Search results for: 2015-Nepal earthquake
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 730

Search results for: 2015-Nepal earthquake

520 Disaster Preparedness for People with Disabilities through EPPO's Educational Awareness Initiative

Authors: A. Kourou, A. Ioakeimidou, E. Pelli, M. Panoutsopoulou, V. Abramea

Abstract:

Worldwide there is a growing recognition that education is a critical component of any disaster impacts reduction effort and a great challenge too. Given this challenge, a broad range of awareness raising projects at all levels are implemented and are continuously evaluated by Earthquake Planning and Protection Organization (EPPO). This paper presents an overview of EPPO educational initiative (seminars, lectures, workshops, campaigns and educational material) and its evaluation results. The abovementioned initiative is focused to aware the public, train teachers and civil protection staff, inform students and educate people with disabilities on subjects related to earthquake reduction issues. The better understating of how human activity can link to disaster and what can be done at the individual, family or workplace level to contribute to seismic reduction are the main issues of EPPO projects. Survey results revealed that a high percentage of teachers (included the ones of special schools) from all over the country have taken the appropriate preparedness measures at schools. On the other hand, the implementation of earthquake preparedness measures at various workplaces (kindergartens, banks, utilities etc.) has still significant room for improvement. Results show that the employees in banks and public utilities have substantially higher rates in preventive and preparedness actions in their workplaces than workers in kindergartens and other workplaces. One of the EPPO educational priorities is to enhance earthquake preparedness of people with disabilities. Booklets, posters and applications have been created with the financial support of the Council of Europe, addressed to people who have mobility impairments, learning difficulties or cognitive disability (ή intellectual disabilities). Part of the educational material was developed using the «easy-to-read» method and Makaton language program with the collaboration of experts on special needs education and teams of people with cognitive disability. Furthermore, earthquake safety seminars and earthquake drills have been implemented in order to develop children’s, parents’ and teachers abilities and skills on earthquake impacts reduction. To enhance the abovementioned efforts, EPPO is a partner at prevention and preparedness projects supported by EU Civil Protection Financial Instrument. One of them is E-PreS’ project (Monitoring and Evaluation of Natural Hazard Preparedness at School Environment). The main objectives of E-PreS project are: 1) to create smart tools which define, simulate and evaluate drills procedure at schools, centers of vocational training of people with disabilities or other workplaces, and 2) to involve students or adults with disabilities in the E-PreS system evacuation procedure in case of earthquake, flood, or volcanic occurrence. Two other EU projects (RACCE educational kit and EVANDE educational platform) are also with the aim of contributing to raising awareness among people with disabilities, students, teachers, volunteers etc. It is worth mentioning that even though in Greece many efforts have been done till now to build awareness towards earthquakes and establish preparedness status for prospective earthquakes, there are still actions to be taken.

Keywords: earthquake, emergency plans, E-PreS project, people with disabilities, special needs education

Procedia PDF Downloads 265
519 Detection of Change Points in Earthquakes Data: A Bayesian Approach

Authors: F. A. Al-Awadhi, D. Al-Hulail

Abstract:

In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity.

Keywords: multiple change points, Markov Chain Monte Carlo, earthquake magnitude, hierarchical Bayesian mode

Procedia PDF Downloads 456
518 Earthquake Relocations and Constraints on the Lateral Velocity Variations along the Gulf of Suez, Using the Modified Joint Hypocenter Method Determination

Authors: Abu Bakr Ahmed Shater

Abstract:

Hypocenters of 250 earthquakes recorded by more than 5 stations from the Egyptian seismic network around the Gulf of Suez were relocated and the seismic stations correction for the P-wave is estimated, using the modified joint hypocenter method determination. Five stations TR1, SHR, GRB, ZAF and ZET have minus signs in the station P-wave travel time corrections and their values are -0.235, -0.366, -0.288, -0.366 and -0.058, respectively. It is possible to assume that, the underground model in this area has a particular characteristic of high velocity structure in which the other stations TR2, RDS, SUZ, HRG and ZNM have positive signs and their values are 0.024, 0.187, 0.314, 0.645 and 0.145, respectively. It is possible to assume that, the underground model in this area has particular characteristic of low velocity structure. The hypocenteral location determined by the Modified joint hypocenter method is more precise than those determined by the other routine work program. This method simultaneously solves the earthquake locations and station corrections. The station corrections reflect, not only the different crustal conditions in the vicinity of the stations, but also the difference between the actual and modeled seismic velocities along each of the earthquake - station ray paths. The stations correction obtained is correlated with the major surface geological features in the study area. As a result of the relocation, the low velocity area appears in the northeastern and southwestern sides of the Gulf of Suez, while the southeastern and northwestern parts are of high velocity area.

