Search results for: problem-based learning approach
16827 Implementation of Data Science in Field of Homologation
Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande
Abstract:
For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)
Procedia PDF Downloads 16416826 A Qualitative Study of Approaches Used by Physiotherapists to Educate Patients with Chronic Low Back Pain
Authors: Styliani Soulioti, Helen Fiddler
Abstract:
The aim of this study was to investigate the approaches used by physiotherapists in the education of patients with chronic low back pain (cLBP) and the rationale that underpins their choice of approach. Therapeutic patient education (TPE) is considered to be an important aspect of modern physiotherapy practice, as it helps patients achieve better self-management and a better understanding of their problem. Previous studies have explored this subject, but the reasoning behind the choices physiotherapists make as educators has not been widely explored, thus making it difficult to understand areas that could be addressed in order to improve the application of TPE.A qualitative study design, guided by a constructivist epistemology was used in this research project. Semi-structured interviews were used to collect data from 7 physiotherapists. Inductive coding and thematic analysis were used, which allowed key themes to emerge. Data analysis revealed two overarching themes: 1) patient-centred versus therapist-centred educational approaches, and 2) behaviourist versus constructivist educational approaches. Physiotherapists appear to use a patient-centred-approach when they explore patients’ beliefs about cLBP and treatment expectations. However, treatment planning and goal-setting were guided by a therapist-centred approach, as physiotherapists appear to take on the role of the instructor/expert, whereas patients were viewed as students. Using a constructivist approach, physiotherapists aimed to provide guidance to patients by combining their professional knowledge with the patients’ individual knowledge, to help the patient better understand their problem, reflect upon it and find a possible solution. However, educating patients about scientific facts concerning cLBP followed a behaviourist approach, as an instructor/student relationship was observed and the learning content was predetermined and transmitted in a one-way manner. The results of this study suggest that a lack of consistency appears to exist in the educational approaches used by physiotherapists. Although patient-centeredness and constructivism appear to be the aims set by physiotherapists in order to optimise the education they provide, a student-teacher relationship appears to dominate when it comes to goal-setting and delivering scientific information.Keywords: chronic low back pain, educational approaches, health education, patient education
Procedia PDF Downloads 20716825 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study
Authors: Mahmoud I. Syam, Osama K. El-Hafy
Abstract:
With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.Keywords: learning, motivating, student, teacher, testing hypotheses
Procedia PDF Downloads 47416824 Game “EZZRA” as an Innovative Solution
Authors: Mane Varosyan, Diana Tumanyan, Agnesa Martirosyan
Abstract:
There are many catastrophic events that end with dire consequences, and to avoid them, people should be well-armed with the necessary information about these situations. During the last years, Serious Games have increasingly gained popularity for training people for different types of emergencies. The major discussed problem is the usage of gamification in education. Moreover, it is mandatory to understand how and what kind of gamified e-learning modules promote engagement. As the theme is emergency, we also find out people’s behavior for creating the final approach. Our proposed solution is an educational video game, “EZZRA”.Keywords: gamification, education, emergency, serious games, game design, virtual reality, digitalisation
Procedia PDF Downloads 7816823 Validating Condition-Based Maintenance Algorithms through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning
Procedia PDF Downloads 12716822 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 19216821 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms
Authors: Ahmad E. Aldousaria, Abdulla Al Kafy
Abstract:
Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing
Procedia PDF Downloads 22816820 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images
Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor
Abstract:
Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.Keywords: foot disorder, machine learning, neural network, pes planus
Procedia PDF Downloads 36516819 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation
Procedia PDF Downloads 14616818 Engagement Analysis Using DAiSEE Dataset
Authors: Naman Solanki, Souraj Mondal
Abstract:
With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.Keywords: computer vision, engagement prediction, deep learning, multi-level classification
Procedia PDF Downloads 11616817 Promoting Teaching and Learning Structures Based on Innovation and Entrepreneurship in Valahia University of Targoviste
Authors: Gabriela Teodorescu, Ioana Daniela Dulama
Abstract:
In an ever-changing society, the education system needs to constantly evolve to meet market demands. During its 30 years of existence, Valahia University of Targoviste (VUT) tried to offer its students a series of teaching-learning schemes that would prepare them for a remarkable career. In VUT, the achievement of performance through innovation can be analyzed by reference to several key indicators (i.e., university climate, university resources, and innovative methods applied to classes), but it is possible to differentiate between activities in the classic format: participate to courses; interactive seminars and tutorials; laboratories, workshops, project-based learning; entrepreneurial activities, through simulated enterprises; mentoring activities. Thus, VUT has implemented over time a series of schemes and projects based on innovation and entrepreneurship, and in this paper, some of them will be briefly presented. All these schemes were implemented by facilitating an effective dialog with students and the opportunity to listen to their views at all levels of the University and in all fields of study, as well as by developing a partnership with students to set out priority areas. VUT demonstrates innovation and entrepreneurial capacity through its new activities for higher education, which will attract more partnerships and projects dedicated to students.Keywords: Romania, project-based learning, entrepreneurial activities, simulated enterprises
Procedia PDF Downloads 16416816 Attitudes of Saudi Students Attending the English Programmes of the Royal Commission for Jubail and Yanbu toward Using Computer-Assisted Language Learning
Authors: Sultan Ahmed Arishi
Abstract:
The objective of the study was to investigate the attitude of the Saudi students attending the English Language programmes of the Royal Commission for Jubail towards using CALL, as well as to discover whether computer-assisted teaching is useful and valuable for students in learning English. Data were collected with the help of interviews and survey questionnaires. The outcomes of the investigation showed that students had a positive attitude towards CALL. Moreover, the listening skills of the students had the most substantial effect on students learning English through CALL. Unexpectedly, the teaching staff, equipment, curriculum, or even a student's poor English background was a distinct barrier that attributed to any weaknesses of using CALL, or in other words, all these factors were of a similar attitude.Keywords: CALL, teaching aids, teaching technology, teaching English with technology, teaching English in Saudi Arabia
Procedia PDF Downloads 14716815 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images
Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi
Abstract:
Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.Keywords: biometric measurements, fetal head malformations, machine learning methods, US images
Procedia PDF Downloads 29016814 Empirical Evaluation of Game Components Based on Learning Theory: A Preliminary Study
Authors: Seoi Lee, Dongjoo Chin, Heewon Kim
Abstract:
Gamification refers to a technique that applies game elements to non-gaming elements, such as education and exercise, to make people more engaged in these behaviors. The purpose of this study was to identify effective elements in gamification for changing human behaviors. In order to accomplish this purpose, a survey based on learning theory was developed, especially for assessing antecedents and consequences of behaviors, and 8 popular and 8 unpopular games were selected for comparison. A total of 407 adult males and females were recruited via crowdsourcing Internet marketplace and completed the survey, which consisted of 19 questions for antecedent and 14 questions for consequences. Results showed no significant differences in consequence questions between popular and unpopular games. For antecedent questions, popular games are superior to unpopular games in character customization, play type selection, a sense of belonging, patch update cycle, and influence or dominance. This study is significant in that it reveals the elements of gamification based on learning theory. Future studies need to empirically validate whether these factors affect behavioral change.Keywords: gamification, learning theory, antecedent, consequence, behavior change, behaviorism
Procedia PDF Downloads 22416813 Influence of Instrumental Playing on Attachment Type of Musicians and Music Students Using Adult Attachment Scale-R
Authors: Sofia Serra-Dawa
Abstract:
Adult relationships accrue on a variety of past social experiences, intentions, and emotions that might predispose and influence the approach to and construction of subsequent relationships. The Adult Attachment Theory (AAT) proposes four types of adult attachment, where attachment is built over two dimensions of anxiety and avoidance: secure, anxious-preoccupied, dismissive-avoidant, and fearful-avoidant. The AAT has been studied in multiple settings such as personal and therapeutic relationships, educational settings, sexual orientation, health, and religion. In music scholarship, the AAT has been used to frame class learning of student singers and study the relational behavior between voice teachers and students. Building on this study, the present inquiry studies how attachment types might characterize learning relationships of music students (in the Western Conservatory tradition), and whether particular instrumental experiences might correlate to given attachment styles. Given certain behavioral cohesive features of established traditions of instrumental playing and performance modes, it is hypothesized that student musicians will display specific characteristics correlated to instrumental traditions, demonstrating clear tendency of attachment style, which in turn has implications on subsequent professional interactions. This study is informed by the methodological framework of Adult Attachment Scale-R (Collins and Read, 1990), which was particularly chosen given its non-invasive questions and classificatory validation. It is further hypothesized that the analytical comparison of musicians’ profiles has the potential to serve as the baseline for other comparative behavioral observation studies [this component is expected to be verified and completed well before the conference meeting]. This research may have implications for practitioners concerned with matching and improving musical teaching and learning relationships and in (professional and amateur) long-term musical settings.Keywords: adult attachment, music education, musicians attachment profile, musicians relationships
