Search results for: differential algebraic equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3436

Search results for: differential algebraic equation

3226 Numerical Solution of Momentum Equations Using Finite Difference Method for Newtonian Flows in Two-Dimensional Cartesian Coordinate System

Authors: Ali Ateş, Ansar B. Mwimbo, Ali H. Abdulkarim

Abstract:

General transport equation has a wide range of application in Fluid Mechanics and Heat Transfer problems. In this equation, generally when φ variable which represents a flow property is used to represent fluid velocity component, general transport equation turns into momentum equations or with its well known name Navier-Stokes equations. In these non-linear differential equations instead of seeking for analytic solutions, preferring numerical solutions is a more frequently used procedure. Finite difference method is a commonly used numerical solution method. In these equations using velocity and pressure gradients instead of stress tensors decreases the number of unknowns. Also, continuity equation, by integrating the system, number of equations is obtained as number of unknowns. In this situation, velocity and pressure components emerge as two important parameters. In the solution of differential equation system, velocities and pressures must be solved together. However, in the considered grid system, when pressure and velocity values are jointly solved for the same nodal points some problems confront us. To overcome this problem, using staggered grid system is a referred solution method. For the computerized solutions of the staggered grid system various algorithms were developed. From these, two most commonly used are SIMPLE and SIMPLER algorithms. In this study Navier-Stokes equations were numerically solved for Newtonian flow, whose mass or gravitational forces were neglected, for incompressible and laminar fluid, as a hydro dynamically fully developed region and in two dimensional cartesian coordinate system. Finite difference method was chosen as the solution method. This is a parametric study in which varying values of velocity components, pressure and Reynolds numbers were used. Differential equations were discritized using central difference and hybrid scheme. The discritized equation system was solved by Gauss-Siedel iteration method. SIMPLE and SIMPLER were used as solution algorithms. The obtained results, were compared for central difference and hybrid as discritization methods. Also, as solution algorithm, SIMPLE algorithm and SIMPLER algorithm were compared to each other. As a result, it was observed that hybrid discritization method gave better results over a larger area. Furthermore, as computer solution algorithm, besides some disadvantages, it can be said that SIMPLER algorithm is more practical and gave result in short time. For this study, a code was developed in DELPHI programming language. The values obtained in a computer program were converted into graphs and discussed. During sketching, the quality of the graph was increased by adding intermediate values to the obtained result values using Lagrange interpolation formula. For the solution of the system, number of grid and node was found as an estimated. At the same time, to indicate that the obtained results are satisfactory enough, by doing independent analysis from the grid (GCI analysis) for coarse, medium and fine grid system solution domain was obtained. It was observed that when graphs and program outputs were compared with similar studies highly satisfactory results were achieved.

Keywords: finite difference method, GCI analysis, numerical solution of the Navier-Stokes equations, SIMPLE and SIMPLER algoritms

Procedia PDF Downloads 388
3225 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle

Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He

Abstract:

According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.

Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque

Procedia PDF Downloads 476
3224 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding

Procedia PDF Downloads 331
3223 An Efficient Book Keeping Strategy for the Formation of the Design Matrix in Geodetic Network Adjustment

Authors: O. G. Omogunloye, J. B. Olaleye, O. E. Abiodun, J. O. Odumosu, O. G. Ajayi

Abstract:

The focus of the study is to proffer easy formulation and computation of least square observation equation’s design matrix by using an efficient book keeping strategy. Usually, for a large network of many triangles and stations, a rigorous task is involved in the computation and placement of the values of the differentials of each observation with respect to its station coordinates (latitude and longitude), in their respective rows and columns. The efficient book keeping strategy seeks to eliminate or reduce this rigorous task involved, especially in large network, by simple skillful arrangement and development of a short program written in the Matlab environment, the formulation and computation of least square observation equation’s design matrix can be easily achieved.

Keywords: design, differential, geodetic, matrix, network, station

Procedia PDF Downloads 353
3222 Pricing European Continuous-Installment Options under Regime-Switching Models

Authors: Saghar Heidari

Abstract:

In this paper, we study the valuation problem of European continuous-installment options under Markov-modulated models with a partial differential equation approach. Due to the opportunity for continuing or stopping to pay installments, the valuation problem under regime-switching models can be formulated as coupled partial differential equations (CPDE) with free boundary features. To value the installment options, we express the truncated CPDE as a linear complementarity problem (LCP), then a finite element method is proposed to solve the resulted variational inequality. Under some appropriate assumptions, we establish the stability of the method and illustrate some numerical results to examine the rate of convergence and accuracy of the proposed method for the pricing problem under the regime-switching model.

