Search results for: diameter variation along fibre
3954 Spatial Variation of Trace Elements in Suspended Sediments from Urban River
Authors: Daniel Macedo Neto, Sandro Froehner, Juan Sanez
Abstract:
Suspended sediments (SS) are an environmental constituent able to represent the effects of land use changes on watersheds. One important consideration of land use change is its implication on trace element loading. Water bodies have the capacity to retain trace elements. Spatial variation in trace elements concentrations can be associated with land occupation and sources of pollution. In this work, the spatial variation of trace elements in suspended sediments from an urban river was assessed. Time-integrated fluvial suspended sediment samples were installed in three different sites of Barigui River. The suspend solids were collected every 30 days, from May 2015 to August 2015 (total samples 12). Site P1 covers 44 km2 drainage area and has low land occupation, whilst P2 cover an area of 87 km2 and it is totally urban as P3, which area is higher than 130 km2. Trace elements (As, Cd, Cr, P, Pb and Zn) were analysed by ICP-ES. All elements analyzed showed a similar pattern, i.e., the concentration raise with the urbanization, exception for As (P1=7.75; P2=5.75; P3=5.60mg/kg). There was increase in concentration for Cd (P1=0.75; P2=0.78; P3=1.45mg/kg), Cr (P1=59.50; P2=101.75; P3=102.00 mg/kg), Zn (P1=142.25; P2=152.50; P3=223.00mg/kg), P (P1=937.50; P2=1,545.00; P3=2,355.00 mg/kg) and for Pb (P1=31.25; P2=32.75; P3=39.17±2.56 mg/kg). The variation in concentrations were as follow -27.74% (As), +93.33% (Cd), +71.43% (Cr), +151.20% (P), +25.33% (Pb) e +56.77% (Zn). Cd, Cr, P, Pb and Zn presented a clear trend of increasing the concentration from upstream to downstream. Such variation is more notorious for P, Cd and Cr, possibly due the urbanization.Keywords: trace elements, erosion, urbanization, suspended sediments
Procedia PDF Downloads 3143953 Temporal Variation of Reference Evapotranspiration in Central Anatolia Region, Turkey and Meteorological Drought Analysis via Standardized Precipitation Evapotranspiration Index Method
Authors: Alper Serdar Anli
Abstract:
Analysis of temporal variation of reference evapotranspiration (ET0) is important in arid and semi-arid regions where water resources are limited. In this study, temporal variation of reference evapotranspiration (ET0) and meteorological drought analysis through SPEI (Standardized Precipitation Evapotranspiration Index) method have been carried out in provinces of Central Anatolia Region, Turkey. Reference evapotranspiration of concerning provinces in the region has been estimated using Penman-Monteith method and one calendar year has been split up four periods as r1, r2, r3 and r4. Temporal variation of reference evapotranspiration according to four periods has been analyzed through parametric Dickey-Fuller test and non-parametric Mann-Whitney U test. As a result, significant increasing trends for reference evapotranspiration have been detected and according to SPEI method used for estimating meteorological drought in provinces, mild drought has been experienced in general, and however there have been also a significant amount of events where moderate and severely droughts occurred.Keywords: central Anatolia region, drought index, Penman-Monteith, reference evapotranspiration, temporal variation
Procedia PDF Downloads 3123952 Effect of Number of Baffles on Pressure Drop and Heat Transfer in a Shell and Tube Heat Exchanger
Authors: A. Falavand Jozaei, A. Ghafouri, M. Mosavi Navaei
Abstract:
In this paper for a given heat duty, study of number of baffles on pressure drop and heat transfer is considered in a STHX (Shell and Tube Heat Exchanger) with single segmental baffles. The effect of number of baffles from 9 to 52 baffles (baffle spacing variations from 4 to 24 inches) over OHTC (Overall Heat Hransfer Coefficient) to pressure drop ratio (U/Δp ratio). The results show that U/Δp ratio is low when baffle spacing is minimum (4 inches) because pressure drop is high; however, heat transfer coefficient is very significant. Then, with the increase of baffle spacing, pressure drop rapidly decreases and OHTC also decreases, but the decrease of OHTC is lower than pressure drop, so (U/Δp) ratio increases. After increasing baffles more than 12 inches, variation in pressure drop is gradual and approximately constant and OHTC decreases; Consequently, U/Δp ratio decreases again. If baffle spacing reaches to 24 inches, STHX will have minimum pressure drop, but OHTC decreases, so required heat transfer surface increases and U/Δp ratio decreases. After baffle spacing more than 12 inches, variation of shell side pressure drop is negligible. So optimum baffle spacing is suggested between 8 to 12 inches (43 to 63 percent of inside shell diameter) for a sufficient heat duty and low pressure drop.Keywords: shell and tube heat exchanger, single segmental baffle, overall heat transfer coefficient, pressure drop
