Search results for: reducing sugar
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4042

Search results for: reducing sugar

1702 Impact of Agriculture on the Groundwater Quality: Case of the Alluvial Plain of Nil River (North-Eastern Algerian)

Authors: S. Benessam, T. H. Debieche, A. Drouiche, F. Zahi, S. Mahdid

Abstract:

The intensive use of the chemical fertilizers and the pesticides in agriculture often produces a contamination of the groundwater by organic pollutants. The irrigation and/or rainwater transport the pollutants towards groundwater or water surface. Among these pollutants, one finds the nitrogen, often observed in the agricultural zones in the nitrate form. In order to understand the form and chemical mobility of nitrogen in groundwater, this study was conducted. A two-monthly monitoring of the parameters physicochemical and chemistry of water of the alluvial plain of Nil river (North-eastern Algerian) were carried out during the period from November 2013 to January 2015 as well as an in-situ investigation of the various chemical products used by the farmers. The results show a raise concentration of nitrates in the wells (depth < 20 m) of the plain, which the concentrations arrive at 50 mg/L (standard of potable water). On the other hand in drillings (depth > 20 m), one observes two behaviors. The first in the upstream part, where the aquifer is unconfined and the medium is oxidizing, one observes the weak nitrate concentrations, indicating its absorption by the ground during the infiltration of water towards the groundwater. The second in the central and downstream parts, where the groundwater is locally confined and the reducing medium, one observes an absence of nitrates and the appearance of nitrites and ammonium, indicating the reduction of nitrates. The projection of the analyses on diagrams Eh-pH of nitrogen has enabled to us to determine the intervals of variation of the nitrogen forms. This study also highlighted the effect of the rains, the pumping and the nature of the geological formations in the form and the mobility of nitrogen in the plain.

Keywords: groundwater, nitrogen, mobility, speciation

Procedia PDF Downloads 248
1701 Pozzolanic Properties of Synthetic Zeolites as Materials Used for the Production of Building Materials

Authors: Joanna Styczen, Wojciech Franus

Abstract:

Currently, cement production reaches 3-6 Gt per year. The production of one ton of cement is associated with the emission of 0.5 to 1 ton of carbon dioxide into the atmosphere, which means that this process is responsible for 5% of global CO2 emissions. Simply improving the cement manufacturing process is not enough. An effective solution is the use of pozzolanic materials, which can partly replace clinker and thus reduce energy consumption, and emission of pollutants and give mortars the desired characteristics, shaping their microstructure. Pozzolanic additives modify the phase composition of cement, reducing the amount of portlandite and changing the CaO/SiO2 ratio in the C-S-H phase. Zeolites are a pozzolanic additive that is not commonly used. Three types of zeolites were synthesized in work: Na-A, sodalite and ZSM-5 (these zeolites come from three different structural groups). Zeolites were obtained by hydrothermal synthesis of fly ash in an aqueous NaOH solution. Then, the pozzolanicity of the obtained materials was assessed. The pozzolanic activity of the zeolites synthesized for testing was tested by chemical methods in accordance with the ASTM C 379-65 standard. The method consisted in determining the percentage content of active ingredients (soluble silicon oxide and aluminum).in alkaline solutions, i.e. those that are potentially reactive towards calcium hydroxide. The highest amount of active silica was found in zeolite ZSM-5 - 88.15%. The amount of active Al2O3 was small - 1%. The smallest pozzolanic activity was found in the Na-A zeolite (active SiO2 - 4.4%, and active Al2O3 - 2.52). The tests carried out using the XRD, SEM, XRF and textural tests showed that the obtained zeolites are characterized by high porosity, which makes them a valuable addition to mortars.

Keywords: pozzolanic properties, hydration, zeolite, alite

Procedia PDF Downloads 78
1700 The World in the 21st Century and Beyound: Convergence or Invariance

Authors: Saleh Maina

Abstract:

There is an on-going debate among intellectuals and scholars of international relations and world politics over the direction which the world is heading particularly in the current era of globalization. On the one hand are adherents to the convergence thesis which is premised on the assumption that global social order is tending toward universalism which could translate into the possible end of the classical state system and the unification of world societies under a single and common ideological dispensation. The convergence thesis is hinged on the globalization process which is gradually reducing world societies into a 'global village'. On the other hand are intellectuals who hold the view that despite advances made in communication technology which appear to threaten the survival of the classical state system. Invariance, as expressed in the survival of the existing state system and the diverse social traditions in world societies, remain a realistic possibility contrary to the conclusions of the convergence thesis. The invariance thesis has been advanced by scholars like Samuel P. Huntington whose work on clash of civilizations suggests that world peace can only be sustained through the co-habitation of diverse civilizations across the world. The purpose of this paper is to examine both sides of the debate with the aim of making a realistic assessment on where world societies are headed, between convergence and invariance. Using the realist theory of international relations as our theoretical premise the paper argues that while there is sufficient ground to predict the future direction of world societies as headed towards some form of convergence, invariance as expressed in the co-existence of diverse civilizations will for a long time remain a major feature of the international system.

