Search results for: food distribution networks
8694 Physicochemical and Sensorial Evaluation of Astringency Reduction in Cashew Apple (Annacardium occidentale L.) Powder Processing in Cookie Elaboration
Authors: Elida Gastelum-Martinez, Neith A. Pacheco-Lopez, Juan L. Morales-Landa
Abstract:
Cashew agroindustry obtained from cashew apple crop (Anacardium occidentale L.) generates large amounts of unused waste in Campeche, Mexico. Despite having a high content of nutritional compounds such as ascorbic acid, carotenoids, fiber, carbohydrates, and minerals, it is not consumed due to its astringent sensation. The aim of this work was to develop a processing method for cashew apple waste in order to obtain a powder with reduced astringency able to be used as an additive in the food industry. The processing method consisted first in reducing astringency by inducing tannins from cashew apple peel to react and form precipitating complexes with a colloid rich in proline and histidine. Then cashew apples were processed to obtain a dry powder. Astringency reduction was determined by total phenolic content and evaluated by sensorial analysis in cashew-apple-powder based cookies. Total phenolic content in processed powders showed up to 72% lower concentration compared to control samples. The sensorial evaluation indicated that cookies baked using cashew apple powder with reduced astringency were 96.8% preferred. Sensorial characteristics like texture, color and taste were also well-accepted attributes. In conclusion, the method applied for astringency reduction is a viable tool to produce cashew apple powder with desirable sensorial properties to be used in the development of food products.Keywords: astringency reduction, cashew apple waste, food industry, sensorial evaluation
Procedia PDF Downloads 3518693 Encapsulation and Protection of Bioactive Nutrients Based on Ligand-Binding Property of Milk Proteins
Authors: Hao Cheng, Yingzhou Ni, Amr M. Bakry, Li Liang
Abstract:
Functional foods containing bioactive nutrients offer benefits beyond basic nutrition and hence the possibility of delaying and preventing chronic diseases. However, many bioactive nutrients degrade rapidly under food processing and storage conditions. Encapsulation can be used to overcome these limitations. Food proteins have been widely used as carrier materials for the preparation of nano/micro-particles because of their ability to form gels and emulsions and to interact with polysaccharides. The mechanisms of interaction between bioactive nutrients and proteins must be understood in order to develop protein-based lipid-free delivery systems. Beta-lactoglobulin, a small globular protein in milk whey, exhibits an affinity to a wide range of compounds. Alfa-tocopherol, resveratrol and folic acid were respectively bound to the central cavity, the outer surface near Trp19–Arg124 and the hydrophobic pocket in the groove between the alfa-helix and the beta-barrel of the protein. Beta-lactoglobulin could thus bind the three bioactive nutrients simultaneously to form protein-multi-ligand complexes. Beta-casein, an intrinsically unstructured but major milk protein, could also interact with resveratrol and folic acid to form complexes. These results suggest the potential to develop milk-protein-based complex carrier systems for encapsulation of multiple bioactive nutrients for functional food application and also pharmaceutical and medical uses.Keywords: milk protein, bioactive nutrient, interaction, protection
Procedia PDF Downloads 4138692 A Calibration Method for Temperature Distribution Measurement of Thermochromic Liquid Crystal Based on Mathematical Morphology of Hue Image
Authors: Risti Suryantari, Flaviana
Abstract:
The aim of this research is to design calibration method of Thermochromic Liquid Crystal for temperature distribution measurement based on mathematical morphology of hue image A glass of water is placed on the surface of sample TLC R25C5W at certain temperature. We use scanner for image acquisition. The true images in RGB format is converted to HSV (hue, saturation, value) by taking of hue without saturation and value. Then the hue images is processed based on mathematical morphology using Matlab2013a software to get better images. There are differences on the final images after processing at each temperature variation based on visualization observation and the statistic value. The value of maximum and mean increase with rising temperature. It could be parameter to identify the temperature of the human body surface like hand or foot surface.Keywords: thermochromic liquid crystal, TLC, mathematical morphology, hue image
Procedia PDF Downloads 4788691 In situ Polymerization and Properties of Biobased Polyurethane/Epoxy Interpenetrating Network Nanocomposites
Authors: Aiswarea Mathew, Smita Mohanty, Jr., S. K. Nayak
Abstract:
Polyurethane networks based on castor oil (CO) as a renewable resource polyol were synthesized. Polyurethane/epoxy resin interpenetrating network nanocomposites containing modified montmorillonite organoclay (C30B-PU/EP nanocomposites) were prepared by an in situ intercalation method. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed castor oil based PU structure and also showed that strong interactions existed between C30B and EP/PU matrix. The dispersion degree of C30B in EP/PU matrix was characterized by X-Ray diffraction (XRD) method. Scanning electronic microscopy analysis showed that the interpenetrating process of PU and EP increases the exfoliation degree of C30B, and it improves the compatibility and the phase structure of polyurethane/epoxy resin interpenetrating polymer networks (PU/EP IPNs). The thermal stability improves compared to the polyurethane when the PU/EP IPN is formed. Mechanical properties including the Young’s modulus and tensile strength reflected marked improvement with addition of C30B.Keywords: castor oil, epoxy, montmorillonite, polyurethane
Procedia PDF Downloads 4028690 A Bathtub Curve from Nonparametric Model
Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos
Abstract:
This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.Keywords: bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution
Procedia PDF Downloads 4468689 Design and Analysis of an Electro Thermally Symmetrical Actuated Microgripper
Authors: Sh. Foroughi, V. Karamzadeh, M. Packirisamy
Abstract:
This paper presents design and analysis of an electrothermally symmetrical actuated microgripper applicable for performing micro assembly or biological cell manipulation. Integration of micro-optics with microdevice leads to achieve extremely precise control over the operation of the device. Geometry, material, actuation, control, accuracy in measurement and temperature distribution are important factors which have to be taken into account for designing the efficient microgripper device. In this work, analyses of four different geometries are performed by means of COMSOL Multiphysics 5.2 with implementing Finite Element Methods. Then, temperature distribution along the fingertip, displacement of gripper site as well as optical efficiency vs. displacement and electrical potential are illustrated. Results show in addition to the industrial application of this device, the usage of that as a cell manipulator is possible.Keywords: electro thermal actuator, MEMS, microgripper, MOEMS
Procedia PDF Downloads 1678688 Institutional Design for Managing Irrigation Problems: A Case Study of Farmers'- and Agency-Managed Irrigation Systems of Nepal
Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson
Abstract:
Institutional design is an important aspect in efficient water resource management. In Nepal, the water supply in both farmers’- and agency-managed irrigation systems has become sub-standard because of the weak institutional framework. This study characterizes both forms of the schemes and links existing institution and governance of the schemes with its performance with reference to cost recovery, maintenance of the schemes and water distribution throughout the schemes. For this, two types of surveys were conducted. A management survey of ten farmers’-managed and five agency-managed schemes of Chitwan valley and its periphery was done. Also, a farm survey comprising 25 farmers from each of head, middle and tail regions of both schemes; Narayani Lift Irrigation Project (agency-managed) and Khageri Irrigation System (farmers’-managed) of Chitwan Valley as a case study was conducted. The results showed that cost recovery of agency-managed schemes in 2015 was less than two percent whereas service fee collection rate in farmers’-managed schemes was nearly 2/3rd that triggered poor maintenance of the schemes and unequal distribution of water throughout the schemes. Also, the institution on practice is unable to create any incentives for farmers for economical use of water as well as willingness to pay for its use. This, thus, compels the need of refined institutional framework which has been suggested in this paper aiming to improve the cost recovery and better water distribution throughout the irrigation schemes.Keywords: cost recovery, governance, institution, schemes' performance
Procedia PDF Downloads 2628687 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)
Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,
Abstract:
Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism
Procedia PDF Downloads 1858686 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks
Authors: Amal Khalifa, Nicolas Vana Santos
Abstract:
Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.Keywords: deep learning, steganography, image, discrete wavelet transform, fusion
Procedia PDF Downloads 948685 Logistics Support as a Key Success Factor in Gastronomy
Authors: Hanna Zietara
Abstract:
Gastronomy is one of the oldest forms of commercial activity. It is currently one of the most popular and still dynamically developing branches of business. Socio-economic changes, its widespread occurrence, new techniques, or culinary styles affect the almost unlimited possibilities of its development. Importantly, regardless of the form of business adopted, food service is strongly related to logistics processes, and areas of food service that are closely linked to logistics are of strategic importance. Any inefficiency in logistics processes results in reduced chances for success and achieving competitive advantage by companies belonging to the catering industry. The aim of the paper is to identify the areas of logistic support occurring in the catering business, affecting the scope of the logistic processes implemented. The aim of the paper is realized through a plural homogeneous approach, based on: direct observation, text analysis of current documents, in-depth free targeted interviews.Keywords: gastronomy, competitive advantage, logistics, logistics support
Procedia PDF Downloads 1658684 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 3838683 Functional Connectivity Signatures of Polygenic Depression Risk in Youth
Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip
Abstract:
Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.Keywords: genetics, functional connectivity, pre-adolescents, depression
Procedia PDF Downloads 608682 Influence of Dairy Cows Food on Uncooked Pressed Dough Cheese "Edam" Quality
Authors: Nougha Meriem, Sadouki Mohammed
Abstract:
Cheese quality is an important manufacturing requirement. It deals with traceability, from the dairy cows feed to the storage location. In this study, we have seen the impact of distributing two different types of green feed (purple clover VS alfalfa), in a ration composed of oat hay, silage of corn and concentrated feed, in equal quantities, on resulting milk destined for an Edam manufacturing. It reveals that alfalfa allows a high production of milk, comparatively to purple clover. However, this latter allows a high quality of milk, in point of view physico-chemical properties, especially regarding proteins and fat yields, two essential factors affecting Edam quality. The obtained results indicated that milk allowed by purple clover shows a best physico-chemical quality beside alfalfa, for it use in Edam manufacturing according to the values recommended by standardized dairies.Keywords: dairy cows, Edam, food, quality
Procedia PDF Downloads 3228681 Development of the Food Market of the Republic of Kazakhstan in the Field of Milk Processing
Authors: Gulmira Zhakupova, Tamara Tultabayeva, Aknur Muldasheva, Assem Sagandyk
Abstract:
The development of technology and production of products with increased biological value based on the use of natural food raw materials are important tasks in the policy of the food market of the Republic of Kazakhstan. For Kazakhstan, livestock farming, in particular sheep farming, is the most ancient and developed industry and way of life. The history of the Kazakh people is largely connected with this type of agricultural production, with established traditions using dairy products from sheep's milk. Therefore, the development of new technologies from sheep’s milk remains relevant. In addition, one of the most promising areas for the development of food technology for therapeutic and prophylactic purposes is sheep milk products as a source of protein, immunoglobulins, minerals, vitamins, and other biologically active compounds. This article presents the results of research on the study of milk processing technology. The objective of the study is to study the possibilities of processing sheep milk and its role in human nutrition, as well as the results of research to improve the technology of sheep milk products. The studies were carried out on the basis of sanitary and hygienic requirements for dairy products in accordance with the following test methods. To perform microbiological analysis, we used the method for identifying Salmonella bacteria (Horizontal method for identifying, counting, and serotyping Salmonella) in a certain mass or volume of product. Nutritional value is a complex of properties of food products that meet human physiological needs for energy and basic nutrients. The protein mass fraction was determined by the Kjeldahl method. This method is based on the mineralization of a milk sample with concentrated sulfuric acid in the presence of an oxidizing agent, an inert salt - potassium sulfate, and a catalyst - copper sulfate. In this case, the amino groups of the protein are converted into ammonium sulfate dissolved in sulfuric acid. The vitamin composition was determined by HPLC. To determine the content of mineral substances in the studied samples, the method of atomic absorption spectrophotometry was used. The study identified the technological parameters of sheep milk products and determined the prospects for researching sheep milk products. Microbiological studies were used to determine the safety of the study product. According to the results of the microbiological analysis, no deviations from the norm were identified. This means high safety of the products under study. In terms of nutritional value, the resulting products are high in protein. Data on the positive content of amino acids were also obtained. The results obtained will be used in the food industry and will serve as recommendations for manufacturers.Keywords: dairy, milk processing, nutrition, colostrum