Keywords: gulf of Suez, seismicity, relocation of hypocenter, joint hypocenter determination

Procedia PDF Downloads 358
517 Study of Seismic Behavior of an Earth Dam with Sealing Walls: The Case of Kef Eddir’s Dam, Tipaza, Algeria

Authors: M. Boumaiza, S. Mohamadi, B. Moussai

Abstract:

In this article the study of the seismic response of an earth dam with sealing walls has been made by introducing the effect of the change of position and depth of the sealing wall and the effect of non-linear behavior of soil of the foundation by taking into account the variation of the viscous damping and shear modulus in each layer of soil on the seismic response of the dam. As a case study, we take the Algerian dam Kef-Eddir which lies in the far west of the territory of the Wilaya of Tipaza (wadi Eddamous), classified according to the RPA 2003 as a high seismicity zone (zone III). With a height of 71m above the foundation and a width of 478m. The seismic event applied to the rock, is the earthquake of Chenoua (29 October, 1989), with a magnitude Mw=6 that hit the region.

Keywords: earth dam, earthquake, sealing walls, viscous damping

Procedia PDF Downloads 607
516 Assessment of Seismic Behavior of Masonry Minarets by Discrete Element Method

Authors: Ozden Saygili, Eser Cakti

Abstract:

Mosques and minarets can be severely damaged as a result of earthquakes. Non-linear behavior of minarets of Mihrimah Sultan and Süleymaniye Mosques and the minaret of St. Sophia are analyzed to investigate seismic response, damage and failure mechanisms of minarets during earthquake. Selected minarets have different height and diameter. Discrete elements method was used to create the numerical minaret models. Analyses were performed using sine waves. Two parameters were used for evaluating the results: the maximum relative dislocation of adjacent drums and the maximum displacement at the top of the minaret. Both parameters were normalized by the drum diameter. The effects of minaret geometry on seismic behavior were evaluated by comparing the results of analyses.

Keywords: discrete element method, earthquake safety, nonlinear analysis, masonry structures

Procedia PDF Downloads 317
515 Ground Motion Modelling in Bangladesh Using Stochastic Method

Authors: Mizan Ahmed, Srikanth Venkatesan

Abstract:

Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.

Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard

Procedia PDF Downloads 249
514 Seismic Hazard Study and Strong Ground Motion in Southwest Alborz, Iran

Authors: Fereshteh Pourmohammad, Mehdi Zare

Abstract:

The city of Karaj, having a population of 2.2 millions (est. 2022) is located in the South West of Alborz Mountain Belt in Northern Iran. The region is known to be a highly active seismic zone. This study is focused on the geological and seismological analyses within a radius of 200 km from the center of Karaj. There are identified five seismic zones and seven linear seismic sources. The maximum magnitude was calculated for the seismic zones. Scine tghe seismicity catalog is incomplete, we have used a parametric-historic algorithm and the Kijko and Sellevoll (1992) method was used to calculate seismicity parameters, and the return periods and the probability frequency of recurrence of the earthquake magnitude in each zone obtained for 475-years return period. According to the calculations, the highest and lowest earthquake magnitudes of 7.6 and 6.2 were respectively obtained in Zones 1 and 4. This result is a new and extremely important in view point of earthquake risk in a densely population city. The maximum strong horizontal ground motion for the 475-years return period 0.42g and for 2475-year return period 0.70g also the maximum strong vertical ground motion for 475-years return period 0.25g and 2475-years return period 0.44g was calculated using attenuation relationships. These acceleration levels are new, and are obtained to be about 25% higher than presented values in the Iranian building code.

Keywords: seismic zones, ground motion, return period, hazard analysis

Procedia PDF Downloads 97
513 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hannachi Naceur Eddine, Hamizi Mohand

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed.

Keywords: seismic performance, pushover method, characterization of seismic motion, harmfulness of the seismic

Procedia PDF Downloads 383
512 A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen

Authors: Moon Byung Woo, Seok Chang-Sung, Koo Jae-Mean, Kim Sang-Young, Choi Jae Gu, Huh Nam-Su

Abstract:

Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading.

