Search results for: early age concrete strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8188

Search results for: early age concrete strength

5848 Excellent Combination of Tensile Strength and Elongation of Novel Reverse Rolled TaNbHfZrTi Refractory High Entropy Alloy

Authors: Mokali Veeresham

Abstract:

In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step novel reverse rolling up to a 90% reduction in thickness. The reverse rolled 90% samples subsequently used for annealing at 800°C and 1000°C temperatures for 1h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains BCC single-phase; upon annealing at 800°C temperature, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C temperatures, respectively. The reverse rolled condition, and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high tensile strength (UTS) 1430MPa and 1556 MPa without compromising loss of ductility consists of an appreciable amount of 21% and 20% elongation, respectively.

Keywords: refractory high entropy alloys, reverse rolling, recrystallization, microstructure, tensile properties

Procedia PDF Downloads 130
5847 Influence of Initial Curing Time, Water Content and Apparent Water Content on Geopolymer Modified Sludge Generated in Landslide Area

Authors: Minh Chien Vu, Tomoaki Satomi, Hiroshi Takahashi

Abstract:

As being lack of sufficient strength to support the loading of construction as well as service life cause the clay content and clay mineralogy, soft and highly compressible soils (sludge) constitute a major problem in geotechnical engineering projects. Geopolymer, a kind of inorganic polymer, is a promising material with a wide range of applications and offers a lower level of CO₂ emissions than conventional Portland cement. However, the feasibility of geopolymer in term of modified the soft and highly compressible soil has not been received much attention due to the requirement of heat treatment for activating the fly ash component and the existence of high content of clay-size particles in the composition of sludge that affected on the efficiency of the reaction. On the other hand, the geopolymer modified sludge could be affected by other important factors such as initial curing time, initial water content and apparent water content. Therefore, this paper describes a different potential application of geopolymer: soil stabilization in landslide areas to adapt to the technical properties of sludge so that heavy machines can move on. Sludge condition process is utilized to demonstrate the possibility for stabilizing sludge using fly ash-based geopolymer at ambient curing condition ( ± 20 °C) in term of failure strength, strain and bulk density. Sludge conditioning is a process whereby sludge is treated with chemicals or various other means to improve the dewatering characteristics of sludge before applying in the construction area. The effect of initial curing time, water content and apparent water content on the modification of sludge are the main focus of this study. Test results indicate that the initial curing time has potential for improving failure strain and strength of modified sludge with the specific condition of soft soil. The result further shows that the initial water content over than 50% total mass of sludge could significantly lead to a decrease of strength performance of geopolymer-based modified sludge. The optimum apparent water content of geopolymer modified sludge is strongly influenced by the amount of geopolymer content and initial water content of sludge. The solution to minimize the effect of high initial water content will be considered deeper in the future.

Keywords: landslide, sludge, fly ash, geopolymer, sludge conditioning

Procedia PDF Downloads 104
5846 Obesity and Physical Inactivity: Contributing Factors to Hypertension in Early Adults

Authors: Sadaf Ambreen, Ayesha Bibi, Sara Rafiq

Abstract:

Hypertension is a medical condition in which blood pressure in the arteries is elevated than the normal, having systolic blood pressure more than 120mmHg and diastolic blood pressure more than 80 mmHg. It leads to health complications and increase the risk of diseases such as stroke, heart failure, heart attack, and even death. The aim of the current study was to evaluate nutritional status and activity level among hypertensive early adults in District Mardan Data was collected from the subjects of Public Hospital, Mardan Medical Complex, through questionnaire. A complete information about individual sociodemographic, anthropometry and health status were collected, and physical activity was assessed by using IPAQ questionnaire. A total of 150 individuals were included in the study, in which 90% were females, and 10% were males. Data was analyzed through SPSS Version 22. Majority of the study subjects, 88%, were married, 70% having nuclear living system, 43% were having elementary education, and 43% were working as laborer. Body mass index and waist circumference in female counterpart were found to be positively associated with hypertension and was found statistically significant P=<0.01. Results showed that majority of females were fall in hypertension crisis category with mild activity, and males were having hypertension stage 1 with moderate activity. Our study concluded that non-optimal nutritional status and physical inactivity resulted in elevated blood pressure in females, therefore, lifestyle change such as optimal nutritional status and physical activity may play key role in reducing risk of hypertension.