Keywords: convergence, invariance, clash of civilization, classical state system, universalism

Procedia PDF Downloads 307
1699 Key Performance Indicators of Cold Supply Chain Practices in Agriculture Sector: Empirical Study on the Egyptian Export Companies

Authors: Ahmed Barakat, Nourhan Ahmed Saad, Mahmoud Hammad

Abstract:

Tracking and monitoring agricultural products, cold chain activities, and transportation in real-time can effectively ensure both the quality and safety of agricultural products, as well as reduce overall logistics costs. Effective supply chain practices are one of the main requirements for enhancing agricultural business in Egypt. Cold chain is among the best practices for the storage and transportation of perishable goods and has potential within the agricultural sector in Egypt. This practice has the scope of reducing the wastage of food and increasing the profitability with a reduction in costs. Even though it has several implementation challenges for the farmers, traders, and people involved in the entire supply chain, it has highlighted better benefits for all and for the export of goods for the economic progression for Egypt. The aim of this paper is to explore cold supply chain practices for the agriculture sector in Egypt, to enhance the export performance of fresh goods. In this context, this study attempts to explore those aspects of the performance of cold supply chain practices that can enhance the functioning of the agriculture sector in Egypt from the perspective of export companies (traders) and farmers. Based on the empirical results obtained by data collection from the farmers and traders, the study argues that there is a significant association between cold supply chain practices and enhancement of the agriculture value chain. The paper thus highlights the contribution of the study with final conclusions and limitations with scope for future research.

Keywords: agriculture sector, cold chain management, export companies, non-traded goods, supply chain management

Procedia PDF Downloads 162
1698 Regenerative Agriculture Standing at the Intersection of Design, Mycology, and Soil Fertility

Authors: Andrew Gennett

Abstract:

Designing for fungal development means embracing the symbiotic relationship between the living system and built environment. The potential of mycelium post-colonization is explored for the fabrication of advanced pure mycelium products, going beyond the conventional methods of aggregating materials. Fruiting induction imparts desired material properties such as enhanced environmental resistance. Production approach allows for simultaneous generation of multiple products while scaling up raw materials supply suitable for architectural applications. The following work explores the integration of fungal environmental perception with computational design of built fruiting chambers. Polyporales, are classified by their porous reproductive tissues supported by a wood-like context tissue covered by a hard waterproofing coat of hydrobpobins. Persisting for years in the wild, these species represent material properties that would be highly desired in moving beyond flat sheets of arial mycelium as with leather or bacon applications. Understanding the inherent environmental perception of fungi has become the basis for working with and inducing desired hyphal differentiation. Working within the native signal interpretation of a mycelium mass during fruiting induction provides the means to apply textures and color to the final finishing coat. A delicate interplay between meeting human-centered goals while designing around natural processes of living systems represents a blend of art and science. Architecturally, physical simulations inform model design for simple modular fruiting chambers that change as fungal growth progresses, while biological life science principles describe the internal computations occurring within the fungal hyphae. First, a form filling phase of growth is controlled by growth chamber environment. Second, an initiation phase of growth forms the final exterior finishing texture. Hyphal densification induces cellular cascades, in turn producing the classical hardened cuticle, UV protective molecule production, as well, as waterproofing finish. Upon fruiting process completion, the fully colonized spent substrate holds considerable value and is not considered waste. Instead, it becomes a valuable resource in the next cycle of production scale-up. However, the acquisition of new substrate resources poses a critical question, particularly as these resources become increasingly scarce. Pursuing a regenerative design paradigm from the environmental perspective, the usage of “agricultural waste” for architectural materials would prove a continuation of the destructive practices established by the previous industrial regime. For these residues from fields and forests serve a vital ecological role protecting the soil surface in combating erosion while reducing evaporation and fostering a biologically diverse food web. Instead, urban centers have been identified as abundant sources of new substrate material. Diverting the waste from secondary locations such as food processing centers, papers mills, and recycling facilities not only reduces landfill burden but leverages the latent value of these waste steams as precious resources for mycelium cultivation. In conclusion, working with living systems through innovative built environments for fungal development, provides the needed gain of function and resilience of mycelium products. The next generation of sustainable fungal products will go beyond the current binding process, with a focus upon reducing landfill burden from urban centers. In final considerations, biophilic material builds to an ecologically regenerative recycling production cycle.