Keywords: dynamic loading speed, fracture toughness, load-ratio-method, equivalent stress gradient (ESG) specimen

Procedia PDF Downloads 309
511 Urban Seismic Risk Reduction in Algeria: Adaptation and Application of the RADIUS Methodology

Authors: Mehdi Boukri, Mohammed Naboussi Farsi, Mounir Naili, Omar Amellal, Mohamed Belazougui, Ahmed Mebarki, Nabila Guessoum, Brahim Mezazigh, Mounir Ait-Belkacem, Nacim Yousfi, Mohamed Bouaoud, Ikram Boukal, Aboubakr Fettar, Asma Souki

Abstract:

The seismic risk to which the urban centres are more and more exposed became a world concern. A co-operation on an international scale is necessary for an exchange of information and experiments for the prevention and the installation of action plans in the countries prone to this phenomenon. For that, the 1990s was designated as 'International Decade for Natural Disaster Reduction (IDNDR)' by the United Nations, whose interest was to promote the capacity to resist the various natural, industrial and environmental disasters. Within this framework, it was launched in 1996, the RADIUS project (Risk Assessment Tools for Diagnosis of Urban Areas Against Seismic Disaster), whose the main objective is to mitigate seismic risk in developing countries, through the development of a simple and fast methodological and operational approach, allowing to evaluate the vulnerability as well as the socio-economic losses, by probable earthquake scenarios in the exposed urban areas. In this paper, we will present the adaptation and application of this methodology to the Algerian context for the seismic risk evaluation in urban areas potentially exposed to earthquakes. This application consists to perform an earthquake scenario in the urban centre of Constantine city, located at the North-East of Algeria, which will allow the building seismic damage estimation of this city. For that, an inventory of 30706 building units was carried out by the National Earthquake Engineering Research Centre (CGS). These buildings were digitized in a data base which comprises their technical information by using a Geographical Information system (GIS), and then they were classified according to the RADIUS methodology. The study area was subdivided into 228 meshes of 500m on side and Ten (10) sectors of which each one contains a group of meshes. The results of this earthquake scenario highlights that the ratio of likely damage is about 23%. This severe damage results from the high concentration of old buildings and unfavourable soil conditions. This simulation of the probable seismic damage of the building and the GIS damage maps generated provide a predictive evaluation of the damage which can occur by a potential earthquake near to Constantine city. These theoretical forecasts are important for decision makers in order to take the adequate preventive measures and to develop suitable strategies, prevention and emergency management plans to reduce these losses. They can also help to take the adequate emergency measures in the most impacted areas in the early hours and days after an earthquake occurrence.

Keywords: seismic risk, mitigation, RADIUS, urban areas, Algeria, earthquake scenario, Constantine

Procedia PDF Downloads 262
510 Understanding the Impact of Out-of-Sequence Thrust Dynamics on Earthquake Mitigation: Implications for Hazard Assessment and Disaster Planning

Authors: Rajkumar Ghosh

Abstract:

Earthquakes pose significant risks to human life and infrastructure, highlighting the importance of effective earthquake mitigation strategies. Traditional earthquake modelling and mitigation efforts have largely focused on the primary fault segments and their slip behaviour. However, earthquakes can exhibit complex rupture dynamics, including out-of-sequence thrust (OOST) events, which occur on secondary or subsidiary faults. This abstract examines the impact of OOST dynamics on earthquake mitigation strategies and their implications for hazard assessment and disaster planning. OOST events challenge conventional seismic hazard assessments by introducing additional fault segments and potential rupture scenarios that were previously unrecognized or underestimated. Consequently, these events may increase the overall seismic hazard in affected regions. The study reviews recent case studies and research findings that illustrate the occurrence and characteristics of OOST events. It explores the factors contributing to OOST dynamics, such as stress interactions between fault segments, fault geometry, and mechanical properties of fault materials. Moreover, it investigates the potential triggers and precursory signals associated with OOST events to enhance early warning systems and emergency response preparedness. The abstract also highlights the significance of incorporating OOST dynamics into seismic hazard assessment methodologies. It discusses the challenges associated with accurately modelling OOST events, including the need for improved understanding of fault interactions, stress transfer mechanisms, and rupture propagation patterns. Additionally, the abstract explores the potential for advanced geophysical techniques, such as high-resolution imaging and seismic monitoring networks, to detect and characterize OOST events. Furthermore, the abstract emphasizes the practical implications of OOST dynamics for earthquake mitigation strategies and urban planning. It addresses the need for revising building codes, land-use regulations, and infrastructure designs to account for the increased seismic hazard associated with OOST events. It also underscores the importance of public awareness campaigns to educate communities about the potential risks and safety measures specific to OOST-induced earthquakes. This sheds light on the impact of out-of-sequence thrust dynamics in earthquake mitigation. By recognizing and understanding OOST events, researchers, engineers, and policymakers can improve hazard assessment methodologies, enhance early warning systems, and implement effective mitigation measures. By integrating knowledge of OOST dynamics into urban planning and infrastructure development, societies can strive for greater resilience in the face of earthquakes, ultimately minimizing the potential for loss of life and infrastructure damage.

