Search results for: edge detection algorithm
6998 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection
Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu
Abstract:
In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.Keywords: space-based detection, aerial targets, optical system design, detectability characterization
Procedia PDF Downloads 1686997 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 3016996 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Authors: Vrince Vimal, Madhav J. Nigam
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime
Procedia PDF Downloads 3366995 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction
Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour
Abstract:
In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift
Procedia PDF Downloads 3156994 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS
Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang
Abstract:
Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.Keywords: air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF
Procedia PDF Downloads 1666993 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 1316992 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 786991 3D Images Representation to Provide Information on the Type of Castella Beams Hole
Authors: Cut Maisyarah Karyati, Aries Muslim, Sulardi
Abstract:
Digital image processing techniques to obtain detailed information from an image have been used in various fields, including in civil engineering, where the use of solid beam profiles in buildings and bridges has often been encountered since the early development of beams. Along with this development, the founded castellated beam profiles began to be more diverse in shape, such as the shape of a hexagon, triangle, pentagon, circle, ellipse and oval that could be a practical solution in optimizing a construction because of its characteristics. The purpose of this research is to create a computer application to edge detect the profile of various shapes of the castella beams hole. The digital image segmentation method has been used to obtain the grayscale images and represented in 2D and 3D formats. This application has been successfully made according to the desired function, which is to provide information on the type of castella beam hole.Keywords: digital image, image processing, edge detection, grayscale, castella beams
Procedia PDF Downloads 1416990 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection
Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman
Abstract:
The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture
Procedia PDF Downloads 5836989 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation
Authors: Mahmut Yildirim
Abstract:
This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection
Procedia PDF Downloads 726988 Fabrication and Analysis of Simplified Dragonfly Wing Structures Created Using Balsa Wood and Red Prepreg Fibre Glass for Use in Biomimetic Micro Air Vehicles
Authors: Praveena Nair Sivasankaran, Thomas Arthur Ward, Rubentheren Viyapuri
Abstract:
Paper describes a methodology to fabricate a simplified dragonfly wing structure using balsa wood and red prepreg fibre glass. These simplified wing structures were created for use in Biomimetic Micro Air Vehicles (BMAV). Dragonfly wings are highly corrugated and possess complex vein structures. In order to mimic the wings function and retain its properties, a simplified version of the wing was designed. The simplified dragonfly wing structure was created using a method called spatial network analysis which utilizes Canny edge detection method. The vein structure of the wings were carved out in balsa wood and red prepreg fibre glass. Balsa wood and red prepreg fibre glass was chosen due to its ultra- lightweight property and hence, highly suitable to be used in our application. The fabricated structure was then immersed in a nanocomposite solution containing chitosan as a film matrix, reinforced with chitin nanowhiskers and tannic acid as a crosslinking agent. These materials closely mimic the membrane of a dragonfly wing. Finally, the wings were subjected to a bending test and comparisons were made with previous research for verification. The results had a margin of difference of about 3% and thus the structure was validated.Keywords: dragonfly wings, simplified, Canny edge detection, balsa wood, red prepreg, chitin, chitosan, tannic acid
Procedia PDF Downloads 3326987 An Algorithm to Compute the State Estimation of a Bilinear Dynamical Systems
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this paper, we introduce a mathematical algorithm which is used for estimating the states in the bilinear systems. This algorithm uses a special linearization of the second-order term by using the best available information about the state of the system. This technique makes our algorithm generalizes the well-known Kalman estimators. The system which is used here is of the bilinear class, the evolution of this model is linear-bilinear in the state of the system. Our algorithm can be used with linear and bilinear systems. We also here introduced a real application for the new algorithm to prove the feasibility and the efficiency for it.Keywords: estimation algorithm, bilinear systems, Kakman filter, second order linearization
Procedia PDF Downloads 4866986 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils
Authors: J. Joy, T. H. New, I. H. Ibrahim
Abstract:
A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.Keywords: computational fluid dynamics, flow separation control, hydrofoils, leading-edge protuberances
Procedia PDF Downloads 3286985 Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficient to Solidity (Ct/σ) Ratios
Authors: K. K. Saijaand, K. Prabhakaran Nair
Abstract:
This study aims to determine change in optimal lo-cations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multi-objective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization results shows that the inboard flap location at low Ct/σ ratio move farther from the baseline value and at high Ct/σ ratio move towards the root of the blade for minimizing hub vibration.Keywords: helicopter rotor, trailing-edge flap, thrust coefficient to solidity (Ct /σ) ratio, optimization