Keywords: continuous-installment option, European option, regime-switching model, finite element method

Procedia PDF Downloads 134
3221 Energy Conservation and H-Theorem for the Enskog-Vlasov Equation

Authors: Eugene Benilov, Mikhail Benilov

Abstract:

The Enskog-Vlasov (EV) equation is a widely used semi-phenomenological model of gas/liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H-theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.

Keywords: Enskog collision integral, hard spheres, kinetic equation, phase transition

Procedia PDF Downloads 151
3220 Numerical Solution of Manning's Equation in Rectangular Channels

Authors: Abdulrahman Abdulrahman

Abstract:

When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.

Keywords: channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow

Procedia PDF Downloads 216
3219 Choosing an Optimal Epsilon for Differentially Private Arrhythmia Analysis

Authors: Arin Ghazarian, Cyril Rakovski

Abstract:

Differential privacy has become the leading technique to protect the privacy of individuals in a database while allowing useful analysis to be done and the results to be shared. It puts a guarantee on the amount of privacy loss in the worst-case scenario. Differential privacy is not a toggle between full privacy and zero privacy. It controls the tradeoff between the accuracy of the results and the privacy loss using a single key parameter called

Keywords: arrhythmia, cardiology, differential privacy, ECG, epsilon, medi-cal data, privacy preserving analytics, statistical databases

Procedia PDF Downloads 150
3218 On Direct Matrix Factored Inversion via Broyden's Updates

Authors: Adel Mohsen

Abstract:

A direct method based on the good Broyden's updates for evaluating the inverse of a nonsingular square matrix of full rank and solving related system of linear algebraic equations is studied. For a matrix A of order n whose LU-decomposition is A = LU, the multiplication count is O (n3). This includes the evaluation of the LU-decompositions of the inverse, the lower triangular decomposition of A as well as a “reduced matrix inverse”. If an explicit value of the inverse is not needed the order reduces to O (n3/2) to compute to compute inv(U) and the reduced inverse. For a symmetric matrix only O (n3/3) operations are required to compute inv(L) and the reduced inverse. An example is presented to demonstrate the capability of using the reduced matrix inverse in treating ill-conditioned systems. Besides the simplicity of Broyden's update, the method provides a mean to exploit the possible sparsity in the matrix and to derive a suitable preconditioner.

Keywords: Broyden's updates, matrix inverse, inverse factorization, solution of linear algebraic equations, ill-conditioned matrices, preconditioning

Procedia PDF Downloads 477
3217 A Numerical Solution Based on Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

Authors: Rajeev, N. K. Raigar

Abstract:

In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Keywords: operational matrix of differentiation, similarity transformation, shifted second kind chebyshev wavelets, stefan problem

Procedia PDF Downloads 401
3216 Some Properties in Jordan Ideal on 3-Prime Near-Rings

Authors: Abdelkarim Boua, Abdelhakim Chillali

Abstract:

The study of non-associative structures in algebraic structures has become a separate entity; for, in the case of groups, their corresponding non-associative structure i.e. loops is dealt with separately. Similarly there is vast amount of research on the nonassociative structures of semigroups i.e. groupoids and that of rings i.e. nonassociative rings. However it is unfortunate that we do not have a parallel notions or study of non-associative near-rings. In this work we shall attempt to generalize a few known results and study the commutativity of Jordan ideal in 3-prime near-rings satisfying certain identities involving the Jordan ideal. We study the derivations satisfying certain differential identities on Jordan ideals of 3-prime near-rings. Moreover, we provide examples to show that hypothesis of our results are necessary. We give some new results and examples concerning the existence of Jordan ideal and derivations in near-rings. These near-rings can be used to build a new codes.

Keywords: 3-prime near-rings, near-rings, Jordan ideal, derivations

Procedia PDF Downloads 304
3215 Exactly Fractional Solutions of Nonlinear Lattice Equation via Some Fractional Transformations

Authors: A. Zerarka, W. Djoudi

Abstract:

We use some fractional transformations to obtain many types of new exact solutions of nonlinear lattice equation. These solutions include rational solutions, periodic wave solutions, and doubly periodic wave solutions.