Keywords: regenerative agriculture, mycelium fabrication, growth chamber design, sustainable resource acquisition, fungal morphogenesis, soil fertility

Procedia PDF Downloads 66
1697 A Comparative Study on Occupational Fraud and Prosecution

Authors: Michelle Odudu

Abstract:

Ghana and Nigeria are known for their high levels of Occupational Fraud in public offices. The governments of both countries have emphasised their commitment to reducing the losses caused to the state by pledging their allegiance to the counter-fraud agencies to help tackle Occupational Fraud. Yet it seems that the prosecution of such cases is ineffective as high-profile fraudsters can operate with immunity and their cases remain unprosecuted. This research project was based on in-depth examinations of 50 occupational fraud cases involving high-profile individuals in both countries. In doing so, it established the characteristics of those who were prosecuted; the extent to which prosecutions were effectively managed; the barriers to effective prosecutions; and the similarities or differences between the occurrences in both countries. The aim of the project is to examine the practice of and barriers to prosecution of large-scale occupational fraud of those in senior public positions in Ghana and Nigeria. The study drew on the experiences of stakeholders such as defence and prosecution barristers, academics, and fraud analysts via semi-structured interviews and questionnaires. 13 interviews were conducted in Ghana and in Nigeria, where respondents were recruited using a snowball approach. Questionnaires were physically distributed: 20 of the staff at EOCO and 10 to NGO staff in Ghana; 6 and 5 came back, respectively. The empirical data collected suggests that there is no lack of will on the agencies’ part to at least commence proceedings. However, various impediments hamper a successful completion of prosecution. Challenges were more evident in Nigeria, where agencies are less effective at retrieving stolen assets and changing social norms. This is further compounded by several cultural and political factors, which create limitations leaving many cases ‘still pending’.

Keywords: comparative, prosecution, punishment, international, whitecollar, fraud

Procedia PDF Downloads 132
1696 Review of Existing Pumped Storage Technologies and their Application in the Case of Bistrica Pump Storage Plant

Authors: Dušan Bojović, Wei Huang, Zdravko Stojanović, Jovan Ilić

Abstract:

In an era of ever-growing electricity generation from renewable energy sources, namely wind and solar, a need for reliable energy storage and intensive balancing of the electric power system gains significance. For decades, pump storage hydroelectric power plants have proven to be an important asset regarding the storage of generated electricity. However, with the increasing overall share of wind and solar in electric systems at large, the importance of electric grid stability keeps growing. A large pump storage project, the Bistrica Pump Storage Plant (PSP), is currently under development in Serbia. The Bistrica PSP will be designed as a 600+ MW power plant, which is envisaged as a significant contributor to the Serbian power grid stability as more and more renewable energy sources are implemented over time. PSP Bistrica is seen as a strategically important project on the green agenda path of the Electric Power Industry of Serbia as a necessary pre-condition for the safe implementation of other renewable energy sources. The importance of such a plant would also play an important role in reducing the electricity production from coal, i.e., thermoelectric power plants. During the project’s development, various techniques and technologies are evaluated for the purpose of determining the optimum (the most profitable) solution. Over the course of this paper, these technologies – such as frequency-regulated pump turbines and ternary sets will be presented, with a detailed explanation of their possible application within the Bistrica PSP project and their relative advantages/disadvantages in this particular case.

Keywords: hydraulic turbines, pumped storage, renewable energy, competing technologies

Procedia PDF Downloads 92
1695 Simulation of Lean Principles Impact in a Multi-Product Supply Chain

Authors: Matteo Rossini, Alberto Portioli Staudacher

Abstract:

The market competition is moving from the single firm to the whole supply chain one because of increasing competition and growing need for operational efficiencies and customer orientation. Supply chain management allows companies to look beyond their organizational boundaries to develop and leverage resources and capabilities of their supply chain partners. This leads to create competitive advantages in the marketplace and because of this SCM has acquired strategic importance. Lean Approach is a management strategy that focuses on reducing every type of waste present in an organization. This approach is becoming more and more popular among supply chain managers. The supply chain application of lean approach is low diffused. It is not well studied which are the impacts of lean approach principles in a supply chain context. In literature there are only few studies simulating the lean approach performance in single products supply chain. This research work studies the impacts of lean principles implementation along a supply chain. To achieve this, a simulation model of a three-echelon multiproduct product supply chain has been built. Kanban system (and several priority policies) and setup time reduction degrees are implemented in the lean-configured supply chain to apply pull and lot-sizing decrease principles respectively. To evaluate the benefits of lean approach, lean supply chain is compared with an EOQ-configured supply chain. The simulation results show that Kanban system and setup-time reduction improve inventory stock level. They also show that logistics efforts are affected to lean implementation degree. The paper concludes describing performances of lean supply chain in different contexts.

Keywords: inventory policy, Kanban, lean supply chain, simulation study, supply chain management, planning

Procedia PDF Downloads 358
1694 Development of a Practical Screening Measure for the Prediction of Low Birth Weight and Neonatal Mortality in Upper Egypt

Authors: Prof. Ammal Mokhtar Metwally, Samia M. Sami, Nihad A. Ibrahim, Fatma A. Shaaban, Iman I. Salama

Abstract:

Objectives: Reducing neonatal mortality by 2030 is still a challenging goal in developing countries. low birth weight (LBW) is a significant contributor to this, especially where weighing newborns is not possible routinely. The present study aimed to determine a simple, easy, reliable anthropometric measure(s) that can predict LBW) and neonatal mortality. Methods: A prospective cohort study of 570 babies born in districts of El Menia governorate, Egypt (where most deliveries occurred at home) was examined at birth. Newborn weight, length, head, chest, mid-arm, and thigh circumferences were measured. Follow up of the examined neonates took place during their first four weeks of life to report any mortalities. The most predictable anthropometric measures were determined using the statistical package of SPSS, and multiple Logistic regression analysis was performed.: Results: Head and chest circumferences with cut-off points < 33 cm and ≤ 31.5 cm, respectively, were the significant predictors for LBW. They carried the best combination of having the highest sensitivity (89.8 % & 86.4 %) and least false negative predictive value (1.4 % & 1.7 %). Chest circumference with a cut-off point ≤ 31.5 cm was the significant predictor for neonatal mortality with 83.3 % sensitivity and 0.43 % false negative predictive value. Conclusion: Using chest circumference with a cut-off point ≤ 31.5 cm is recommended as a single simple anthropometric measurement for the prediction of both LBW and neonatal mortality. The predicted measure could act as a substitute for weighting newborns in communities where scales to weigh them are not routinely available.

Keywords: low birth weight, neonatal mortality, anthropometric measures, practical screening

Procedia PDF Downloads 99
1693 A Generalised Propensity Score Analysis to Investigate the Influence of Agricultural Research Systems on Greenhouse Gas Emissions

Authors: Spada Alessia, Fiore Mariantonietta, Lamonaca Emilia, Contò Francesco

Abstract:

Bioeconomy can give the chance to face new global challenges and can move ahead the transition from a waste economy to an economy based on renewable resources and sustainable consumption. Air pollution is a grave issue in green challenges, mainly caused by anthropogenic factors. The agriculture sector is a great contributor to global greenhouse gases (GHGs) emissions due to lacking efficient management of the resources involved and research policies. In particular, livestock sector contributes to emissions of GHGs, deforestation, and nutrient imbalances. More effective agricultural research systems and technologies are crucial in order to improve farm productivity but also to reduce the GHGs emissions. Using data from FAOSTAT statistics and concern the EU countries; the aim of this research is to evaluate the impact of ASTI R&D (Agricultural Science and Technology Indicators) on GHGs emissions for countries EU in 2015 by generalized propensity score procedures, estimating a dose-response function, also considering a set of covariates. Expected results show the existence of the influence of ASTI R&D on GHGs across EU countries. Implications are crucial: reducing GHGs emissions by means of R&D based policies and correlatively reaching eco-friendly management of required resources by means of green available practices could have a crucial role for fair intra-generational implications.