Keywords: obesity/overwight, body mass index, waist circumference, early adulthood

Procedia PDF Downloads 127
5845 Urine Neutrophil Gelatinase-Associated Lipocalin as an Early Marker of Acute Kidney Injury in Hematopoietic Stem Cell Transplantation Patients

Authors: Sara Ataei, Maryam Taghizadeh-Ghehi, Amir Sarayani, Asieh Ashouri, Amirhossein Moslehi, Molouk Hadjibabaie, Kheirollah Gholami

Abstract:

Background: Acute kidney injury (AKI) is common in hematopoietic stem cell transplantation (HSCT) patients with an incidence of 21–73%. Prevention and early diagnosis reduces the frequency and severity of this complication. Predictive biomarkers are of major importance to timely diagnosis. Neutrophil gelatinase associated lipocalin (NGAL) is a widely investigated novel biomarker for early diagnosis of AKI. However, no study assessed NGAL for AKI diagnosis in HSCT patients. Methods: We performed further analyses on gathered data from our recent trial to evaluate the performance of urine NGAL (uNGAL) as an indicator of AKI in 72 allogeneic HSCT patients. AKI diagnosis and severity were assessed using Risk–Injury–Failure–Loss–End-stage renal disease and AKI Network criteria. We assessed uNGAL on days -6, -3, +3, +9 and +15. Results: Time-dependent Cox regression analysis revealed a statistically significant relationship between uNGAL and AKI occurrence. (HR=1.04 (1.008-1.07), P=0.01). There was a relation between uNGAL day +9 to baseline ratio and incidence of AKI (unadjusted HR=.1.047(1.012-1.083), P<0.01). The area under the receiver-operating characteristic curve for day +9 to baseline ratio was 0.86 (0.74-0.99, P<0.01) and a cut-off value of 2.62 was 85% sensitive and 83% specific in predicting AKI. Conclusions: Our results indicated that increase in uNGAL augmented the risk of AKI and the changes of day +9 uNGAL concentrations from baseline could be of value for predicting AKI in HSCT patients. Additionally uNGAL changes preceded serum creatinine rises by nearly 2 days.

Keywords: acute kidney injury, hemtopoietic stem cell transplantation, neutrophil gelatinase-associated lipocalin, Receiver-operating characteristic curve

Procedia PDF Downloads 393
5844 Biomechanical Analysis on Skin and Jejunum of Chemically Prepared Cat Cadavers Used in Surgery Training

Authors: Raphael C. Zero, Thiago A. S. S. Rocha, Marita V. Cardozo, Caio C. C. Santos, Alisson D. S. Fechis, Antonio C. Shimano, FabríCio S. Oliveira

Abstract:

Biomechanical analysis is an important factor in tissue studies. The objective of this study was to determine the feasibility of a new anatomical technique and quantify the changes in skin and the jejunum resistance of cats’ corpses throughout the process. Eight adult cat cadavers were used. For every kilogram of weight, 120ml of fixative solution (95% 96GL ethyl alcohol and 5% pure glycerin) was applied via the external common carotid artery. Next, the carcasses were placed in a container with 96 GL ethyl alcohol for 60 days. After fixing, all carcasses were preserved in a 30% sodium chloride solution for 60 days. Before fixation, control samples were collected from fresh cadavers and after fixation, three skin and jejunum fragments from each cadaver were tested monthly for strength and displacement until complete rupture in a universal testing machine. All results were analyzed by F-test (P <0.05). In the jejunum, the force required to rupture the fresh samples and the samples fixed in alcohol for 60 days was 31.27±19.14N and 29.25±11.69N, respectively. For the samples preserved in the sodium chloride solution for 30 and 60 days, the strength was 26.17±16.18N and 30.57±13.77N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days was 2.79±0.73mm and 2.80±1.13mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 2.53±1.03mm and 2.83±1.27mm, respectively. There was no statistical difference between the samples (P=0.68 with respect to strength, and P=0.75 with respect to displacement). In the skin, the force needed to rupture the fresh samples and the samples fixed for 60 days in alcohol was 223.86±131.5N and 211.86±137.53N respectively. For the samples preserved in sodium chloride solution for 30 and 60 days, the force was 227.73±129.06 and 224.78±143.83N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days were 3.67±1.03mm and 4.11±0.87mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 4.21±0.93mm and 3.93±0.71mm, respectively. There was no statistical difference between the samples (P=0.65 with respect to strength, and P=0.98 with respect to displacement). The resistance of the skin and intestines of the cat carcasses suffered little change when subjected to alcohol fixation and preservation in sodium chloride solution, each for 60 days, which is promising for use in surgery training. All experimental procedures were approved by the Municipal Legal Department (protocol 02.2014.000027-1). The project was funded by FAPESP (protocol 2015-08259-9).

Keywords: anatomy, conservation, fixation, small animal

Procedia PDF Downloads 275
5843 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric

Authors: C. W. Kan

Abstract:

Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.

Keywords: learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA

Procedia PDF Downloads 285
5842 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide

Procedia PDF Downloads 153
5841 Soil-Structure Interaction in Stiffness and Strength Degrading Systems

Authors: Enrique Bazan-Zurita, Sittipong Jarernprasert, Jacobo Bielak

Abstract:

We study the effects of soil-structure interaction (SSI) on the inelastic seismic response of a single-degree-of-freedom system whose hysteretic behaviour exhibits stiffness and/or strength degrading characteristics. Two sets of accelerograms are used as seismic input: the first comprising 87 record from stiff to medium stiff sites in California, and the second comprising 66 records from the soft lakebed of Mexico City. This study focuses in three seismic response parameters: ductility demand, inter-story drift, and total lateral displacement. The results allow quantitative estimates of changes in such parameters in an SSI system in comparison with those corresponding to the associated fixed-base system. We found that degrading features affect significantly both the response of fixed-base structures and the impact of soil-structure interaction. We propose a procedure to incorporate the results of this and similar studies in seismic design regulations for SSI system with anticipated nonlinear degrading behaviour.

Keywords: inelastic, seismic, building, foundation, interaction

Procedia PDF Downloads 269
5840 The Examination of Cement Effect on Isotropic Sands during Static, Dynamic, Melting and Freezing Cycles

Authors: Mehdi Shekarbeigi

Abstract:

The consolidation of loose substrates as well as substrate layers through promoting stabilizing materials is one of the most commonly used road construction techniques. Cement, lime, and flax, as well as asphalt emulsion, are common materials used for soil stabilization to enhance the soil’s strength and durability properties. Cement could be simply used to stabilize permeable materials such as sand in a relatively short time threshold. In this research, typical Portland cement is selected for the stabilization of isotropic sand; the effect of static and cyclic loading on the behavior of these soils has been examined with various percentages of Portland cement. Thus, firstly, a soil’s general features are investigated, and then static tests, including direct cutting, density and single axis tests, and California Bearing Ratio, are performed on the samples. After that, the dynamic behavior of cement on silica sand with the same grain size is analyzed. These experiments are conducted on cement samples of 3, 6, and 9 of the same rates and ineffective limiting pressures of 0 to 1200 kPa with 200 kPa steps of the face according to American Society for Testing and Materials D 3999 standards. Also, to test the effect of temperature on molds and frost samples, 0, 5, 10, and 20 are carried out during 0, 5, 10, and 20-second periods. Results of the static tests showed that increasing the cement percentage increases the soil density and shear strength. The single-axis compressive strength increase is higher for samples with higher cement content and lower densities. The results also illustrate the relationship between single-axial compressive strength and cement weight parameters. Results of the dynamic experiments indicate that increasing the number of loading cycles and melting and freezing cycles enhances permeability and decreases the applied pressure. According to the results of this research, it could be stated that samples containing 9% cement have the highest amount of shear modulus and, therefore, decrease the permeability of soil. This amount could be considered as the optimal amount. Also, the enhancement of effective limited pressure from 400 to 800kPa increased the shear modulus of the sample by an average of 20 to 30 percent in small strains.