Procedia PDF Downloads 5443951 Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020
Authors: Salif Koné
Abstract:
We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario.Keywords: internal cycles, hydrometric data, niger river, gr2m and simulhyd framework, runoff coefficient of variation
Procedia PDF Downloads 943950 Evaluation of Genetic Potentials of Onion (Allium Cepa L.) Cultivars of North Western Nigeria
Authors: L. Abubakar, B. M. Sokoto, I. U. Mohammed, M. S. Na’allah, A. Mohammad, A. N. Garba, T. S. Bubuche
Abstract:
Onion (Allium cepa var. cepa L.) is the most important species of the Allium group belonging to family Alliaceae and genus Allium. It can be regarded as the single important vegetable species in the world after tomatoes. Despite the similarities, which bring the species together, the genus is a strikingly diverse one, with more than five hundred species, which are perennial and mostly bulbous plants. Out of these, only seven species are in cultivation, and five are the most important species of the cultivated Allium. However, Allium cepa (onion) and Allium sativum (Garlic) are the two major cultivated species grown all over the world of which the onion crop is the most important. North Western Nigeria (Sokoto, Kebbi and Zamfara States) constitute the major onion producing zone in Nigeria, which is primarily during the dry season. However, onion production in the zone is seriously affected by two main factors i.e. diseases and storage losses, in addition to other constraints that limits the cultivation of the crop during the rainy season which include lack of prolonged rainy season to allow for proper maturation of the crop. The major onion disease in this zone is purple blotch caused by a fungus Alternaria porri and currently efforts are on to develop onion hybrids resistant to the disease. Genetic diversity plays an important role in plant breeding either to exploit heterosis or to generate productive recombinants. Assessment of a large number of genotypes for a genetic diversity is the first step in this direction. The objective of this research therefore is to evaluate the genetic potentials of the onion cultivars of North Western Nigeria, with a view of developing new cultivars that address the major production challenges to onion cultivation in North Western, Nigeria. Thirteen onion cultivars were collected during an expedition covering North western Nigeria and Southern part of Niger Republic during 2013, which are areas noted for onion production. The cultivars were evaluated at two locations; Sokoto, in Sokoto State and Jega in Kebbi State all in Nigeria during the 2013/14 onion season (dry season) under irrigation. The objective of the research was to determine the genetic potentials of onion cultivars of north western Nigeria as a basis for breeding purposes. Combined analysis of the results revealed highly significant variation between the cultivars across the locations with respect to plant height, number of leaves/plant, bolting %, bulb height, bulb weight, mean bulb yield and cured bulb weight, with significant variation in terms of bulb diameter. Tasa from Warra Local Government Area of Kebbi State (V4) recorded the greatest mean fresh bulb yield with Jar Albasa (V8) from Illela Local Government Area of Sokoto State recording the least. Similarly Marsa (V5) from Silame Local Government Area recorded the greatest mean cured bulb yield (marketable bulb)with Kiba (V11) from Goronyo Local Government of Sokoto State recording the least. Significant variation was recorded between the locations with respect to all characters, with Sokoto being better in terms of plant height, number of leaves/plant, bolting % and bulb diameter. Jega was better in terms of bulb height, bulb yield and cured bulb weight. Significant variation was therefore observed between the cultivars.Keywords: evaluation, genetic, onions, North Western Nigeria
Procedia PDF Downloads 4063949 Empirical Study of Partitions Similarity Measures
Authors: Abdelkrim Alfalah, Lahcen Ouarbya, John Howroyd
Abstract:
This paper investigates and compares the performance of four existing distances and similarity measures between partitions. The partition measures considered are Rand Index (RI), Adjusted Rand Index (ARI), Variation of Information (VI), and Normalised Variation of Information (NVI). This work investigates the ability of these partition measures to capture three predefined intuitions: the variation within randomly generated partitions, the sensitivity to small perturbations, and finally the independence from the dataset scale. It has been shown that the Adjusted Rand Index performed well overall, with regards to these three intuitions.Keywords: clustering, comparing partitions, similarity measure, partition distance, partition metric, similarity between partitions, clustering comparison.