Keywords: fractional transformations, nonlinear equation, travelling wave solutions, lattice equation

Procedia PDF Downloads 656
3214 Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of Hardy, inequality of Coposon, Steklov operator

Procedia PDF Downloads 76
3213 Application of the Finite Window Method to a Time-Dependent Convection-Diffusion Equation

Authors: Raoul Ouambo Tobou, Alexis Kuitche, Marcel Edoun

Abstract:

The FWM (Finite Window Method) is a new numerical meshfree technique for solving problems defined either in terms of PDEs (Partial Differential Equation) or by a set of conservation/equilibrium laws. The principle behind the FWM is that in such problem each element of the concerned domain is interacting with its neighbors and will always try to adapt to keep in equilibrium with respect to those neighbors. This leads to a very simple and robust problem solving scheme, well suited for transfer problems. In this work, we have applied the FWM to an unsteady scalar convection-diffusion equation. Despite its simplicity, it is well known that convection-diffusion problems can be challenging to be solved numerically, especially when convection is highly dominant. This has led researchers to set the scalar convection-diffusion equation as a benchmark one used to analyze and derive the required conditions or artifacts needed to numerically solve problems where convection and diffusion occur simultaneously. We have shown here that the standard FWM can be used to solve convection-diffusion equations in a robust manner as no adjustments (Upwinding or Artificial Diffusion addition) were required to obtain good results even for high Peclet numbers and coarse space and time steps. A comparison was performed between the FWM scheme and both a first order implicit Finite Volume Scheme (Upwind scheme) and a third order implicit Finite Volume Scheme (QUICK Scheme). The results of the comparison was that for equal space and time grid spacing, the FWM yields a much better precision than the used Finite Volume schemes, all having similar computational cost and conditioning number.

Keywords: Finite Window Method, Convection-Diffusion, Numerical Technique, Convergence

Procedia PDF Downloads 328
3212 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation

Authors: Ayan Chakraborty, BV. Rathish Kumar

Abstract:

Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.

Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional

Procedia PDF Downloads 190
3211 Reduction of Differential Column Shortening in Tall Buildings

Authors: Hansoo Kim, Seunghak Shin

Abstract:

The differential column shortening in tall buildings can be reduced by improving material and structural characteristics of the structural systems. This paper proposes structural methods to reduce differential column shortening in reinforced concrete tall buildings; connecting columns with rigidly jointed horizontal members, using outriggers, and placing additional reinforcement at the columns. The rigidly connected horizontal members including outriggers reduce the differential shortening between adjacent vertical members. The axial stiffness of columns with greater shortening can be effectively increased by placing additional reinforcement at the columns, thus the differential column shortening can be reduced in the design stage. The optimum distribution of additional reinforcement can be determined by applying a gradient based optimization technique.

Keywords: column shortening, long-term behavior, optimization, tall building

Procedia PDF Downloads 248
3210 On Boundary Value Problems of Fractional Differential Equations Involving Stieltjes Derivatives

Authors: Baghdad Said

Abstract:

Differential equations of fractional order have proved to be important tools to describe many physical phenomena and have been used in diverse fields such as engineering, mathematics as well as other applied sciences. On the other hand, the theory of differential equations involving the Stieltjes derivative (SD) with respect to a non-decreasing function is a new class of differential equations and has many applications as a unified framework for dynamic equations on time scales and differential equations with impulses at fixed times. The aim of this paper is to investigate the existence, uniqueness, and generalized Ulam-Hyers-Rassias stability (UHRS) of solutions for a boundary value problem of sequential fractional differential equations (SFDE) containing (SD). This study is based on the technique of noncompactness measures (MNCs) combined with Monch-Krasnoselski fixed point theorems (FPT), and the results are proven in an appropriate Banach space under sufficient hypotheses. We also give an illustrative example. In this work, we introduced a class of (SFDE) and the results are obtained under a few hypotheses. Future directions connected to this work could focus on another problem with different types of fractional integrals and derivatives, and the (SD) will be assumed under a more general hypothesis in more general functional spaces.

Keywords: SFDE, SD, UHRS, MNCs, FPT

Procedia PDF Downloads 40
3209 Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion

Authors: Hebert Montegranario, Mauricio Londoño

Abstract:

Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability.