Keywords: agricultural research systems, dose-response function, generalized propensity score, GHG emissions

Procedia PDF Downloads 278
1692 Generation of Renewable Energy Through Photovoltaic Panels, Albania Photovoltaic Capacity

Authors: Dylber Qema

Abstract:

Driven by recent developments in technology and the growing concern about the sustainability and environmental impact of conventional fuel use, the possibility of producing clean and sustainable energy in significant quantities from renewable energy sources has sparked interest all over the world. Solar energy is one of the sources for the generation of electricity, with no emissions or environmental pollution. The electricity produced by photovoltaics can supply a home or business and can even be sold or exchanged with the grid operator. A very positive effect of using photovoltaic modules is that they do not produce greenhouse gases and do not produce chemical waste, unlike all other forms of energy production. Photovoltaics are becoming one of the largest investments in the field of renewable generating units. Improving the reliability of the electric power system is one of the most important impacts of the installation of photovoltaics (PV). Renewable energy sources are so large that they can meet the energy demands of the whole world, thus enabling sustainable supply as well as reducing local and global atmospheric emissions. Albania is rated by experts as one of the most favorable countries in Europe for the production of electricity from solar panels. But the country currently produces about 1% of its energy from the sun, while the rest of the needs are met by hydropower plants and imports. Albania has very good characteristics in terms of solar radiation (about 1300–1400 kW/m2). Solar energy has great potential and is a permanent source of energy with greater economic efficiency. Photovoltaic energy is also seen as an alternative, as long periods of drought in Albania have produced crises and high costs for securing energy in the foreign market.

Keywords: capacity, ministry of tourism and environment, obstacles, photovoltaic energy, sustainable

Procedia PDF Downloads 59
1691 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization

Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi

Abstract:

Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.

Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm

Procedia PDF Downloads 82
1690 Relationship between Conjugated Linoleic Acid Intake, Biochemical Parameters and Body Fat among Adults and Elderly

Authors: Marcela Menah de Sousa Lima, Victor Ushijima Leone, Natasha Aparecida Grande de Franca, Barbara Santarosa Emo Peters, Ligia Araujo Martini

Abstract:

Conjugated linoleic acid (CLA) intake has been constantly related to benefits to human health since having a positive effect on reducing body fat. The aim of the present study was to investigate the association between CLA intake and biochemical measurements and body composition of adults and the elderly. Subjects/Methods: 287 adults and elderly participants in an epidemiological study in Sao Paulo Brazil, were included in the present study. Participants had their dietary data obtained by two non-consecutive 24HR, a body composition assessed by dual-energy absorptiometry exam (DXA), and a blood collection. Mean differences and a correlation test was performed. For all statistical tests, a significance of 5% was considered. Results: CLA intake showed a positive correlation with HDL-c levels (r = 0.149; p = 0.011) and negative with VLDL-c levels (r = -0.134; p = 0.023), triglycerides (r = -0.135; p = 0.023) and glycemia (r = -0.171; p = 0.004), as well as negative correlation with visceral adipose tissue (VAT) (r = -0.124, p = 0.036). Evaluating individuals in two groups according to VAT values, a significant difference in CLA intake was observed (p = 0.041), being the group with the highest VAT values, the one with the lowest fatty acid intake. Conclusions: This study suggests that CLA intake is associated with a better lipid profile and lower visceral adipose tissue volume, which contributes to the investigation of the effects of CLA on obesity parameters. However, it is necessary to investigate the effects of CLA from milk and dairy products in the control adiposity.

Keywords: adiposity, dairy products, diet, fatty acids

Procedia PDF Downloads 140
1689 Government Final Consumption Expenditure and Household Consumption Expenditure NPISHS in Nigeria

Authors: Usman A. Usman

Abstract:

Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp (financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.

Keywords: government final consumption expenditure, household consumption expenditure, vector error correction model, cointegration

Procedia PDF Downloads 53
1688 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite

Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh

Abstract:

An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.

Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode

Procedia PDF Downloads 370
1687 Finite Element Analysis of Cold Formed Steel Screwed Connections

Authors: Jikhil Joseph, S. R. Satish Kumar

Abstract:

Steel Structures are commonly used for rapid erections and multistory constructions due to its inherent advantages. However, the high accuracy required in detailing and heavier sections, make it difficult to erect in place and transport. Cold Formed steel which are specially made by reducing carbon and other alloys are used nowadays to make thin-walled structures. Various types of connections are being reported as well as practiced for the thin-walled members such as bolting, riveting, welding and other mechanical connections. Commonly self-drilling screw connections are used for cold-formed purlin sheeting connection. In this paper an attempt is made to develop a moment resting frame which can be rapidly and remotely constructed with thin walled sections and self-drilling screws. Semi-rigid Moment connections are developed with Rectangular thin-walled tubes and the screws. The Finite Element Analysis programme ABAQUS is used for modelling the screwed connections. The various modelling procedures for simulating the connection behavior such as tie-constraint model, oriented spring model and solid interaction modelling are compared and are critically reviewed. From the experimental validations the solid-interaction modelling identified to be the most accurate one and are used for predicting the connection behaviors. From the finite element analysis, hysteresis curves and the modes of failure were identified. Parametric studies were done on the connection model to optimize the connection configurations to get desired connection characteristics.