Keywords: cement, isotropic sands, static load, three-axis cycle, melting and freezing cycles

Procedia PDF Downloads 62
5839 Improvements in Double Q-Learning for Anomalous Radiation Source Searching

Authors: Bo-Bin Xiaoa, Chia-Yi Liua

Abstract:

In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.

Keywords: double Q learning, dueling network, NoisyNet, source searching

Procedia PDF Downloads 96
5838 The Impact of Ionic Strength on the Adsorption Behavior of Anionic and Cationic Dyes on Low Cost Biosorbent

Authors: Abdallah Bouguettoucha, Derradji Chebli, Sara Aga, Agueniou Fazia

Abstract:

The objective of this study was to looking for alternative materials (low cost) for the adsorption of textile dyes and optimizes the type which gives optimum adsorption and provides an explanation of the mechanism involved in the adsorption process. Adsorption of Orange II and Methylene blue on H2SO4 traited cone of Pinus brutia, was carried out at different initial concentrations of the dye (20, 50 and 100 mg / L) and at tow initial pH, pH 1 and 10 respectively. The models of Langmuir, Freundlich and Sips were used in this study to analyze the obtained results of the adsorption isotherm. PCB-0M had high adsorption capacities namely 32.8967 mg/g and 128.1651 mg/g, respectively for orange II and methylene blue and further indicated that the removal of dyes increased with increase in the ionic strength of solution, this was attributed to aggregation of dyes in solution. The potential of H2SO4 traited cone of Pinus brutia, an easily available and low cost material, to be used as an alternative biosorbent material for the removal of a dyes, Orange II and Methylene Bleu, from aqueous solutions was therefore confirmed.

Keywords: Methylene blue, orange II, cones of pinus brutia, adsorption

Procedia PDF Downloads 269
5837 Investigation on the Properties of Particulate Reinforced AA2014 Metal Matrix Composite Materials Produced by Vacuum Infiltration Method

Authors: Isil Kerti, Onur Okur, Sibel Daglilar, Recep Calin

Abstract:

Particulate reinforced aluminium matrix composites have gained more importance in automotive, aeronautical and defense industries due to their specific properties like as low density, high strength and stiffness, good fatigue strength, dimensional stability at high temperature and acceptable tribological properties. In this study, 2014 Aluminium alloy used as a matrix material and B₄C and SiC were selected as reinforcements components. For production of composites materials, vacuum infiltration method was used. In the experimental studies, the reinforcement volume ratios were defined by mixing as totally 10% B₄C and SiC. Aging treatment (T6) was applied to the specimens. The effect of T6 treatment on hardness was determined by using Brinell hardness test method. The effects of the aging treatment on microstructure and chemical structure were analysed by making XRD, SEM and EDS analysis on the specimens.

Keywords: metal matrix composite, vacumm infiltration method, aluminum metal matrix, mechanical feature

Procedia PDF Downloads 297
5836 Factors That Facilitate and Hinder Friendship with Peers: A Qualitative Study Involving Early Adolescents

Authors: I. Stacher, B. Schrank, K. Stiehl, K. A. Woodcock

Abstract:

Background: The need and desire for connectedness and belonging to a peer group is a major concern in middle childhood. This is particularly true for the period of school transition when making and maintaining friendships is put to the test. Social relations are important for enhancing self-esteem, confidence, and mental health. Conflicts with peers and victimization mark challenges in the complex social environment of early adolescents. Thus, the promotion of supportive peer relationships is an important social goal. The current literature lacks an in-depth analysis of young people’s experiences connected to making and maintaining friendships. Aim: This qualitative study aims to understand the factors that facilitate and hinder friendship and peer relations within the complex context of school transition. Methods: Youth engagement workshops at primary and secondary schools were conducted with 53 classes (N = 906 pupils; M age = 10.44; SD = .912) in 29 different schools across lower Austria. A big poster was created with the entire class, collecting early adolescents’ ideas on ways they can support each other in the school environment. Then, students were divided into smaller groups and encouraged to share their personal experiences of friendship. Verbatim quotes from students were collected on observation sheets and sticky notes during the activities. A thematic analysis was conducted. Results: Early adolescents describe facilitating factors that allow them to connect with peers. These descriptions are mainly on a behavioral level and are relevant for face-to-face and digital contact, e.g., practical and emotional support, spending time together, pleasure and fun. Specific challenges such as offensive actions, betrayal, and lack of emotion regulation exist and need to be addressed if aiming to reduce barriers between peers. Conclusion: Knowing first-hand experiences, desires, and barriers for making and maintaining friends at the time of school transition will help researchers to develop preventive health programs that adequately address the needs and preferences of today’s youth.

Keywords: youth voice, experts by experience, friendship, peer relations, primary-secondary school, transition

Procedia PDF Downloads 112
5835 Formulation of Highly Dosed Drugs Using Different Granulation Techniques: A Comparative Study

Authors: Ezeddin Kolaib

Abstract:

Paracetamol tablets and cimetidine tablets were prepared by single-step granulation/tabletting and by compression after high shear granulation. The addition of PVP (polyvinylpyrrolidone) was essential for single-step granulation/tabletting of formulation containing high concentrations of paracetamol or cimetidine. Paracetamol tablets without and with PVP obtained by single-step granulation/tabletting exhibited a significantly higher tensile strength, a significantly lower disintegration time, a lower friability and a faster dissolution compared to those prepared by compression after high shear granulation. Cimetidine tablets with PVP obtained by single-step granulation/tabletting exhibited a significantly lower tensile strength, a significantly lower disintegration time and a faster dissolution compared to those prepared by compression after high shear granulation. Single-step granulation/tabletting allowed to produce tablets containing up to 80% paracetamol or cimetidine with a dissolution profile complying with the USP requirements. For pure paracetamol or pure cimetidine the addition of crospovidone as a disintegrant was required to obtain a dissolution profile that complied with the pharmacopoeial requirements. Long term and accelerated stability studies of paracetamol tablets produced by single-step granulation/tabletting over a period of one year showed no significant influence on the tablet tensile strength, friability and dissolution. Although a significant increase of the disintegration time was observed, it remained below 10 min. These results indicated that single-step granulation/tabletting could be an efficient technique for the production of highly dosed drugs such as paracetamol and cimetidine.

Keywords: single-step granulation/tabletting, twin screw extrusion, high shear granulation, high dosage drugs, paracetamol, cimetidine

Procedia PDF Downloads 284
5834 Quality Rabbit Skin Gelatin with Acetic Acid Extract

Authors: Wehandaka Pancapalaga

Abstract:

This study aimed to analyze the water content, yield, fat content, protein content, viscosity, gel strength, pH, melting and organoleptic rabbit skin gelatin with acetic acid extraction levels are different. The materials used in this study were Rex rabbit skin male. Treatments that P1 = the extraction of acetic acid 2% (v / v); P2 = the extraction of acetic acid 3% (v / v); P3 = the extraction of acetic acid 4 % (v / v). P5 = the extraction of acetic acid 5% (v / v). The results showed that the greater the concentration of acetic acid as the extraction of rabbit skin can reduce the water content and fat content of rabbit skin gelatin but increase the protein content, viscosity, pH, gel strength, yield and melting point rabbit skin gelatin. texture, color and smell of gelatin rabbits there were no differences with cow skin gelatin. The results showed that the quality of rabbit skin gelatin accordance Indonesian National Standard (SNI). Conclusion 5% acetic acid extraction produces the best quality gelatin.