Procedia PDF Downloads 588680 Lead and Cadmium Residue Determination in Spices Available in Tripoli City Markets (Libya)
Authors: Mohamed Ziyaina, Ahlam Rajab, Khadija Alkhweldi, Wafia Algami, Omer Al. Toumi, Barbara Rasco1
Abstract:
In recent years, there has been a growing interest in monitoring heavy metal contamination in food products. Spices can improve the taste of food and can also be a source of many bioactive compounds but can unfortunately, also be contaminated with dangerous materials, potentially heavy metals. This study was conducted to investigate lead (Pb) and cadmium (Cd) contamination in selected spices commonly consumed in Libya including Capsicum frutescens (chili pepper) Piper nigrum, (black pepper), Curcuma longa (turmeric), and mixed spices (HRARAT) which consist of a combination of: Alpinia officinarum, Zingiber officinale and Cinnamomum zeylanicum. Spices were analyzed by atomic absorption spectroscopy after digestion with nitric acid/hydrogen peroxide. The highest level of lead (Pb) was found in Curcuma longa and Capsicum frutescens in wholesale markets (1.05 ± 0.01 mg/kg, 0.96 ± 0.06 mg/kg). Cadmium (Cd) levels exceeded FAO/WHO permissible limit. Curcuma longa and Piper nigrum sold in retail markets had a high concentration of Cd (0.36 ± 0.09, 0.35 ± 0.07 mg/kg, respectively) followed by (0.32 ± 0.04 mg/kg) for Capsicum frutescens. Mixed spices purchased from wholesale markets also had high levels of Cd (0.31 ± 0.08 mg/kg). Curcuma longa and Capsicum frutescens may pose a food safety risk due to high levels of lead and cadmium. Cadmium levels exceeded FAO/WHO recommendations (0.2 ppm) for Piper nigrum, Curcuma longa, and mixed spices (HRARAT).Keywords: heavy metals, lead, cadmium determination, spice
Procedia PDF Downloads 6458679 Promotion of Healthy Food Choices in School Children through Nutrition Education
Authors: Vinti Davar
Abstract:
Introduction: Childhood overweight increases the risk for certain medical and psychological conditions. Millions of school-age children worldwide are affected by serious yet easily treatable and preventable illnesses that inhibit their ability to learn. Healthier children stay in school longer, attend more regularly, learn more and become healthier and more productive adults. Schools are an important setting for nutrition education because one can reach most children, teachers and parents. These years offer a key window for shaping their lifetime habits, which have an impact on their health throughout life. Against this background, an attempt was made to impart nutrition education to school children in Haryana state of India to promote healthy food choices and assess the effectiveness of this program. Methodology: This study was completed in two phases. During the first phase, pre-intervention anthropometric and dietary survey was conducted; the teaching materials for nutrition intervention program were developed and tested; and the questionnaire was validated. In the second phase, an intervention was implemented in two schools of Kurukshetra, Haryana for six months by personal visits once a week. A total of 350 children in the age group of 6-12 years were selected. Out of these, 279 children, 153 boys and 126 girls completed the study. The subjects were divided into four groups namely: underweight, normal, overweight and obese based on body mass index-for-age categories. A power point colorful presentation to improve the quality of tiffin, snacks and meals emphasizing inclusion of all food groups especially vegetables every day and fruits at least 3-4 days per week was used. An extra 20 minutes of aerobic exercise daily was likewise organized and a healthy school environment created. Provision of clean drinking water by school authorities was ensured. Selling of soft drinks and energy-dense snacks in the school canteen as well as advertisements about soft drink and snacks on the school walls were banned. Post intervention, anthropometric indices and food selections were reassessed. Results: The results of this study reiterate the critical role of nutrition education and promotion in improving the healthier food choices by school children. It was observed that normal, overweight and obese children participating in nutrition education intervention program significantly (p≤0.05) increased their daily seasonal fruit and vegetable consumption. Fat and oil consumption was significantly reduced by overweight and obese subjects. Fast food intake was controlled by obese children. The nutrition knowledge of school children significantly improved (p≤0.05) from pre to post intervention. A highly significant increase (p≤0.00) was noted in the nutrition attitude score after intervention in all four groups. Conclusion: This study has shown that a well-planned nutrition education program could improve nutrition knowledge and promote positive changes in healthy food choices. A nutrition program inculcates wholesome eating and active life style habits in children and adolescents that could not only prevent them from chronic diseases and early death but also reduce healthcare cost and enhance the quality of life of citizens and thereby nations.Keywords: children, eating habits healthy food, obesity, school going, fast foods