Procedia PDF Downloads 4766984 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: android, API Calls, machine learning, permissions combination
Procedia PDF Downloads 3296983 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network
Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar
Abstract:
Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network
Procedia PDF Downloads 1096982 Intrusion Detection Techniques in NaaS in the Cloud: A Review
Authors: Rashid Mahmood
Abstract:
The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields.Keywords: IDS, cloud, naas, detection
Procedia PDF Downloads 3206981 Path Planning for Collision Detection between two Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.Keywords: path planning, collision detection, convex polyhedron, neural network
Procedia PDF Downloads 4386980 The Effect on Rolling Mill of Waviness in Hot Rolled Steel
Authors: Sunthorn Sittisakuljaroen
Abstract:
The edge waviness in hot rolled steel is a common defect. Variables that effect for such defect include as raw material and machine. These variables are necessary to consider. This research studied the defect of edge waviness for SS 400 of metal sheet manufacture. Defect of metal sheets divided into two groups. The specimens were investigated on chemical composition and mechanical properties to find the difference. The results of investigate showed that not different to a standard significantly. Therefore the roll milled machine for sample need to adjustable rollers for press on metal sheet which was more appropriate to adjustable at both ends.Keywords: edge waviness, hot rolling steel, metal sheet defect, SS 400, roll leveller
Procedia PDF Downloads 4206979 Clustering Color Space, Time Interest Points for Moving Objects
Authors: Insaf Bellamine, Hamid Tairi
Abstract:
Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering
Procedia PDF Downloads 3786978 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30dB SNR as a reference for voice activity.Keywords: atomic decomposition, gabor, gammatone, matching pursuit, voice activity detection
Procedia PDF Downloads 2906977 Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization
Authors: Sandabad Sara, Sayd Tahri Yassine, Hammouch Ahmed
Abstract:
The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature.Keywords: MRI, Em algorithm, brain, tumor, Nl-means
Procedia PDF Downloads 3366976 Angular-Coordinate Driven Radial Tree Drawing
Authors: Farshad Ghassemi Toosi, Nikola S. Nikolov
Abstract:
We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other.Keywords: Radial drawing, Visualization, Algorithm, Use of node-link diagrams
Procedia PDF Downloads 3386975 Advanced Structural Analysis of Energy Storage Materials
Authors: Disha Gupta
Abstract:
The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD
Procedia PDF Downloads 1506974 Yang-Lee Edge Singularity of the Infinite-Range Ising Model
Authors: Seung-Yeon Kim
Abstract:
The Ising model, consisting magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising model has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising model explains the gas-liquid phase transitions accurately. However, the Ising model in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising model in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising model with that of the square-lattice Ising model in an external magnetic field.Keywords: Ising ferromagnet, magnetic field, partition function zeros, Yang-Lee edge singularity
Procedia PDF Downloads 7396973 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 916972 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network
Authors: Amit Verma, Pardeep Kaur
Abstract:
In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval
Procedia PDF Downloads 3786971 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 4146970 Low-Cost Reversible Logic Serial Multipliers with Error Detection Capability
Authors: Mojtaba Valinataj
Abstract:
Nowadays reversible logic has received many attentions as one of the new fields for reducing the power consumption. On the other hand, the processing systems have weaknesses against different external effects. In this paper, some error detecting reversible logic serial multipliers are proposed by incorporating the parity-preserving gates. This way, the new designs are presented for signed parity-preserving serial multipliers based on the Booth's algorithm by exploiting the new arrangements of existing gates. The experimental results show that the proposed 4×4 multipliers in this paper reach up to 20%, 35%, and 41% enhancements in the number of constant inputs, quantum cost, and gate count, respectively, as the reversible logic criteria, compared to previous designs. Furthermore, all the proposed designs have been generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.Keywords: Booth’s algorithm, error detection, multiplication, parity-preserving gates, quantum computers, reversible logic
Procedia PDF Downloads 2286969 Novel Algorithm for Restoration of Retina Images
Authors: P. Subbuthai, S. Muruganand
Abstract:
Diabetic Retinopathy is one of the complicated diseases and it is caused by the changes in the blood vessels of the retina. Extraction of retina image through Fundus camera sometimes produced poor contrast and noises. Because of this noise, detection of blood vessels in the retina is very complicated. So preprocessing is needed, in this paper, a novel algorithm is implemented to remove the noisy pixel in the retina image. The proposed algorithm is Extended Median Filter and it is applied to the green channel of the retina because green channel vessels are brighter than the background. Proposed extended median filter is compared with the existing standard median filter by performance metrics such as PSNR, MSE and RMSE. Experimental results show that the proposed Extended Median Filter algorithm gives a better result than the existing standard median filter in terms of noise suppression and detail preservation.Keywords: fundus retina image, diabetic retinopathy, median filter, microaneurysms, exudates
Procedia PDF Downloads 342