Keywords: Helmholtz equation, meshless methods, seismic imaging, wavefield inversion

Procedia PDF Downloads 545
3208 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation

Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieha

Abstract:

In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.

Keywords: polynomial constitutive equation, solitary, stress solitary waves, nonlinear constitutive law

Procedia PDF Downloads 494
3207 Dynamic Analysis of Composite Doubly Curved Panels with Variable Thickness

Authors: I. Algul, G. Akgun, H. Kurtaran

Abstract:

Dynamic analysis of composite doubly curved panels with variable thickness subjected to different pulse types using Generalized Differential Quadrature method (GDQ) is presented in this study. Panels with variable thickness are used in the construction of aerospace and marine industry. Giving variable thickness to panels can allow the designer to get optimum structural efficiency. For this reason, estimating the response of variable thickness panels is very important to design more reliable structures under dynamic loads. Dynamic equations for composite panels with variable thickness are obtained using virtual work principle. Partial derivatives in the equation of motion are expressed with GDQ and Newmark average acceleration scheme is used for temporal discretization. Several examples are used to highlight the effectiveness of the proposed method. Results are compared with finite element method. Effects of taper ratios, boundary conditions and loading type on the response of composite panel are investigated.

Keywords: differential quadrature method, doubly curved panels, laminated composite materials, small displacement

Procedia PDF Downloads 356
3206 Analysis of a Generalized Sharma-Tasso-Olver Equation with Variable Coefficients

Authors: Fadi Awawdeh, O. Alsayyed, S. Al-Shará

Abstract:

Considering the inhomogeneities of media, the variable-coefficient Sharma-Tasso-Olver (STO) equation is hereby investigated with the aid of symbolic computation. A newly developed simplified bilinear method is described for the solution of considered equation. Without any constraints on the coefficient functions, multiple kink solutions are obtained. Parametric analysis is carried out in order to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.

Keywords: Hirota bilinear method, multiple kink solution, Sharma-Tasso-Olver equation, inhomogeneity of media

Procedia PDF Downloads 515
3205 Dynamic Behavior of Brain Tissue under Transient Loading

Authors: Y. J. Zhou, G. Lu

Abstract:

In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.

Keywords: analytical method, mechanical responses, spherical wave propagation, traumatic brain injury

Procedia PDF Downloads 266
3204 Modelling of Moisture Loss and Oil Uptake during Deep-Fat Frying of Plantain

Authors: James A. Adeyanju, John O. Olajide, Akinbode A. Adedeji

Abstract:

A predictive mathematical model based on the fundamental principles of mass transfer was developed to simulate the moisture content and oil content during Deep-Fat Frying (DFF) process of dodo. The resulting governing equation, that is, partial differential equation that describes rate of moisture loss and oil uptake was solved numerically using explicit Finite Difference Technique (FDT). Computer codes were written in MATLAB environment for the implementation of FDT at different frying conditions and moisture loss as well as oil uptake simulation during DFF of dodo. Plantain samples were sliced into 5 mm thickness and fried at different frying oil temperatures (150, 160 and 170 ⁰C) for periods varying from 2 to 4 min. The comparison between the predicted results and experimental data for the validation of the model showed reasonable agreement. The correlation coefficients between the predicted and experimental values of moisture and oil transfer models ranging from 0.912 to 0.947 and 0.895 to 0.957, respectively. The predicted results could be further used for the design, control and optimization of deep-fat frying process.

Keywords: frying, moisture loss, modelling, oil uptake

Procedia PDF Downloads 446
3203 C Vibration Analysis of a Beam on Elastic Foundation with Elastically Restrained Ends Using Spectral Element Method

Authors: Hamioud Saida, Khalfallah Salah

Abstract:

In this study, a spectral element method is employed to predict the free vibration of a Euler-Bernoulli beam resting on a Winkler foundation with elastically restrained ends. The formulation of the dynamic stiffness matrix has been established by solving the differential equation of motion, which was transformed to frequency domain. Non-dimensional natural frequencies and shape modes are obtained by solving the partial differential equations, numerically. Numerical comparisons and examples are performed to show the effectiveness of the SEM and to investigate the effects of various parameters, such as the springs at the boundaries and the elastic foundation parameter on the vibration frequencies. The obtained results demonstrate that the present method can also be applied to solve the more general problem of the dynamic analysis of structures with higher order precision.