Keywords: buckling, cold formed steel, finite element analysis, screwed connections

Procedia PDF Downloads 187
1686 Robust Design of a Ball Joint Considering Uncertainties

Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee

Abstract:

An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.

Keywords: ball joint, pull-out strength, robust design, design of experiments

Procedia PDF Downloads 422
1685 Potential for Biological Control of Postharvest Fungal Rot of White Yam (Dioscorea rotundata Poir) Tubers in Storage with Trichoderma harzianum

Authors: Victor Iorungwa Gwa, Ebenezer Jonathan Ekefan

Abstract:

Potential of Trichoderma harzianum for biological control of postharvest fungal rot of white yam (Dioscorea rotundata Poir) tubers in storage was studied. Pathogenicity test revealed the susceptibility of healthy looking yam tubers to Aspergillus niger, Botryodiplodia theobromae, and Fusarium oxysporum f. sp. melonganae after fourteen days of inoculation. Treatments comprising A. niger, B. theobromae, and F. oxysporum each paired with T. harzianum and were arranged in completely randomized design and stored for five months. Experiments were conducted between December 2015 and April 2016 and December 2016 and April 2017. Results showed that tubers treated with the pathogenic fungi alone caused mean percentage rot of between 6.67 % (F. oxysporum) and 22.22 % (A. niger) while the paired treatments produced only between 2.22 % (T. harzianum by F. oxysporum) and 6.67 % (T. harzianum by A. niger). In the second year of storage, mean percentage rot was found to be between 13.33 % (F. oxysporum) and 28.89 % (A. niger) while in the paired treatment rot was only between 6.67 % (F. oxysporum) and 8.89% (A. niger). Tubers treated with antagonist alone produced 0.00 % and 2.22 % in the first and second year, respectively. Result revealed that there was a significant difference (P ≤ 0.05) in mean percentage rot between the first year and the second year except where B. theobromae was inoculated alone, A. niger and T. harzianum paired and B. theobromae and T. harzianum paired. The most antagonised fungus in paired treatment for both years was F. oxysporum f. sp. melonganae, while the least antagonised, was A. niger and B. theobromae. It is, therefore, concluded that T. harzianum has potentials to control rot causing pathogens of yam tubers in storage. This can compliment or provide better alternative ways of reducing rot in yam tubers than by the use of chemical fungicides which are not environmentally friendly.

Keywords: biological control, fungal rot, postharvest, Trichoderma harzianum, white yam

Procedia PDF Downloads 162
1684 The Teaching and Learning Process and Information and Communication Technologies from the Remote Perspective

Authors: Rosiris Maturo Domingues, Patricia Luissa Masmo, Cibele Cavalheiro Neves, Juliana Dalla Martha Rodriguez

Abstract:

This article reports the experience of the pedagogical consultants responsible for the curriculum development of Senac São Paulo courses when facing the emergency need to maintain the pedagogical process in their schools in the face of the Covid-19 pandemic. The urgent adjustment to distance education resulted in the improvement of the process and the adoption of new teaching and learning strategies mediated by technologies. The processes for preparing and providing guidelines for professional education courses were also readjusted. Thus, a bank of teaching-learning strategies linked to digital resources was developed, categorized, and identified by their didactic-pedagogical potential, having as an intersection didactic planning based on learning objectives based on Bloom's taxonomy (revised), given its convergence with the competency approach adopted by Senac. Methodologically, a relationship was established between connectivity and digital networks and digital evolution in school environments, culminating in new paradigms and processes of educational communication and new trends in teaching and learning. As a result, teachers adhered to the use of digital tools in their practices, transposing face-to-face classroom methodologies and practices to online media, whose criticism was the use of ICTs in an instrumental way, reducing methodologies and practices to teaching only transmissive. There was recognition of the insertion of technology as a facilitator of the educational process in a non-palliative way and the development of a web curriculum, now and fully, carried out in contexts of ubiquity.

Keywords: technologies, education, teaching-learning strategies, Bloom taxonomy

Procedia PDF Downloads 89
1683 Vibration Analysis and Optimization Design of Ultrasonic Horn

Authors: Kuen Ming Shu, Ren Kai Ho

Abstract:

Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.

Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration

Procedia PDF Downloads 117
1682 Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support

Authors: A. S. Al-Fatesh, A. A. Ibrahim, A. M. AlSharekh, F. S. Alqahtani, S. O. Kasim, A. H. Fakeeha

Abstract:

Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%.

Keywords: Al₂O₃, SiO₂, CH₄ decomposition, hydrogen, iron

Procedia PDF Downloads 179
1681 Effect of Organizational Competitive Climate on Organizational Prosocial Behavior: Workplace Envy as a Mediator

Authors: Armaghan Eslami, Nasrin Arshadi

Abstract:

Scarce resources are the inseparable part of organization life. This fact that only small number of the employees can have these resources such as promotion, raise, and recognition can cause competition among employees, which create competitive climate. As well as any other competition, small number wins the reward, and a great number loses, one of the possible emotional reactions to this loss is negative emotions like malicious envy. In this case, the envious person may try to harm the envied person by reducing the prosocial behavior. Prosocial behavior is a behavior that aimed to benefit others. The main propose of this action is to maintain and increase well-being and well-fare of others. Therefore, one of the easiest ways for harming envied one is to suppress prosocial behavior. Prosocial behavior has positive and important implication for organizational efficiency. Our results supported our model and suggested that competitive climate has a significant effect on increasing workplace envy and on the other hand envy has significant negative impact on prosocial behavior. Our result also indicated that envy is the mediator in the relation between competitive climate and prosocial behavior. Organizational competitive climate can cause employees respond envy with negative emotion and hostile and damaging behavior toward envied person. Competition can lead employees to look out for proof of their self-worthiness; and, furthermore, they measure their self-worth, value and respect by the superiority that they gain in competitions. As a result, loss in competitions can harm employee’s self-definition and they try to protect themselves by devaluating envied other and being ‘less friendly’ to them. Some employees may find it inappropriate to engage in the harming behavior, but they may believe there is nothing against withholding the prosocial behavior.

Keywords: competitive climate, mediator, prosocial behavior, workplace envy

Procedia PDF Downloads 362
1680 Flood Risk Assessment and Adapted to the Climate Change by a Trade-Off Process in Land Use Planning

Authors: Nien-Ming Hong, Kuei-Fang Huang

Abstract:

Climate change is an important issue in future, which seriously affects water resources for a long term planning and management. Flood assessment is highly related with climate and land use. Increasing rainfall and urbanization will induce the inundated area in future. For adapting the impacts of climate change, a land use planning is a good strategy for reducing flood damage. The study is to build a trade-off process with different land use types. The Ta-Liao watershed is the study area with three types of land uses that are build-up, farm and forest. The build-up area is concentrated in the downstream of the watershed. Different rainfall amounts are applied for assessing the land use in 1996, 2005 and 2013. The adapted strategies are based on retarding the development of urban and a trade-off process. When a land changes from farm area to built-up area in downstream, this study is to search for a farm area and change it to forest/grass area or building a retention area in the upstream. For assessing the effects of the strategy, the inundation area is simulated by the Flo-2D model with different rainfall conditions and land uses. The results show inundation maps of several cases with land use change planning. The results also show the trade-off strategies and retention areas can decrease the inundated area and divide the inundated area, which are better than retarding urban development. The land use change is usually non-reverse and the planning should be constructed before the climate change.

Keywords: climate change, land use change, flood risk assessment, land use planning

Procedia PDF Downloads 338
1679 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit

Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana

Abstract:

Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.

Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification

Procedia PDF Downloads 155
1678 Development of Biosurfactant-Based Adjuvant for Enhancing Biocontrol Efficiency

Authors: Kanyarat Sikhao, Nichakorn Khondee

Abstract:

Adjuvant is commonly mixed with agricultural spray solution during foliar application to improve the performance of microbial-based biological control, including better spreading, absorption, and penetration on a plant leaf. This research aims to replace chemical surfactants in adjuvant by biosurfactants for reducing a negative impact on antagonistic microorganisms and crops. Biosurfactant was produced from Brevibacterium casei NK8 and used as a cell-free broth solution containing a biosurfactant concentration of 3.7 g/L. The studies of microemulsion formation and phase behavior were applied to obtain the suitable composition of biosurfactant-based adjuvant, consisting of cell-free broth (70-80%), coconut oil-based fatty alcohol C12-14 (3) ethoxylate (1-7%), and sodium chloride (8-30%). The suitable formula, achieving Winsor Type III microemulsion (bicontinuous), was 80% of cell-free broth, 7% of fatty alcohol C12-14 (3) ethoxylate, and 8% sodium chloride. This formula reduced the contact angle of water on parafilm from 70 to 31 degrees. The non-phytotoxicity against plant seed of Oryza sativa and Brassica rapa subsp. pekinensis were obtained from biosurfactant-based adjuvant (germination index equal and above 80%), while sodium dodecyl sulfate and tween80 showed phytotoxic effects to these plant seeds. The survival of Bacillus subtilis in biosurfactant-based adjuvant was higher than sodium dodecyl sulfate and tween80. The mixing of biosurfactant and plant-based surfactant could be considered as a viable, safer, and acceptable alternative to chemical adjuvant for sustainable organic farming.