Keywords: gelatin, skin rabbit, acetic acid extraction, quality

Procedia PDF Downloads 401
5833 Thrombophilic Mutations in Tunisian Patients with Recurrent Pregnancy Loss

Authors: Frikha Rim, Abdelmoula Bouayed Nouha, Rebai Tarek

Abstract:

Pregnancy is a hypercoagulable state which causing a defective maternal haemostatic response and leading to thrombosis of the uteroplacental vasculature, that might cause pregnancy complications as recurrent pregnancy loss (RPL). Since heritable Thrombophilic defects are associated with increased thrombosis, their prevalence was evaluated in patients with special emphasis on combinations of the above pathologies. Especially, Factor V Leiden (FVL) G1691A, methylene tetra hydro folate reductase (MTHFR) C677T, and factor II (FII) G20210A mutations are three important causes of thrombophilia, which might be related to recurrent pregnancy loss (RPL). In this study we evaluated the presence of these three mutations [factor V Leiden (FVL), prothrombin G20210A (PTG) and methylenetetrahydrofolate reductase (MTHFR) C677T] amongst 35 Tunisian women with more than 2 miscarriages, referred to our genetic counseling. DNA was extracted from peripheral blood samples and PCR-RFLP was performed for the molecular diagnosis of each mutation. Factor V Leiden and Prothrombin mutation were detected respectively in 5.7% and 2.9% of women with particular history of early fetal loss and thrombotic events. Despites the luck of strength of this study, we insist that testing for the most inherited thrombophilia (FVL and FII mutation) should be performed in women with RPL in the context of thrombotic events. Multi-centre collaboration is necessary to clarify the real impact of thrombotic molecular defects on the pregnancy outcome, to ascertain the effect of thrombophilia on recurrent pregnancy loss and then to evaluate the appropriate therapeutic approach.

Keywords: thrombophilia, recurrent pregnancy loss, factor V Leiden, prothrombin G20210A, methylene tetra hydro folate reductase

Procedia PDF Downloads 443
5832 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite

Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan

Abstract:

Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.

Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation

Procedia PDF Downloads 129
5831 Comparative Study of Free Vibrational Analysis and Modes Shapes of FSAE Car Frame Using Different FEM Modules

Authors: Rajat Jain, Himanshu Pandey, Somesh Mehta, Pravin P. Patil

Abstract:

Formula SAE cars are the student designed and fabricated formula prototype cars, designed according to SAE INTERNATIONAL design rules which compete in the various national and international events. This paper shows a FEM based comparative study of free vibration analysis of different mode shapes of a formula prototype car chassis frame. Tubing sections of different diameters as per the design rules are designed in such a manner that the desired strength can be achieved. Natural frequency of first five mode was determined using finite element analysis method. SOLIDWORKS is used for designing the frame structure and SOLIDWORKS SIMULATION and ANSYS WORKBENCH 16.2 are used for the modal analysis. Mode shape results of ANSYS and SOLIDWORKS were compared. Fixed –fixed boundary conditions are used for fixing the A-arm wishbones. The simulation results were compared for the validation of the study. First five modes were compared and results were found within the permissible limits. The AISI4130 (CROMOLY- chromium molybdenum steel) material is used and the chassis frame is discretized with fine quality QUAD mesh followed by Fixed-fixed boundary conditions. The natural frequency of the chassis frame is 53.92-125.5 Hz as per the results of ANSYS which is found within the permissible limits. The study is concluded with the light weight and compact chassis frame without compensation with strength. This design allows to fabricate an extremely safe driver ergonomics, compact, dynamically stable, simple and light weight tubular chassis frame with higher strength.

