract:

Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.

Keywords: bayer image, CFA, lossless compression, image coding standards

Procedia PDF Downloads 320
2760 Data Hiding by Vector Quantization in Color Image

Authors: Yung Gi Wu

Abstract:

With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.

Keywords: data hiding, vector quantization, watermark, color image

Procedia PDF Downloads 364
2759 Facility Detection from Image Using Mathematical Morphology

Authors: In-Geun Lim, Sung-Woong Ra

Abstract:

As high resolution satellite images can be used, lots of studies are carried out for exploiting these images in various fields. This paper proposes the method based on mathematical morphology for extracting the ‘horse's hoof shaped object’. This proposed method can make an automatic object detection system to track the meaningful object in a large satellite image rapidly. Mathematical morphology process can apply in binary image, so this method is very simple. Therefore this method can easily extract the ‘horse's hoof shaped object’ from any images which have indistinct edges of the tracking object and have different image qualities depending on filming location, filming time, and filming environment. Using the proposed method by which ‘horse's hoof shaped object’ can be rapidly extracted, the performance of the automatic object detection system can be improved dramatically.

Keywords: facility detection, satellite image, object, mathematical morphology

Procedia PDF Downloads 382
2758 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 181
2757 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data

Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju

Abstract:

Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.

Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding

Procedia PDF Downloads 412
2756 Encryption Image via Mutual Singular Value Decomposition

Authors: Adil Al-Rammahi

Abstract:

Image or document encryption is needed through e- government data base. Really in this paper we introduce two matrices images, one is the public, and the second is the secret (original). The analyses of each matrix is achieved using the transformation of singular values decomposition. So each matrix is transformed or analyzed to three matrices say row orthogonal basis, column orthogonal basis, and spectral diagonal basis. Product of the two row basis is calculated. Similarly the product of the two column basis is achieved. Finally we transform or save the files of public, row product and column product. In decryption stage, the original image is deduced by mutual method of the three public files.

Keywords: image cryptography, singular values decomposition

Procedia PDF Downloads 436