Keywords: biosurfactant, microemulsion, bio-adjuvant, antagonistic microorganisms

Procedia PDF Downloads 141
1677 Using Data Mining in Automotive Safety

Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler

Abstract:

Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.

Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact

Procedia PDF Downloads 382
1676 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers

Authors: L. Achab, F. Iachachene

Abstract:

In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.

Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method

Procedia PDF Downloads 56
1675 Membrane-Localized Mutations as Predictors of Checkpoint Blockade Efficacy in Cancer

Authors: Zoe Goldberger, Priscilla S. Briquez, Jeffrey A. Hubbell

Abstract:

Tumor cells have mutations resulting from genetic instability that the immune system can actively recognize. Immune checkpoint immunotherapy (ICI) is commonly used in the clinic to re-activate immune reactions against mutated proteins, called neoantigens, resulting in tumor remission in cancer patients. However, only around 20% of patients show durable response to ICI. While tumor mutational burden (TMB) has been approved by the Food and Drug Administration (FDA) as a criterion for ICI therapy, the relevance of the subcellular localizations of the mutated proteins within the tumor cell has not been investigated. Here, we hypothesized that localization of mutations impacts the effect of immune responsiveness to ICI. We analyzed publicly available tumor mutation sequencing data of ICI treated patients from 3 independent datasets. We extracted the subcellular localization from the UniProtKB/Swiss-Prot database and quantified the proportion of membrane, cytoplasmic, nuclear, or secreted mutations per patient. We analyzed this information in relation to response to ICI treatment and overall survival of patients showing with 1722 ICI-treated patients that high mutational burden localized at the membrane (mTMB), correlate with ICI responsiveness, and improved overall survival in multiple cancer types. We anticipate that our results will ameliorate predictability of cancer patient response to ICI with potential implications in clinical guidelines to tailor ICI treatment. This would not only increase patient survival for those receiving ICI, but also patients’ quality of life by reducing the number of patients enduring non-effective ICI treatments.

Keywords: cancer, immunotherapy, membrane neoantigens, efficacy prediction, biomarkers

Procedia PDF Downloads 109
1674 Effectiveness of Micro-Credit Scheme of Community Women and Development (COWAD) in Enhancing Living Standards of Women in Oyo State, Nigeria

Authors: Olufunmilayo Folaranmi

Abstract:

The study aimed at assessing the effectiveness of micro-credit scheme of (COWAD) in enhancing the living standard of women in selected local government areas of Oyo State. A survey research design was adopted for the study. A sample of 250 respondents was purposively selected for the study while a structured questionnaire tagged Effectiveness of Micro-Credit Scheme of Community Women and Development and Living Standards of Women Questionnaire (EMCSCWDQ) was designed to collect data for the study. Data collected was analyzed using frequency distribution, tables, percentages and chi-square statistics. Three hypotheses were tested for the study at 0.05 level of significance. Findings from the study indicated that loan provided by COWAD for women in selected local government areas towards improving their economic conditions has improved the living conditions of the women, promoted their general welfare, and reduced their poverty level. Findings also showed that some beneficiaries were not able to pay back, therefore reducing the effectiveness for future beneficiaries. Based on the findings, it was recommended that the providers of various micro-credit schemes of the state should design a convenient pattern of payment which will provide enough time for the beneficiaries of the loan to sell their goods or work for proper and timely payment. Also, the problem of collateral should be reviewed as the majority of women involved are poor. Other recommendations include replication of COWAD facilities in other NGOs as well as sustainability of the facility.

Keywords: micro-credit scheme, welfare, women, development, poverty

Procedia PDF Downloads 163
1673 Numerical Investigation of a Spiral Bladed Tidal Turbine

Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry

Abstract:

From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.

Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability

Procedia PDF Downloads 122