Keywords: FEM, modal analysis, formula SAE cars, chassis frame, Ansys

Procedia PDF Downloads 324
5830 Performance Tests of Wood Glues on Different Wood Species Used in Wood Workshops: Morogoro Tanzania

Authors: Japhet N. Mwambusi

Abstract:

High tropical forests deforestation for solid wood furniture industry is among of climate change contributing agents. This pressure indirectly is caused by furniture joints failure due to poor gluing technology based on improper use of different glues to different wood species which lead to low quality and weak wood-glue joints. This study was carried in order to run performance tests of wood glues on different wood species used in wood workshops: Morogoro Tanzania whereby three popular wood species of C. lusitanica, T. glandis and E. maidenii were tested against five glues of Woodfix, Bullbond, Ponal, Fevicol and Coral found in the market. The findings were necessary on developing a guideline for proper glue selection for a particular wood species joining. Random sampling was employed to interview carpenters while conducting a survey on the background of carpenters like their education level and to determine factors that influence their glues choice. Monsanto Tensiometer was used to determine bonding strength of identified wood glues to different wood species in use under British Standard of testing wood shear strength (BS EN 205) procedures. Data obtained from interviewing carpenters were analyzed through Statistical Package of Social Science software (SPSS) to allow the comparison of different data while laboratory data were compiled, related and compared by the use of MS Excel worksheet software as well as Analysis of Variance (ANOVA). Results revealed that among all five wood glues tested in the laboratory to three different wood species, Coral performed much better with the average shear strength 4.18 N/mm2, 3.23 N/mm2 and 5.42 N/mm2 for Cypress, Teak and Eucalyptus respectively. This displays that for a strong joint to be formed to all tree wood species for soft wood and hard wood, Coral has a first priority in use. The developed table of guideline from this research can be useful to carpenters on proper glue selection to a particular wood species so as to meet glue-bond strength. This will secure furniture market as well as reduce pressure to the forests for furniture production because of the strong existing furniture due to their strong joints. Indeed, this can be a good strategy on reducing climate change speed in tropics which result from high deforestation of trees for furniture production.

Keywords: climate change, deforestation, gluing technology, joint failure, wood-glue, wood species

Procedia PDF Downloads 226
5829 Detectability of Malfunction in Turboprop Engine

Authors: Tomas Vampola, Michael Valášek

Abstract:

On the basis of simulation-generated failure states of structural elements of a turboprop engine suitable for the busy-jet class of aircraft, an algorithm for early prediction of damage or reduction in functionality of structural elements of the engine is designed and verified with real data obtained at dynamometric testing facilities of aircraft engines. Based on an expanding database of experimentally determined data from temperature and pressure sensors during the operation of turboprop engines, this strategy is constantly modified with the aim of using the minimum number of sensors to detect an inadmissible or deteriorated operating mode of specific structural elements of an aircraft engine. The assembled algorithm for the early prediction of reduced functionality of the aircraft engine significantly contributes to the safety of air traffic and to a large extent, contributes to the economy of operation with positive effects on the reduction of the energy demand of operation and the elimination of adverse effects on the environment.

Keywords: detectability of malfunction, dynamometric testing, prediction of damage, turboprop engine

Procedia PDF Downloads 81
5828 Performance of Self-Compacting Mortars Containing Foam Glass Granulate

Authors: Brahim Safi, Djamila Aboutaleb, Mohammed Saidi, Abdelbaki Benmounah, Fahima Benbrahim

Abstract:

The inorganic wastes are currently used in the manufacture of concretes as mineral additions by cement substitution or as fine/coarse aggregates by replacing traditional aggregates. In this respect, this study aims to valorize the mineral wastes in particular glass wastes to produce granulated foam glass (as fine aggregates). Granulated foam glasses (GFG) were prepared from the glass powder (glass cullet) and foaming agent (limestone) according to applied manufacturing of GFG (at a heat treatment 850 ° C for 20min). After, self-compacting mortars were elaborated with fine aggregate (sand) and other variant mortars with granulated foam glass at volume ratio (0, 30, 50 and 100 %). Rheological characterization tests (fluidity) and physic-mechanical (density, porosity /absorption of water and mechanical tests) were carried out on studied mortars. The results obtained show that a slightly decreasing of compressive strength of mortars having lightness very important for building construction.