Procedia PDF Downloads 2023948 Experimental and Finite Element Analysis of Large Deformation Characteristics of Magnetic Responsive Hydrogel Nanocomposites Membranes
Authors: Mallikarjunachari Gangapuram
Abstract:
Stimuli-responsive hydrogel nanocomposite membranes are gaining significant attention these days due to their potential applications in various engineering fields. For example, sensors, soft actuators, drug delivery, remote controlled therapy, water treatment, shape morphing, and magnetic refrigeration are few advanced applications of hydrogel nanocomposite membranes. In this work, hydrogel nanocomposite membranes are synthesized by embedding nanometer-sized (diameter - 300 nm) Fe₃O₄ magnetic particles into the polyvinyl alcohol (PVA) polymer. To understand the large deformation characteristics of these membranes, a well-known experimental method ball indentation technique is used. Different designing parameters such as membrane thickness, the concentration of magnetic particles and ball diameter on the viscoelastic properties are studied. All the experiments are carried out without and with a static magnetic field. Finite element simulations are carried out to validate the experimental results. It is observed, the creep response decreases and Young’s modulus increases as the thickness and concentration of magnetic particles increases. Image analysis revealed the hydrogel membranes are undergone global deformation for ball diameter 18 mm and local deformation when the diameter decreases from 18 mm to 0.5 mm.Keywords: ball indentation, hydrogel membranes, nanocomposites, Young's modulus
Procedia PDF Downloads 1283947 Rationale of Eye Pupillary Diameter for the UV Protection for Sunglasses
Authors: Liliane Ventura, Mauro Masili
Abstract:
Ultraviolet (UV) protection is critical for sunglasses, and mydriasis, as well as miosis, are relevant parameters to consider. The literature reports that for sunglasses, ultraviolet protection is critical because sunglasses can cause the opposite effect if the lenses do not provide adequate UV protection due to the greater dilation of the pupil when wearing sunglasses. However, the scientific literature does not properly quantify to support this rationale. The reasoning may be misleading by ignoring not only the inherent absorption of UV by the sunglass lens materials but also by ignoring the absorption of the anterior structures of the eye, i.e., the cornea and aqueous humor. Therefore, we estimate the pupil diameter and calculate the solar ultraviolet influx through the pupil of the human eye for two situations of an individual wearing and not wearing sunglasses. We quantify the dilation of the pupil as a function of the luminance of the surrounding. Therefore, we calculate the influx of solar UV through the pupil of the eye for two situations for an individual wearing sunglass and for the eyes free of shade. A typical boundary condition for the calculation is an individual in an upright position wearing sunglasses, staring at the horizon as if the sun is in the zenith. The calculation was done for the latitude of the geographic center of the state of São Paulo (-22º04'11.8'' S) from sunrise to sunset. A model from the literature is used for determining the sky luminance. The initial approach is to obtain pupil diameter as a function of luminance. Therefore, as a preliminary result, we calculate the pupil diameter as a function of the time of day, as the sun moves, for a particular day of the year. The working range for luminance is daylight (10⁻⁴ – 10⁵ cd/m²). We are able to show how the pupil adjusts to brightness change (~2 - ~7.8 mm). At noon, with the sun higher, the direct incidence of light on the pupil is lower if compared to mid-morning or mid-afternoon, when the sun strikes more directly into the eye. Thus, the pupil is larger at midday. As expected, the two situations have opposite behaviors since higher luminance implies a smaller pupil. With these results, we can progress in the short term to obtain the transmittance spectra of sunglasses samples and quantify how light attenuation provided by the spectacles affects pupil diameter.Keywords: sunglasses, UV protection, pupil diameter, solar irradiance, luminance
Procedia PDF Downloads 813946 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm
Procedia PDF Downloads 2073945 Stress Variation around a Circular Hole in Functionally Graded Plate under Bending
Authors: Parveen K. Saini, Mayank Kushwaha
Abstract:
The influence of material property variation on stress concentration factor (SCF) due to the presence of a circular hole in a functionally graded material (FGM) plate is studied in this paper. A numerical method based on complex variable theory of elasticity is used to investigate the problem. To achieve the material property, variation plate is decomposed into a number of rings. In this research work, Young's modulus is assumed to be varying exponentially and it is found that stress concentration factor can be reduced by increasing Young’s modulus progressively away from the hole.Keywords: stress concentration, circular hole, FGM plate, bending