Keywords: earthquake mitigation, out-of-sequence thrust, seismic, satellite imagery

Procedia PDF Downloads 87
509 Effects of Variation of Centers in the Torsional Analysis of Asymmetrical Buildings by Performing Non Linear Static Analysis

Authors: Md Masihuddin Siddiqui, Abdul Haakim Mohammed

Abstract:

Earthquakes are the most unpredictable and devastating of all natural disasters. The behaviour of a building during an earthquake depends on several factors such as stiffness, adequate lateral strength, ductility, and configurations. The experience from the performance of buildings during past earthquakes has shown that the buildings with regular geometry, uniformly distributed mass and stiffness in plan as well as in elevation suffer much less damage compared to irregular configurations. The three centers namely- centre of mass, centre of strength, centre of stiffness are the torsional parameters which contribute to the strength of the building in case of an earthquake. Inertial forces and resistive forces in a structural system act through the center of mass and center of rigidity respectively which together oppose the forces that are produced during seismic excitation. So these centers of a structural system should be positioned where the structural system is the strongest so that the effects produced due to the earthquake may have a minimal effect on the structure. In this paper, the effects of variation of strength eccentricity and stiffness eccentricity in reducing the torsional responses of the asymmetrical buildings by using pushover analysis are studied. The maximum reduction of base torsion was observed in the case of minimum strength eccentricity, and the least reduction was observed in the case of minimum stiffness eccentricity.

Keywords: strength eccentricity, stiffness eccentricity, asymmetric structure, base torsion, push over analysis

Procedia PDF Downloads 294
508 Verification of a Simple Model for Rolling Isolation System Response

Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly

Abstract:

Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.

Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system

Procedia PDF Downloads 250
507 Seismic Analysis of URM Buildings in South Africa

Authors: Trevor N. Haas, Thomas van der Kolf

Abstract:

South Africa has some regions which are susceptible to moderate seismic activity. A peak ground acceleration of between 0.1g and 0.15g can be expected in the southern parts of the Western Cape. Unreinforced Masonry (URM) is commonly used as a construction material for 2 to 5 storey buildings in underprivileged areas in and around Cape Town. URM is typically regarded as the material most vulnerable to damage when subjected to earthquake excitation. In this study, a three-storey URM building was analysed by applying seven earthquake time-histories, which can be expected to occur in South Africa using a finite element approach. Experimental data was used to calibrate the in- and out-of-plane stiffness of the URM. The results indicated that tensile cracking of the in-plane piers was the dominant failure mode. It is concluded that URM buildings of this type are at risk of failure especially if sufficient ductility is not provided. The results also showed that connection failure must be investigated further.

Keywords: URM, seismic analysis, FEM, Cape Town

Procedia PDF Downloads 367
506 The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete

Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri

Abstract:

The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. From the 1960s the comprehensive investigation of pile foundations during earthquake excitation indicate that, piles are subject to damage by affecting the superstructure integrity and serviceability. The main part of these research has been focused on the behavior of liquefiable soil and lateral spreading load on piles. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. And researchers have been listed the large cracks reason such as liquefaction, lateral spreading and inertial load. In the field of designing, elastic response of piles are always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. And emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.