Procedia PDF Downloads 15916812 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials
Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik
Abstract:
Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes
Procedia PDF Downloads 6216811 Facial Recognition Technology in Institutions of Higher Learning: Exploring the Use in Kenya
Authors: Samuel Mwangi, Josephine K. Mule
Abstract:
Access control as a security technique regulates who or what can access resources. It is a fundamental concept in security that minimizes risks to the institutions that use access control. Regulating access to institutions of higher learning is key to ensure only authorized personnel and students are allowed into the institutions. The use of biometrics has been criticized due to the setup and maintenance costs, hygiene concerns, and trepidations regarding data privacy, among other apprehensions. Facial recognition is arguably a fast and accurate way of validating identity in order to guard protected areas. It guarantees that only authorized individuals gain access to secure locations while requiring far less personal information whilst providing an additional layer of security beyond keys, fobs, or identity cards. This exploratory study sought to investigate the use of facial recognition in controlling access in institutions of higher learning in Kenya. The sample population was drawn from both private and public higher learning institutions. The data is based on responses from staff and students. Questionnaires were used for data collection and follow up interviews conducted to understand responses from the questionnaires. 80% of the sampled population indicated that there were many security breaches by unauthorized people, with some resulting in terror attacks. These security breaches were attributed to stolen identity cases, where staff or student identity cards were stolen and used by criminals to access the institutions. These unauthorized accesses have resulted in losses to the institutions, including reputational damages. The findings indicate that security breaches are a major problem in institutions of higher learning in Kenya. Consequently, access control would be beneficial if employed to curb security breaches. We suggest the use of facial recognition technology, given its uniqueness in identifying users and its non-repudiation capabilities.Keywords: facial recognition, access control, technology, learning
Procedia PDF Downloads 12816810 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 17416809 Towards Learning Query Expansion
Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier
Abstract:
The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.Keywords: supervised leaning, classification, query expansion, association rules
Procedia PDF Downloads 32616808 The Multi-Sensory Teaching Practice for Primary Music Classroom in China
Authors: Xiao Liulingzi
Abstract:
It is important for using multi-sensory teaching in music learning. This article aims to provide knowledge in multi-sensory learning and teaching music in primary school. For primary school students, in addition to the training of basic knowledge and skills of music, students' sense of participation and creativity in music class are the key requirements, especially the flexibility and dynamics in music class, so that students can integrate into music and feel the music. The article explains the multi-sensory sense in music learning, the differences between multi-sensory music teaching and traditional music teaching, and music multi-sensory teaching in primary schools in China.Keywords: multi-sensory, teaching practice, primary music classroom, China
Procedia PDF Downloads 14116807 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process
Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand
Abstract:
This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping
Procedia PDF Downloads 5416806 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study
Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker
Abstract:
In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.Keywords: admissions, algorithms, cloud computing, differentiation, fog computing, levelling, machine learning
Procedia PDF Downloads 14416805 Fake News Detection for Korean News Using Machine Learning Techniques
Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.Keywords: fake news detection, Korean news, machine learning, text mining
Procedia PDF Downloads 27716804 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes
Authors: Ivanka Valova
Abstract:
This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.Keywords: multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation
Procedia PDF Downloads 9116803 Enhancing Secondary School Mathematics Retention with Blended Learning: Integrating Concepts for Improved Understanding
Authors: Felix Oromena Egara, Moeketsi Mosia