Procedia PDF Downloads 3063944 Descriptive Analysis of Variations in Maguindanaon Language
Authors: Fhajema Kunso
Abstract:
People who live in the same region and who seemed to speak the same language still vary in some aspects of their language. The variation may occur in terms of pronunciation, lexicon, morphology, and syntax. This qualitative study described the phonological, morphological, and lexical variations of the Maguindanaon language among the ten Maguindanao municipalities. Purposive sampling, in-depth interviews, focus group discussion, and sorting and classifying of words according to phonological and morphological as well as lexical structures in data analysis were employed. The variations occurred through phonemic changes and other phonological processes and morphological processes. Phonological processes consisted of vowel lengthening and deletion while morphological processes included affixation, borrowing, and coinage. In the phonological variation, it was observed that there were phonemic changes in one dialect to another. For example, there was a change of phoneme /r/ to /l/. The phoneme /r/ was most likely to occur in Kabuntalan like /biru/, /kurIt/, and /kɘmɅr/ whereas in the rest of the dialects these were /bilu/, /kuIɪt/, and /kɘmɅl/ respectively. Morphologically, the affixation was the main way to know the tenses. For example, the root sarig (expect) when inserted with im becomes simarig, i.e. s + im + arig = simarig (expected). Lexical variation also existed in the Maguindanaon language. Results revealed that the variation in phonology, morphology, and lexicon were observed to be associated primarily on geographic distribution.Keywords: applied linguistics, language, lexicon, Maguindanao, morphology, Philippines, phonology, processes, qualitative, variation
Procedia PDF Downloads 3933943 Investigation of Bubble Growth During Nucleate Boiling Using CFD
Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu
Abstract:
Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained is compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.Keywords: bubble growth, computational fluid dynamics, detachment diameter, terminal velocity
Procedia PDF Downloads 3853942 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete
Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier
Abstract:
Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior
Procedia PDF Downloads 683941 Human Papillomavirus Type 16 E4 Gene Variation as Risk Factor for Cervical Cancer
Authors: Yudi Zhao, Ziyun Zhou, Yueting Yao, Shuying Dai, Zhiling Yan, Longyu Yang, Chuanyin Li, Li Shi, Yufeng Yao
Abstract:
HPV16 E4 gene plays an important role in viral genome amplification and release. Therefore, a variation of the E4 gene nucleic acid sequence may affect the carcinogenicity of HPV16. In order to understand the relationship between the variation of HPV16 E4 gene and cervical cancer, this study was to amplify and sequence the DNA sequences of E4 genes in 118 HPV16-positive cervical cancer patients and 151 HPV16-positive asymptomatic individuals. After obtaining E4 gene sequences, the phylogenetic trees were constructed by the Neighbor-joining method for gene variation analysis. The results showed that: 1) The distribution of HPV16 variants between the case group and the control group differed greatly (P = 0.015),and the Asian-American(AA)variant was likely to relate to the occurrence of cervical cancer. 2) DNA sequence analysis showed that there were significant differences in the distribution of 8 variants between the case group and the control group (P < 0.05). And 3) In European (EUR) variant, two variations, C3384T (L18L) and A3449G (P39P), were associated with the initiation and development of cervical cancer. The results suggested that the variation of HPV16 E4 gene may be a contributor affecting the occurrence as well as the development of cervical cancer, and different HPV16 variants may have different carcinogenic capability.Keywords: cervical cancer, HPV16, E4 gene, variations
Procedia PDF Downloads 1713940 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines
Authors: S. O. Oyamakin, A. U. Chukwu
Abstract:
Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic
Procedia PDF Downloads 4803939 An Advanced Numerical Tool for the Design of Through-Thickness Reinforced Composites for Electrical Applications
Authors: Bing Zhang, Jingyi Zhang, Mudan Chen
Abstract:
Fibre-reinforced polymer (FRP) composites have been extensively utilised in various industries due to their high specific strength, e.g., aerospace, renewable energy, automotive, and marine. However, they have relatively low electrical conductivity than metals, especially in the out-of-plane direction. Conductive metal strips or meshes are typically employed to protect composites when designing lightweight structures that may be subjected to lightning strikes, such as composite wings. Unfortunately, this approach downplays the lightweight advantages of FRP composites, thereby limiting their potential applications. Extensive studies have been undertaken to improve the electrical conductivity of FRP composites. The authors are amongst the pioneers who use through-thickness reinforcement (TTR) to tailor the electrical conductivity of composites. Compared to the conventional approaches using conductive fillers, the through-thickness reinforcement approach has been proven to be able to offer a much larger improvement to the through-thickness conductivity of composites. In this study, an advanced high-fidelity numerical modelling strategy is presented to investigate the effects of through-thickness reinforcement on both the in-plane and out-of-plane electrical conductivities of FRP composites. The critical micro-structural features of through-thickness reinforced composites incorporated in the modelling framework are 1) the fibre waviness formed due to TTR insertion; 2) the resin-rich pockets formed due to resin flow in the curing process following TTR insertion; 3) the fibre crimp, i.e., fibre distortion in the thickness direction of composites caused by TTR insertion forces. In addition, each interlaminar interface is described separately. An IMA/M21 composite laminate with a quasi-isotropic stacking sequence is employed to calibrate and verify the modelling framework. The modelling results agree well with experimental measurements for bothering in-plane and out-plane conductivities. It has been found that the presence of conductive TTR can increase the out-of-plane conductivity by around one order, but there is less improvement in the in-plane conductivity, even at the TTR areal density of 0.1%. This numerical tool provides valuable references as a design tool for through-thickness reinforced composites when exploring their electrical applications. Parametric studies are undertaken using the numerical tool to investigate critical parameters that affect the electrical conductivities of composites, including TTR material, TTR areal density, stacking sequence, and interlaminar conductivity. Suggestions regarding the design of electrical through-thickness reinforced composites are derived from the numerical modelling campaign.Keywords: composite structures, design, electrical conductivity, numerical modelling, through-thickness reinforcement
Procedia PDF Downloads 883938 Study on the Effects of Grassroots Characteristics on Reinforced Soil Performance by Direct Shear Test
Authors: Zhanbo Cheng, Xueyu Geng
Abstract:
Vegetation slope protection technique is economic, aesthetic and practical. Herbs are widely used in practice because of rapid growth, strong erosion resistance, obvious slope protection and simple method, in which the root system of grass plays a very important role. In this paper, through changing the variables value of grassroots quantity, grassroots diameter, grassroots length and grassroots reinforce layers, the direct shear tests were carried out to discuss the change of shear strength indexes of grassroots reinforced soil under different reinforce situations, and analyse the effects of grassroots characteristics on reinforced soil performance. The laboratory test results show that: (1) in the certain number of grassroots diameter, grassroots length and grassroots reinforce layers, the value of shear strength, and cohesion first increase and then reduce with the increasing of grassroots quantity; (2) in the certain number of grassroots quantity, grassroots length and grassroots reinforce layers, the value of shear strength and cohesion rise with the increasing of grassroots diameter; (3) in the certain number of grassroots diameter, and grassroots reinforce layers, the value of shear strength and cohesion raise with the increasing of grassroots length in a certain range of grassroots quantity, while the value of shear strength and cohesion first rise and then decline with the increasing of grassroots length when the grassroots quantity reaches a certain value; (4) in the certain number of grassroots quantity, grassroots diameter, and grassroots length, the value of shear strength and cohesion first climb and then decline with the increasing of grassroots reinforced layers; (5) the change of internal friction angle is small in different parameters of grassroots. The research results are of importance for understanding the mechanism of vegetation protection for slopes and determining the parameters of grass planting.Keywords: direct shear test, reinforced soil, grassroots characteristics, shear strength indexes
Procedia PDF Downloads 1783937 Roller Pump-Induced Tubing Rupture during Cardiopulmonary Bypass
Abstract:
We analyzed the effects of variations in the diameter of silicone rubber and polyvinyl chloride (PVC) tubings on the likelihood of tubing rupture during modeling of accidental arterial line clamping in cardiopulmonary bypass with a roller pump. A closed CPB circuit constructed with a roller pump was tested with both PVC and silicone rubber tubings of 1/2, 3/8, and 1/4 inch internal diameter. Arterial line pressure was monitored, and an occlusive clamp was placed across the tubing distal to the pressure monitor site to model an accidental arterial line occlusion. A CCD camera with 512(H) x 492(V) pixels was installed above the roller pump to measure tubing diameters at pump outlet, where the maximum deformations (distension) of the tubings occurred. Quantitative measurement of the changes of tubing diameters with the change of arterial line pressure was performed using computerized image processing techniques. A visible change of tubing diameter was generally noticeable by around 250 psi of arterial line pressure, which was already very high. By 1500 psi, the PVC tubings showed an increase of diameter of between 5-10 %, while the silicone rubber tubings showed an increase between 20-25 %. Silicone rubber tubings of all sizes showed greater distensibility than PVC tubings of equivalent size. In conclusion, although roller-pump induced tubing rupture remains a theoretical problem during cardiopulmonary bypass in terms of the inherent mechanism of the pump, in reality such an occurrence is impossible in real clinical conditions.Keywords: roller pump, tubing rupture, cardiopulmonary bypass, arterial line
Procedia PDF Downloads 2933936 Effects of Bulblet Induction Medium on Bulb Size and Weight of Endemic Fritillaria aurea Schoot after Treatment with Putrescine for Different Durations of Time
Authors: Suleyman Kizil, Khalid Mahmood Khavar
Abstract:
Fritillaria aurea Schott is an important horticultural crop with high economic potential for the ornamental plant industry and is endemic to the Central and South-Eastern Anatolian regions of Türkiye. This study reports an experiment conducted under in vitro conditions to improve the weight and diameter of the in vitro regenerated bulblets. The micro bulblets used in this study were obtained from callus induced on half-sliced bulblets cultured on MS medium containing 0.1 mg L⁻¹ NAA + 0.05 TDZ (R₁ medium) and 0.1 mg L⁻¹ NAA + 0.10 mg L⁻¹ TDZ (R₂ medium). Thereafter, the micro bulblets obtained from here were treated with 50 mg L⁻¹ putrescine, (tetramethylenediamine) for 3, 5, and 7 weeks. The putrescine treatment has a significant effect on the increase in diameter and weight of bulblets when compared to initial diameters, irrespective of the treatment periods and seed germination medium. When the duration of putrescine in weeks was compared, 7 weeks of treatments with putrescine were more conducive for induction in bulblet weight compared to 3 and 5 weeks treatment periods. Maximum seed weight of 0.52 grams was noted on 7 weeks of putrescine treated bulblets regenerated on 0.1 mg L⁻¹ TDZ. This strategy to increase bulb weight and diameter could be positively used to conserve and multiply this beautiful ornamental and endemic plant species.Keywords: Fritillaria aurea, bulblet, diameter, weight, micropropagation, polyamine
Procedia PDF Downloads 253935 Mesoporous Material Nanofibers by Electrospinning
Authors: Sh. Sohrabnezhad, A. Jafarzadeh
Abstract:
In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.Keywords: electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques
Procedia PDF Downloads 2483934 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function
Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu
Abstract:
Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model
Procedia PDF Downloads 3923933 Large Eddy Simulations for Flow Blurring Twin-Fluid Atomization Concept Using Volume of Fluid Method
Authors: Raju Murugan, Pankaj S. Kolhe
Abstract:
The present study is mainly focusing on the numerical simulation of Flow Blurring (FB) twin fluid injection concept was proposed by Ganan-Calvo, which involves back flow atomization based on global bifurcation of liquid and gas streams, thus creating two-phase flow near the injector exit. The interesting feature of FB injector spray is an insignificant effect of variation in atomizing air to liquid ratio (ALR) on a spray cone angle. Besides, FB injectors produce a nearly uniform spatial distribution of mean droplet diameter and are least susceptible to variation in thermo-physical properties of fuels, making it a perfect candidate for fuel flexible combustor development. The FB injector working principle has been realized through experimental flow visualization techniques only. The present study explores potential of ANSYS Fluent based Large Eddy Simulation(LES) with volume of fluid (VOF) method to investigate two-phase flow just upstream of injector dump plane and spray quality immediate downstream of injector dump plane. Note that, water and air represent liquid and gas phase in all simulations and ALR is varied by changing the air mass flow rate alone. Preliminary results capture two phase flow just upstream of injector dump plane and qualitative agreement is observed with the available experimental literature.Keywords: flow blurring twin fluid atomization, large eddy simulation, volume of fluid, air to liquid ratio
Procedia PDF Downloads 2143932 Determination of Selected Engineering Properties of Giant Palm Seeds (Borassus Aethiopum) in Relation to Its Oil Potential
Authors: Rasheed Amao Busari, Ahmed Ibrahim
Abstract:
The engineering properties of giant palms are crucial for the reasonable design of the processing and handling systems. The research was conducted to investigate some engineering properties of giant palm seeds in relation to their oil potential. The ripe giant palm fruit was sourced from some parts of Zaria in Kaduna State and Ado Ekiti in Ekiti State, Nigeria. The mesocarps of the fruits collected were removed to obtain the nuts, while the collected nuts were dried under ambient conditions for several days. The actual moisture content of the nuts at the time of the experiment was determined using KT100S Moisture Meter, with moisture content ranged 17.9% to 19.15%. The physical properties determined are axial dimension, geometric mean diameter, arithmetic mean diameter, sphericity, true and bulk densities, porosity, angles of repose, and coefficients of friction. The nuts were measured using a vernier caliper for physical assessment of their sizes. The axial dimensions of 100 nuts were taken and the result shows that the size ranges from 7.30 to 9.32cm for major diameter, 7.2 to 8.9 cm for intermediate diameter, and 4.2 to 6.33 for minor diameter. The mechanical properties determined were compressive force, compressive stress, and deformation both at peak and break using Instron hydraulic universal tensile testing machine. The work also revealed that giant palm seed can be classified as an oil-bearing seed. The seed gave 18% using the solvent extraction method. The results obtained from the study will help in solving the problem of equipment design, handling, and further processing of the seeds.Keywords: giant palm seeds, engineering properties, oil potential, moisture content, and giant palm fruit
Procedia PDF Downloads 773931 Relation of Mean Platelet Volume with Serum Paraoxonase-1 Activity and Brachial Artery Diameter and Intima Media Thickness in Diabetic Patients with Respect to Obesity and Diabetic Complications
Authors: Pınar Karakaya, Meral Mert, Yildiz Okuturlar, Didem Acarer, Asuman Gedikbasi, Filiz Islim, Teslime Ayaz, Ozlem Soyluk, Ozlem Harmankaya, Abdulbaki Kumbasar
Abstract:
Objective: To evaluate the relation of mean platelet volume (MPV) levels with serum paraoxonase-1 activity and brachial artery diameter and intima media thickness in diabetic patients with respect to obesity and diabetic complications. Methods: A total of 201 diabetic patients grouped with respect to obesity [obese (n=89) and non-obese (n=112) and diabetic complications [with (n=50) or without (n=150) microvascular complications and with (n=91) or without (n=108) macrovascular complications] groups were included. Data on demographic and lifestyle characteristics of patients, anthropometric measurements, diabetes related microvascular and macrovascular complications, serum levels for MPV, bBrachial artery diameter and intima media thickness (IMT) and serum paraoxonase and arylesterase activities were recorded. Correlation of MPV values to paraoxonase and arylesterase activities as well as to brachial artery diameter and IMT was evaluated in study groups. Results: Mean(SD) paraoxonase and arylesterase values were 119.8(37.5) U/L and 149.0(39.9) U/L, respectively in the overall population with no significant difference with respect to obesity and macrovascular diabetic complications, whereas significantly lower values for paraoxonase (107.5(30.7) vs. 123.9(38.8) U/L, p=0.007) and arylesterase (132.1(30.2) vs. 154.7(41.2) U/L, p=0.001) were noted in patients with than without diabetic microvascular complications. Mean(SD) MPV values were 9.10 (0.87) fL in the overall population with no significant difference with respect to obesity and diabetic complications. No significant correlation of MPV values to paraoxonase, arylesterase activities, to brachial artery diameter and IMT was noted in the overall study population as well as in study groups. Conclusion: In conclusion, our findings revealed a significant decrease I PON-1 activity in diabetic patients with microvascular rather than macrovascular complications, whereas regardless of obesity and diabetic complications, no increase in thrombogenic activity and no relation of thrombogenic activity with PON-1 activity and brachial artery diameter and IMK.Keywords: atherosclerosis, diabetes mellitus, microvascular complications, macrovascular complications, obesity, paraoxonase
Procedia PDF Downloads 3563930 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness
Authors: Sy-Wei Lo, Chi-Heng Yu
Abstract:
A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/µm of typical bearing to 349.85 N/µm at bearing elevation 9.5 µm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.Keywords: aerostatic, bearing, polymer, static stiffness
Procedia PDF Downloads 3703929 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides
Authors: V. Keim, J. Spachtholz, J. Hammer
Abstract:
The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation
Procedia PDF Downloads 2153928 Monitoring Vaginal Electrical Resistance, Follicular Wave and Hormonal Profile during Estrus Cycle in Indigenous Sheep
Authors: T. A. Rosy, M. R. I. Talukdar, N. S. Juyena, F. Y. Bari, M. N. Islam
Abstract:
The ovarian follicular dynamics, vaginal electrical resistance (VER) and progesterone (P4) and estrogen (E2) profiles were investigated during estrus cycle in four indigenous ewes. Daily VER values were recorded with heat detector. The follicles were observed and measured by trans-rectal ultrasonography. Blood was collected daily for hormonal profiles. Results showed a significant variation in VER values (P<0.05) at estrus in regards to ewes and cycles. The day difference between two successive lower values in VER waves ranged from 13-17 days which might indicate the estrus cycle in indigenous ewes. Trans-rectal ultrasonography of ovaries revealed the presence of two to four waves of follicular growth during the study period. Results also showed that follicular diameter was negatively correlated with VER values. Study of hormonal profiles by ELISA revealed a positive correlation between E2 concentration and development of follicle and negative correlation between P4 concentration and development of follicle. The concentrations of estradiol increased at the time of estrus and then fall down in a basal level. Development of follicular size was accompanied by an increase in the concentration of serum estradiol. Inversely, when follicles heed to ovulation concentration of progesterone starts to fall down and after ovulation it turns its way to the zenith and remains at this state until next ovulatory follicle comes to its maximum diameter. This study could help scientists to set up a manipulative reproductive technique for improving genetic values of sheep in Bangladesh.Keywords: ovarian follicle, hormonal profile, sheep, ultrasonography, vaginal electrical resistance
Procedia PDF Downloads 2663927 Assessment of Solid Insulating Material Using Partial Discharge Characteristics
Authors: Qasim Khan, Furkan Ahmad, Asfar A. Khan, M. Saad Alam, Faiz Ahmad
Abstract:
In this paper, partial discharge analysis is performed in cavities artificially created in insulation. The setup is according with Cigre-II Method. Circular Samples created from Perspex Sheet with different configuration with changing number of cavities. Assessment of insulation health can be performed by Partial Discharge measurement as this has been found to be important means of condition monitoring. The experiments are done using MPD 540, which is a modern partial discharge measurement system. By analyzing the PD activity obtained for various voids/cavities, it is observed that the PD voltages show variation for cavity’s diameter, depth even for its ratios. This can be employed for scrutiny of insulation system.Keywords: partial discharges, condition monitoring, insulation defects, degradation and corrosion, PMMA
Procedia PDF Downloads 5173926 Single-Walled Carbon Nanotube Synthesis by Chemical Vapor Deposition Using Platinum-Group Metal Catalysts
Authors: T. Maruyama, T. Saida, S. Naritsuka, S. Iijima
Abstract:
Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (>2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 °C and 600 °C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 °C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth.Keywords: carbon nanotube, chemical vapor deposition, catalyst, platinum, rhodium, palladium
Procedia PDF Downloads 3473925 Elastodynamic Response of Shear Wave Dispersion in a Multi-Layered Concentric Cylinders Composed of Reinforced and Piezo-Materials
Authors: Sunita Kumawat, Sumit Kumar Vishwakarma
Abstract:
The present study fundamentally focuses on analyzing the limitations and transference of horizontally polarized Shear waves(SH waves) in a four-layered compounded cylinder. The geometrical structure comprises of concentric cylinders of infinite length composed of self-reinforced (SR), fibre-reinforced (FR), piezo-magnetic (PM), and piezo-electric(PE) materials. The entire structure is assumed to be pre stressed along the azimuthal direction. In order to make the structure sensitive to the application pertaining to sensors and actuators, the PM and PE cylinders have been categorically placed in the outer part of the geometry. Whereas in order to provide stiffness and stability to the structure, the inner part consists of self-reinforced and fibre-reinforced media. The common boundary between each of the cylinders has been essentially considered as imperfectly bounded. At the interface of PE and PM media, mechanical, electrical, magnetic, and inter-coupled types of imperfections have been exhibited. The closed-form of dispersion relation has been deduced for two contrast cases i.e. electrically open magnetically short(EOMS) and electrically short and magnetically open ESMO circuit conditions. Dispersion curves have been plotted to illustrate the salient features of parameters like normalized imperfect interface parameters, initial stresses, and radii of the concentric cylinders. The comparative effect of each one of these parameters on the phase velocity of the wave has been enlisted and marked individually. Every graph has been presented with two consecutive modes in succession for a comprehensive understanding. This theoretical study may be implemented to improvise the performance of surface acoustic wave (SAW) sensors and actuators consisting of piezo-electric quartz and piezo-composite concentric cylinders.Keywords: self-reinforced, fibre-reinforced, piezo-electric, piezo-magnetic, interfacial imperfection
Procedia PDF Downloads 109