Keywords: self-compacting concrete, fiber, tensile strength, post-cracking, direct and inverse technique

Procedia PDF Downloads 239
505 Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressed axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibrereinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 501
504 The Scenario of Disaster Management in Nepal: A Case Study of Nepal Earthquakes, 2015

Authors: Sandesh Yadav

Abstract:

Earthquake constitutes one of the most terrible natural hazards which often turn into a disaster or causing extensive devastation and loss of human lives and their properties. In the year 2015, Nepal experienced the most devastating earthquakes on 25th April, 2015 and 12th May, 2015 respectively. Several villages, towns, human constructions and their properties, lives were completely damaged. The hazardous effect of Nepal earthquakes depends not only on their magnitude of Richter Scale on intensity alone, but also on so many factors, such as geology of earth crust (lithology, elasticity, soil condition, permissible stress, rock structures etc.). The unscientifically and non-seismically designed buildings resulted in huge loss of life and property. Further, the loss due to earthquake can be grouped into three broad categories namely agriculture sector (loss of livestock, poultry and food stocks), industrial sector (mainly brick production industry) and infrastructural sector (transportation infrastructure). The present research study begins with the tracing of Geological history of earthquakes in Nepal along with identification of causes of Nepal earthquakes, 2015. Secondly, research study identifies the extent of tremors of earthquakes of 2015 in Nepal and surrounding areas along with their sphere of impact. Thirdly, the research study tries to assess the agricultural loss, industrial loss and infrastructural loss due to earthquakes in Nepal. Lastly, the research study ends with the various recommendations and suggestions in order to minimize the loss due to earthquakes in the future.

Keywords: earthquake, richter scale, sphere of impact, tremors

Procedia PDF Downloads 235
503 Prediction of Seismic Damage Using Scalar Intensity Measures Based on Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are nonstructure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage measures, bidirectional excitation, spectral based IMs, R/C buildings

Procedia PDF Downloads 328
502 Modeling and Behavior of Structural Walls

Authors: Salima Djehaichia, Rachid Lassoued

Abstract:

Reinforced concrete structural walls are very efficient elements for protecting buildings against excessive early damage and against collapse under earthquake actions. It is therefore of interest to develop a numerical model which simulates the typical behavior of these units, this paper presents and describes different modeling techniques that have been used by researchers and their advantages and limitations mentioned. The earthquake of Boumerdes in 2003 has demonstrated the fragility of structures and total neglect of sismique design rules in the realization of old buildings. Significant damage and destruction of buildings caused by this earthquake are not due to the choice of type of material, but the design and the study does not congruent with seismic code requirements and bad quality of materials. For idealizing the failure of rules, a parametric study focuses on: low rate of reinforcements, type of reinforcement, resistance moderate of concrete. As an application the modeling strategy based on finite elements combined with a discretization of wall more solicited by successive thin layers. The estimated performance level achieved during a seismic action is obtained from capacity curves under incrementally increasing loads. Using a pushover analysis, a characteristic non linear force-displacement relationship can be determined. The results of numeric model are confronted with those of Algerian Para seismic Rules (RPA) in force have allowed the determination of profits in terms of displacement, shearing action, ductility.

Keywords: modeling, old building, pushover analysis, structural walls

Procedia PDF Downloads 246
501 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 64
500 Co-Seismic Deformation Using InSAR Sentinel-1A: Case Study of the 6.5 Mw Pidie Jaya, Aceh, Earthquake

Authors: Jefriza, Habibah Lateh, Saumi Syahreza

Abstract:

The 2016 Mw 6.5 Pidie Jaya earthquake is one of the biggest disasters that has occurred in Aceh within the last five years. This earthquake has caused severe damage to many infrastructures such as schools, hospitals, mosques, and houses in the district of Pidie Jaya and surrounding areas. Earthquakes commonly occur in Aceh Province due to the Aceh-Sumatra is located in the convergent boundaries of the Sunda Plate subducted beneath the Indo-Australian Plate. This convergence is responsible for the intensification of seismicity in this region. The plates are tilted at a speed of 63 mm per year and the right lateral component is accommodated by strike- slip faulting within Sumatra, mainly along the great Sumatran fault. This paper presents preliminary findings of InSAR study aimed at investigating the co-seismic surface deformation pattern in Pidie Jaya, Aceh-Indonesia. Coseismic surface deformation is rapid displacement that occurs at the time of an earthquake. Coseismic displacement mapping is required to study the behavior of seismic faults. InSAR is a powerful tool for measuring Earth surface deformation to a precision of a few centimetres. In this study, two radar images of the same area but at two different times are required to detect changes in the Earth’s surface. The ascending and descending Sentinel-1A (S1A) synthetic aperture radar (SAR) data and Sentinels application platform (SNAP) toolbox were used to generate SAR interferogram image. In order to visualize the InSAR interferometric, the S1A from both master (26 Nov 2016) and slave data-sets (26 Dec 2016) were utilized as the main data source for mapping the coseismic surface deformation. The results show that the fringes of phase difference have appeared in the border region as a result of the movement that was detected with interferometric technique. On the other hand, the dominant fringes pattern also appears near the coastal area, this is consistent with the field investigations two days after the earthquake. However, the study has also limitations of resolution and atmospheric artefacts in SAR interferograms. The atmospheric artefacts are caused by changes in the atmospheric refractive index of the medium, as a result, has limitation to produce coherence image. Low coherence will be affected the result in creating fringes (movement can be detected by fringes). The spatial resolution of the Sentinel satellite has not been sufficient for studying land surface deformation in this area. Further studies will also be investigated using both ALOS and TerraSAR-X. ALOS and TerraSAR-X improved the spatial resolution of SAR satellite.