Abstract:
The study aimed to evaluate the impact of blended learning on mathematics retention among secondary school students. Conducted in the Isoko North Local Government Area of Delta State, Nigeria, the research involved 1,235 senior class one (SS 1) students. Employing a non-equivalent control group pre-test-post-test quasi-experimental design, a sample of 70 students was selected from two secondary schools with ICT facilities through purposive sampling. Random allocation of students into experimental and control groups was achieved through balloting within each selected school. The investigation included three assessment points: pre-Mathematics Achievement Test (MAT), post-MAT, and post-post-MAT (retention), administered systematically by the researchers. Data collection utilized the established MAT instrument, which demonstrated a high reliability score of 0.86. Statistical analysis was conducted using the Statistical Package for Social Sciences (SPSS) version 28, with mean and standard deviation addressing study questions and analysis of covariance scrutinizing hypotheses at a significance level of .05. Results revealed significantly greater improvements in mathematics retention scores among students exposed to blended learning compared to those instructed through conventional methods. Moreover, noticeable differences in mean retention scores were observed, with male students in the blended learning group exhibiting notably higher performance. Based on these findings, recommendations were made, advocating for mathematics educators to integrate blended learning, particularly in geometry teaching, to enhance students’ retention of mathematical concepts.Keywords: blended learning, flipped classroom model, secondary school students, station rotation model
Procedia PDF Downloads 4716802 Contributions of Non-Formal Educational Spaces for the Scientific Literacy of Deaf Students
Authors: Rafael Dias Silva
Abstract:
The school is a social institution that should promote learning situations that remain throughout life. Based on this, the teaching activities promoted in museum spaces can represent an educational strategy that contributes to the learning process in a more meaningful way. This article systematizes a series of elements that guide the use of these spaces for the scientific literacy of deaf students and as experiences of this nature are favorable for the school development through the concept of the circularity. The methodology for the didactic use of these spaces of non-formal education is one of the reflections developed in this study and how such environments can contribute to the learning in the classroom. To develop in the student the idea of association making him create connections with the curricular proposal and notice how the proposed activity is articulated. It is in our interest that the experience lived in the museum be shared collaborating for the construction of a scientific literacy and cultural identity through the research.Keywords: accessibility in museums, Brazilian sign language, deaf students, teacher training
Procedia PDF Downloads 23716801 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 20416800 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children
Authors: Dijana Sulejmanović
Abstract:
Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification
Procedia PDF Downloads 32916799 The Influence of Educational Board Games on Chinese Learning Motivation and Flow Experience
Authors: Ju May Wen, Chun Hung Lin, Eric Zhi Feng Liu
Abstract:
Flow theory implies that people are persuaded by happiness. By focusing on an activity, people turn a blind eye to external factors. This study explores the influence of educational board games and fundamental Chinese language teaching on students’ learning motivation and flow experience. Fifty-three students studying Chinese language fundamental courses were used in the study. These students were divided into three groups: (1) flash card teaching group; (2) educational original board game teaching group; and (3) educational Chinese board game teaching group. Chinese language teaching was integrated with the educational board game titled ‘Transportation GO.’ The students were observed playing this game as the teacher collected quantitative and qualitative data. Quantitative data was collected from the learning motivation scale and flow experience scale. Qualitative data was collected through observing, recording, and visiting. The first result found that the three groups integrated with Chinese language teaching could maintain students’ high learning motivation and high flow experience. Second, there was no significant difference between the flow experience of the flash card group and the educational original board game group. Third, there was a significant difference in the flow experience and learning motivation of the educational Chinese board game group vs. the other groups. This study suggests that the experimental model can be applied to advanced Chinese language teaching. Apart from oral and literacy skills, the study of educational board games integrated with Chinese language teaching to enforce student writing skills will be continued.Keywords: Chinese language instruction, educational board game, learning motivation, flow experience
Procedia PDF Downloads 18016798 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome
Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis
Abstract:
Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.Keywords: protein-interactions, machine-learning, metagenomics, microbiome
Procedia PDF Downloads 376