Procedia PDF Downloads 2058678 Distribution Pattern of Faecal Egg output and Herbage Larval Populations of Gastrointestinal Nematodes in Naturally Infected Scottish Blackface Lambs in East Scotland
Authors: M. Benothman, M. Stear, S. Mitchel, O. Abuargob, R. Vijayan, Sateesh Kumar
Abstract:
Parasitic gastroenteritis caused by gastrointestinal nematodes (GIN) is a serious pathological complication in lambs. The dispersion pattern of GIN influences their transmission dynamics. There is no proper study on this aspect in Scottish Blackface lambs in Scotland. This study undertaken on 758 naturally infected, weaned, straight bred Scottish Blackface lambs in high land pasture in East Scotland extending over three months (August, September and October) in a year, and for three successive years demonstrated that the distribution of faecal egg counts (FEC) followed negative binomial distribution, with the exception of a few samples. The inverse index of dispersion (k) ranged between 0.19 ± 0.51 and 1.09 ± 0.08. Expression of low k values resulting from aggregation in a few individuals, suggested that a small proportion of animals with heavy parasitic influx significantly influenced the level of pasture contamination and parasite transmission. There was no discernible trend in the mean faecal egg count (FEC) and mean herbage larval population (HLP) in different months and in different years. Teladorsagia was the highest pasture contaminant (85.14±14.30 L3/kdh) followed by Nematodirus (53.00±13.96), Ostertagia (28.21±10.18) and Cooperia (11.43±5.55). The results of this study would be useful in instituting gastrointestinal nematode control strategies for sheep in cool temperate agro-ecological zones.Keywords: blackface lamb, faecal egg count, Gastrointestinal nematodes, herbage larval population, Scotland
Procedia PDF Downloads 4298677 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference
Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade
Abstract:
In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory
Procedia PDF Downloads 908676 Stress Variation of Underground Building Structure during Top-Down Construction
Authors: Soo-yeon Seo, Seol-ki Kim, Su-jin Jung
Abstract:
In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area.Keywords: construction of building, top-down construction method, earth pressure distribution, member force, stress concentration
Procedia PDF Downloads 3108675 A Survey on Traditional Mac Layer Protocols in Cognitive Wireless Mesh Networks
Authors: Anusha M., V. Srikanth
Abstract:
Maximizing spectrum usage and numerous applications of the wireless communication networks have forced to a high interest of available spectrum. Cognitive Radio control its receiver and transmitter features exactly so that they can utilize the vacant approved spectrum without impacting the functionality of the principal licensed users. The Use of various channels assists to address interferences thereby improves the whole network efficiency. The MAC protocol in cognitive radio network explains the spectrum usage by interacting with multiple channels among the users. In this paper we studied about the architecture of cognitive wireless mesh network and traditional TDMA dependent MAC method to allocate channels dynamically. The majority of the MAC protocols suggested in the research are operated on Common-Control-Channel (CCC) to handle the services between Cognitive Radio secondary users. In this paper, an extensive study of Multi-Channel Multi-Radios or frequency range channel allotment and continually synchronized TDMA scheduling are shown in summarized way.Keywords: TDMA, MAC, multi-channel, multi-radio, WMN’S, cognitive radios
Procedia PDF Downloads 5638674 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 3878673 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning
Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho
Abstract:
Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning
Procedia PDF Downloads 1008672 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 1048671 Bioclimatic Niches of Endangered Garcinia indica Species on the Western Ghats: Predicting Habitat Suitability under Current and Future Climate
Authors: Malay K. Pramanik
Abstract:
In recent years, climate change has become a major threat and has been widely documented in the geographic distribution of many plant species. However, the impacts of climate change on the distribution of ecologically vulnerable medicinal species remain largely unknown. The identification of a suitable habitat for a species under climate change scenario is a significant step towards the mitigation of biodiversity decline. The study, therefore, aims to predict the impact of current, and future climatic scenarios on the distribution of the threatened Garcinia indica across the northern Western Ghats using Maximum Entropy (MaxEnt) modelling. The future projections were made for the year 2050 and 2070 with all Representative Concentration Pathways (RCPs) scenario (2.6, 4.5, 6.0, and 8.5) using 56 species occurrence data, and 19 bioclimatic predictors from the BCC-CSM1.1 model of the Intergovernmental Panel for Climate Change’s (IPCC) 5th assessment. The bioclimatic variables were minimised to a smaller number of variables after a multicollinearity test, and their contributions were assessed using jackknife test. The AUC value of 0.956 ± 0.023 indicates that the model performs with excellent accuracy. The study identified that temperature seasonality (39.5 ± 3.1%), isothermality (19.2 ± 1.6%), and annual precipitation (12.7 ± 1.7%) would be the major influencing variables in the current and future distribution. The model predicted 10.5% (19318.7 sq. km) of the study area as moderately to very highly suitable, while 82.60% (151904 sq. km) of the study area was identified as ‘unsuitable’ or ‘very low suitable’. Our predictions of climate change impact on habitat suitability suggest that there will be a drastic reduction in the suitability by 5.29% and 5.69% under RCP 8.5 for 2050 and 2070, respectively. Finally, the results signify that the model might be an effective tool for biodiversity protection, ecosystem management, and species re-habitation planning under future climate change scenarios.Keywords: Garcinia Indica, maximum entropy modelling, climate change, MaxEnt, Western Ghats, medicinal plants
Procedia PDF Downloads 1598670 Acceptability of ‘Fish Surimi Peptide’ in Under Five Children Suffering from Moderate Acute Malnutrition in Bangladesh
Authors: M. Iqbal Hossain, Azharul Islam Khan, S. M. Rafiqul Islam, Tahmeed Ahmed
Abstract:
Objective: Moderate acute malnutrition (MAM) is a major cause of morbidity and mortality in under-5 children of low-income countries. Approximately 14.6% of all under-5 mortality worldwide is attributed to MAM with >3 times increased risk of death compared to well-nourished peers. Prevalence of MAM among under-5 children in Bangladesh is ~12% (~1.7 million). Providing a diet containing adequate nutrients is the mainstay of treatment of children with MAM. It is now possible to process fish into fish peptides with longer shelf-life without refrigerator, known as ‘Fish Surimi peptide’ and this could be an attractive alternative to supply fish protein in the diet of children in low-income countries like Bangladesh. We conducted this study to assess the acceptability of Fish Surimi peptide given with various foods/meals in 2-5 years old children with MAM. Design/methods: Fish Surimi peptide is broken down from white fish meat using plant-derived enzyme and the ingredient is just fish meat consisted of 20 different kinds of amino acids including nine essential amino acids. In a convenience sample of 34 children we completed the study ward of Dhaka Hospital of icddr,b in Bangladesh during November 2014 through February 2015. For each child the study was for two consecutive days: i.e. direct observation of food intake of two lunches and two suppers. In a randomly and blinded manner and cross over design an individual child received Fish Surimi peptide (5g at lunch and 5g at supper) mixed meal [e.g. 30g rice and 30g dahl (thick lentil soup) or 60g of a vegetables-lentil-rice mixed local dish known as khichuri in one day and the same meal on other day without any Fish Surimi peptide. We observed the completeness and eagerness of eating and any possible side effect (e.g. allergy, vomiting, diarrhea etc.) over these two days. Results: The mean±SD age of the enrolled children was 38.4±9.4 months, weight 11.22±1.41 kg, height 91.0±6.3 cm, and WHZ was -2.13±0.76. Their mean±SD total feeding time (minutes) for lunch was 25.4±13.6 vs. 20.6±11.1 (p=0.130) and supper was 22.3±9.7 vs. 19.7±11.2 (p=0.297), and total amount (g) of food eaten in lunch and supper was found similar 116.1±7.0 vs. 117.7±8.0 (p=3.01) in A (Fish Surimi) and B group respectively. Score in Hedonic scale by mother on test of food given to children at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) and on overall acceptance (including the texture, smell, and appearance) of food at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) for A and B group respectively. No adverse event was observed in any food group during the study period. Conclusions: Fish Surimi peptide may be a cost effective supplementary food, which should be tested by appropriately designed randomized community level intervention trial both in wasted children and stunted children.Keywords: protein-energy malnutrition, moderate acute malnutrition, weight-for-height z-score, mid upper arm circumference, acceptability, fish surimi peptide, under-5 children
Procedia PDF Downloads 4138669 Android Application on Checking Halal Product Based on Augmented Reality
Authors: Saidatul A'isyah Ahmad Shukri, Haslina Arshad
Abstract:
This study was conducted to develop an application that provides Augmented Reality experience in identifying halal food products and beverages based on Malaysian Islamic Development Department (JAKIM) database for Muslim consumers in Malaysia. The applications is operating on the mobile device using the Android platform. This application aims to provide a new experience to the user how to use the Android application implements Augmentation Reality technology The methodology used is object-oriented analysis and design (OOAD). The programming language used is JAVA programming using the Android Software Development Kit (SDK) and XML. Android operating system is selected, and it is an open source operating system. Results from the study are implemented to further enhance diversity in presentation of information contained in this application and so can bring users using these applications from different angles.Keywords: android, augmented reality, food, halal, Malaysia, products, XML
Procedia PDF Downloads 4578668 Optimal Maintenance and Improvement Policies in Water Distribution System: Markov Decision Process Approach
Authors: Jong Woo Kim, Go Bong Choi, Sang Hwan Son, Dae Shik Kim, Jung Chul Suh, Jong Min Lee
Abstract:
The Markov Decision Process (MDP) based methodology is implemented in order to establish the optimal schedule which minimizes the cost. Formulation of MDP problem is presented using the information about the current state of pipe, improvement cost, failure cost and pipe deterioration model. The objective function and detailed algorithm of dynamic programming (DP) are modified due to the difficulty of implementing the conventional DP approaches. The optimal schedule derived from suggested model is compared to several policies via Monte Carlo simulation. Validity of the solution and improvement in computational time are proved.Keywords: Markov decision processes, dynamic programming, Monte Carlo simulation, periodic replacement, Weibull distribution
Procedia PDF Downloads 4248667 Neural Networks Underlying the Generation of Neural Sequences in the HVC
Authors: Zeina Bou Diab, Arij Daou
Abstract:
The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird
Procedia PDF Downloads 728666 A Framework for Strategy Development in Small Companies: A Case Study of a Telecommunication Firm
Authors: Maryam Goodarzi, Mahdieh Sheikhi, Mehdi Goodarzi
Abstract:
This study intends to offer an appropriate strategy development framework for a telecommunication firm (as a case study) which works on Information and Communication Technology (ICT) projects, development of telecommunication networks, and maintenance of local networks, according to its dominant condition. In this approach, first, the objectives were set and the mission was defined. Then, the capability was assessed by SWOT matrix. Using SPACE matrix, the strategy of the company was determined. The strategic direction is set and an appropriate and superior strategy was developed and offered employing QSPM matrix. The theoretical framework or conceptual model of the present study first involves 4 stages of framework development and then from stage 3 (assessing capability) onward, a strategic management model by Fred R. David. In this respect, the tools and methods offered in the framework are appropriate for all kinds of organizations, particularly small firms, and help strategists identify, evaluate, and select strategies.Keywords: strategy formulation, firm mission, strategic direction, space diagram, quantitative strategic planning matrix, SWOT matrix
Procedia PDF Downloads 3768665 Computational Modeling of Thermal Comfort and CO2 Distribution in Common Room-Lecture Room by Using Hybrid Air Ventilation System, Thermoelectric-PV-Silica Gel under IAQ Standard
Authors: Jirod Chaisan, Somchai Maneewan, Chantana Punlek, Ninnart Rachapradit, Surapong Chirarattananon, Pattana Rakkwamsuk
Abstract:
In this paper, simulation modeling of heat transfer, air flow and distribution emitted from CO2 was performed in a regenerated air. The study room was divided in 3 types: common room, small lecture room and large lecture room under evaluated condition in two case: released and unreleased CO2 including of used hybrid air ventilation system for regenerated air under Thailand climate conditions. The carbon dioxide was located on the center of the room and released rate approximately 900-1200 ppm corresponded with indoor air quality standard (IAQs). The indoor air in the thermal comfort zone was calculated and simulated with the numerical method that using real data from the handbook guideline. The results of the study showed that in the case of hybrid air ventilation system explained thermal and CO2 distribution due to the system was adapted significantly in the comfort zone. The results showed that when CO2 released on the center of the other room, the CO2 high concentration in comfort zone so used hybrid air ventilation that decreased CO2 with regeneration air including of reduced temperature indoor. However, the study is simulation modeling and guideline only so the future should be the experiment of hybrid air ventilation system for evaluated comparison of the systems.Keywords: air ventilation, indoor air quality, thermal comfort, thermoelectric, photovoltaic, dehumidify
Procedia PDF Downloads 485