Keywords: earthquake, InSAR, interferometric, Sentinel-1A

Procedia PDF Downloads 196
499 A Finite Elements Model for the Study of Buried Pipelines Affected by Strike-Slip Fault

Authors: Reza Akbari, Jalal MontazeriFashtali, PeymanMomeni Taromsari

Abstract:

Pipeline systems, play an important role as a vital element in reducing or increasing the risk of earthquake damage and vulnerability. Pipelines are suitable, cheap, fast, and safe routes for transporting oil, gas, water, sewage, etc. The sepipelines must pass from a wide geographical area; hence they will structurally face different environmental and underground factors of earthquake forces’ effect. Therefore, structural engineering analysis and design for this type of lines requires the understanding of relevant parameters behavior and lack of familiarity with them can cause irreparable damages and risks to design and execution, especially in the face of earthquakes. Today, buried pipelines play an important role in human life cycle, thus, studying the vulnerability of pipeline systems is of particular importance. This study examines the behavior of buried pipelines affected by strike-slip fault. Studied fault is perpendicular to the tube axis and causes stress and deformation in the tube by sliding horizontally. In this study, the pipe-soil interaction is accurately simulated, so that one can examine the large displacements and strains, nonlinear material behavior and contact and friction conditions of soil and pipe. The results can be used for designing buried pipes and determining the amount of fault displacement that causes the failure of the buried pipes.

Keywords: pipe lines , earthquake , fault , soil-fault interaction

Procedia PDF Downloads 451
498 Seismic Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore, there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength, and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 440
497 Text Mining Analysis of the Reconstruction Plans after the Great East Japan Earthquake

Authors: Minami Ito, Akihiro Iijima

Abstract:

On March 11, 2011, the Great East Japan Earthquake occurred off the coast of Sanriku, Japan. It is important to build a sustainable society through the reconstruction process rather than simply restoring the infrastructure. To compare the goals of reconstruction plans of quake-stricken municipalities, Japanese language morphological analysis was performed by using text mining techniques. Frequently-used nouns were sorted into four main categories of “life”, “disaster prevention”, “economy”, and “harmony with environment”. Because Soma City is affected by nuclear accident, sentences tagged to “harmony with environment” tended to be frequent compared to the other municipalities. Results from cluster analysis and principle component analysis clearly indicated that the local government reinforces the efforts to reduce risks from radiation exposure as a top priority.

Keywords: eco-friendly reconstruction, harmony with environment, decontamination, nuclear disaster

Procedia PDF Downloads 220
496 Modeling of Tsunami Propagation and Impact on West Vancouver Island, Canada

Authors: S. Chowdhury, A. Corlett

Abstract:

Large tsunamis strike the British Columbia coast every few hundred years. The Cascadia Subduction Zone, which extends along the Pacific coast from Vancouver Island to Northern California is one of the most seismically active regions in Canada. Significant earthquakes have occurred in this region, including the 1700 Cascade Earthquake with an estimated magnitude of 9.2. Based on geological records, experts have predicted a 'great earthquake' of a similar magnitude within this region may happen any time. This earthquake is expected to generate a large tsunami that could impact the coastal communities on Vancouver Island. Since many of these communities are in remote locations, they are more likely to be vulnerable, as the post-earthquake relief efforts would be impacted by the damage to critical road infrastructures. To assess the coastal vulnerability within these communities, a hydrodynamic model has been developed using MIKE-21 software. We have considered a 500 year probabilistic earthquake design criteria including the subsidence in this model. The bathymetry information was collected from Canadian Hydrographic Services (CHS), and National Oceanic Atmospheric and Administration (NOAA). The arial survey was conducted using a Cessna-172 aircraft for the communities, and then the information was converted to generate a topographic digital elevation map. Both survey information was incorporated into the model, and the domain size of the model was about 1000km x 1300km. This model was calibrated with the tsunami occurred off the west coast of Moresby Island on October 28, 2012. The water levels from the model were compared with two tide gauge stations close to the Vancouver Island and the output from the model indicates the satisfactory result. For this study, the design water level was considered as High Water Level plus the Sea Level Rise for 2100 year. The hourly wind speeds from eight directions were collected from different wind stations and used a 200-year return period wind speed in the model for storm events. The regional model was set for 12 hrs simulation period, which takes more than 16 hrs to complete one simulation using double Xeon-E7 CPU computer plus a K-80 GPU. The boundary information for the local model was generated from the regional model. The local model was developed using a high resolution mesh to estimate the coastal flooding for the communities. It was observed from this study that many communities will be effected by the Cascadia tsunami and the inundation maps were developed for the communities. The infrastructures inside the coastal inundation area were identified. Coastal vulnerability planning and resilient design solutions will be implemented to significantly reduce the risk.

Keywords: tsunami, coastal flooding, coastal vulnerable, earthquake, Vancouver, wave propagation

Procedia PDF Downloads 130
495 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands

Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert

Abstract:

Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.

Keywords: damping, energy-based seismic design, hysteretic energy, input energy

Procedia PDF Downloads 168
494 Assessment of Bridge Performance with Laminated versus Spring Seismic Isolation

Authors: M. Z. Ramli, A. Adnan, Chee Wei Tan

Abstract:

To gain a better understanding of earthquake forces on reinforced concrete bridge piers with different bearing condition, a series of experiments was conducted on a realistic, 1:4 scale reinforced concrete bridge pier. The normal practices of laminated seismic isolation bearing is compared with the new design spring seismic isolation bearing where invented by Engineering Seismology and Earthquake Engineering Research (e-SEER), Universiti Teknologi Malaysia. The nonlinear behavior of piers is modeled using the fibre beam theory to verify the experimental works. The hysteresis of bridge pier with different bearing condition was illustrated under different Peak Ground Acceleration (PGAs). The average slope of the hysteresis respectively to the global stiffness was also investigated.

Keywords: bridge, laminated seismic isolation, spring seismic isolation, Peak Ground Acceleration, stiffness

Procedia PDF Downloads 559
493 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes

Authors: T. A. Sakr, Hanaa E. Abd-El-Mottaleb

Abstract:

Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significant to the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasis was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are sigbificantly enhanced while lesser drift improvements are observed.

Keywords: outrigger, shear wall, earthquake, nonlinear

Procedia PDF Downloads 283
492 Seismic Considerations in Case Study of Kindergartens Building Design: Ensuring Safety and Structural Integrity

Authors: Al-Naqdi Ibtehal Abdulmonem

Abstract:

Kindergarten buildings are essential for early childhood education, providing a secure environment for children's development. However, they are susceptible to seismic forces, which can endanger occupants during earthquakes. This article emphasizes the importance of conducting thorough seismic analysis and implementing proper structural design to protect the well-being of children, staff, and visitors. By prioritizing structural integrity and considering functional requirements, engineers can mitigate risks associated with seismic events. The use of specialized software like ETABS is crucial for designing earthquake-resistant kindergartens. An analysis using ETABS software compared the structural performance of two single-story kindergartens in Iraq's Ministry of Education, designed with and without seismic considerations. The analysis aimed to assess the impact of seismic design on structural integrity and safety. The kindergarten was designed with seismic considerations, including moment frames. In contrast, the same kindergarten was analyzed without seismic effects, revealing a lack of structural elements to resist lateral forces, rendering it vulnerable to structural failure during an earthquake. Maximum major shear increased over 4 times and over 5 times for bending moment in both kindergartens designed with seismic considerations induced by lateral loads and seismic forces. This component of shear force is vital for designing elements to resist lateral loads and ensure structural stability.

Keywords: seismic analysis, structural design, lateral loads, earthquake resistance, major shear, ETABS

Procedia PDF Downloads 69
491 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea

Authors: Woo Young Jung, Bu Seog Ju

Abstract:

This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.

Keywords: seismic, bridge, FEM, evaluation, numerical analysis

Procedia PDF Downloads 366