Keywords: elastically supported Euler-Bernoulli beam, free-vibration, spectral element method, Winkler foundation

Procedia PDF Downloads 131
3202 Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys

Authors: W. J. Kim

Abstract:

The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.

Keywords: high-ratio differential speed rolling, tensile testing, severe plastic deformation, shape memory alloys

Procedia PDF Downloads 364
3201 Backstepping Design and Fractional Differential Equation of Chaotic System

Authors: Ayub Khan, Net Ram Garg, Geeta Jain

Abstract:

In this paper, backstepping method is proposed to synchronize two fractional-order systems. The simulation results show that this method can effectively synchronize two chaotic systems.

Keywords: backstepping method, fractional order, synchronization, chaotic system

Procedia PDF Downloads 455
3200 On One New Solving Approach of the Plane Mixed Problem for an Elastic Semistrip

Authors: Natalia D. Vaysfel’d, Zinaida Y. Zhuravlova

Abstract:

The loaded plane elastic semistrip, the lateral boundaries of which are fixed, is considered. The integral transformations are applied directly to Lame’s equations. It leads to one dimensional boundary value problem in the transformations’ domain which is formulated as a vector one. With the help of the matrix differential calculation’s apparatus and apparatus of Green matrix function the exact solution of a vector problem is constructed. After the satisfying the boundary condition at the semi strip’s edge the problem is reduced to the solving of the integral singular equation with regard of the unknown stress at the semis trip’s edge. The equation is solved with the orthogonal polynomials method that takes into consideration the real singularities of the solution at the ends of integration interval. The normal stress at the edge of the semis trip were calculated and analyzed.

Keywords: semi strip, Green's Matrix, fourier transformation, orthogonal polynomials method

Procedia PDF Downloads 430
3199 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: observer systems, unscented Kalman filter, nonlinear systems, Burgers' equation

Procedia PDF Downloads 150
3198 Trajectory Tracking Controller Based on Normalized Right Coprime Factorization Technique for the Ball and Plate System

Authors: Martins Olatunbosun Babatunde, Muhammed Bashir Muazu, Emmanuel Adewale Adedokun

Abstract:

This paper presents the development of a double-loop trajectory-tracking controller for the ball and plate system (BPS) using the Normalized Right Coprime Factorization (NRCF) scheme.The Linear Algebraic (LA) method is used to design the inner loop required to stabilize the ball, while H-infinity NRCF method, that involved the lead-lag compensator design approach, is used to develop the outer loop that controls the plate. Simulation results show that the plate was stabilized at 0.2989 seconds and the ball was able to settle after 0.9646 seconds, with a trajectory tracking error of 0.0036. This shows that the controller has good adaptability and robustness.

Keywords: ball and plate system, normalized right coprime factorization, linear algebraic method, compensator, controller, tracking.

Procedia PDF Downloads 139
3197 Student Project on Using a Spreadsheet for Solving Differential Equations by Euler's Method

Authors: Andriy Didenko, Zanin Kavazovic

Abstract:

Engineering students often have certain difficulties in mastering major theoretical concepts in mathematical courses such as differential equations. Student projects were proposed to motivate students’ learning and can be used as a tool to promote students’ interest in the material. Authors propose a student project that includes the use of Microsoft Excel. This instructional tool is often overlooked by both educators and students. An integral component of the experimental part of such a project is the exploration of an interactive spreadsheet. The aim is to assist engineering students in better understanding of Euler’s method. This method is employed to numerically solve first order differential equations. At first, students are invited to select classic equations from a list presented in a form of a drop-down menu. For each of these equations, students can select and modify certain key parameters and observe the influence of initial condition on the solution. This will give students an insight into the behavior of the method in different configurations as solutions to equations are given in numerical and graphical forms. Further, students could also create their own equations by providing functions of their own choice and a variety of initial conditions. Moreover, they can visualize and explore the impact of the length of the time step on the convergence of a sequence of numerical solutions to the exact solution of the equation. As a final stage of the project, students are encouraged to develop their own spreadsheets for other numerical methods and other types of equations. Such projects promote students’ interest in mathematical applications and further improve their mathematical and programming skills.

Keywords: student project, Euler's method, spreadsheet, engineering education

Procedia PDF Downloads 133