Keywords: glass wastes, lightweight aggregate, mortar, fluidity, density, mechanical strength

Procedia PDF Downloads 218
5827 Quality Assessment and Classification of Recycled Aggregates from CandDW According to the European Standards

Authors: M. Eckert, D. Mendes, J P. Gonçalves, C. Moço, M. Oliveira

Abstract:

The intensive extraction of natural aggregates leads to both depletion of natural resources and unwanted environmental impacts. On the other hand, uncontrolled disposal of Construction and Demolition Wastes (C&DW) causes the lifetime reduction of landfills. It is known that the European Union produces, each year, about 850 million tons of C&DW. For all the member States of the European Union, one of the milestones to be reached by 2020, according to the Resource Efficiency Roadmap (COM (2011) 571) of the European Commission, is to recycle 70% of the C&DW. In this work, properties of different types of recycled C&DW aggregates and natural aggregates were compared. Assays were performed according to European Standards (EN 13285; EN 13242+A1; EN 12457-4; EN 12620; EN 13139) for the characterization of there: physical, mechanical and chemical properties. Not standardized tests such as water absorption over time, mass stability and post compaction sieve analysis were also carried out. The tested recycled C&DW aggregates were classified according to the requirements of the European Standards regarding there potential use in concrete, mortar, unbound layers of road pavements and embankments. The results of the physical and mechanical properties of recycled C&DW aggregates indicated, in general, lower quality properties when compared to natural aggregates, particularly, for concrete preparation and unbound layers of road pavements. The results of the chemical properties attested that the C&DW aggregates constitute no environmental risk. It was concluded that recycled aggregates produced from C&DW have the potential to be used in many applications.

Keywords: recycled aggregate, sustainability, aggregate properties, European Standard Classification

Procedia PDF Downloads 646
5826 Posterior Cortical Atrophy Phenotype of Alzheimer’s Dementia: A Case Report

Authors: Joana Beyer

Abstract:

Background: Alzheimer’s disease (AD) is the predominant cause of dementia, characterized by progressive cognitive decline. Posterior cortical atrophy (PCA) is a less common variant of AD, primarily affecting younger individuals and presenting with visual, visuospatial, and visuoperceptual deficits, often leading to delayed diagnosis due to its atypical presentation. Case Presentation: We report the case of a 58-year-old woman referred to psychiatric services with a two-year history of progressive visuospatial decline, mild memory difficulties, and language impairments, notably anomia. Despite undergoing cataract and squint surgeries, her visual symptoms persisted, impacting her professional life as a music educator. The neuropsychological evaluation revealed profound visuoperceptual and visuospatial disturbances, with neuroimaging supporting a diagnosis of PCA. Treatment with Donepezil showed symptom improvement, highlighting the challenges and importance of early intervention and managing this atypical form of AD. Methods: The diagnostic process involved comprehensive physical, neuropsychological assessments, and neuroimaging, including MRI and F18 FDG PET CT, which demonstrated severe bilateral posterior cortical involvement. The case underscores the utility of these modalities in diagnosing PCA. Results: The initiation of Donepezil, an acetylcholinesterase inhibitor, resulted in symptom improvement, emphasizing the potential for AD treatments to benefit PCA patients. However, challenges in management, including treatment side effects and the necessity of multidisciplinary care, are discussed. Conclusion: This case highlights PCA's diagnostic challenges due to its atypical presentation and the broader implications for managing younger patients with early-onset dementia. It underscores the necessity for early recognition, comprehensive assessment, and tailored management strategies, including both pharmacological and non-pharmacological interventions, to improve patients' quality of life. Additionally, the case illustrates the need for expanding community memory services to accommodate younger patients with atypical forms of dementia, advocating for a more inclusive approach to dementia care.

Keywords: Alzheimer’s disease, posterior cortical atrophy, dementia, diagnosis, management, donepezil, early-onset dementia

Procedia PDF Downloads 43
5825 Effect of Infill Walls on Response of Multi Storey Reinforced Concrete Structure

Authors: Ayman Abd-Elhamed, Sayed Mahmoud

Abstract:

The present research work investigates the seismic response of reinforced concrete (RC) frame building considering the effect of modeling masonry infill (MI) walls. The seismic behavior of a residential 6-storey RC frame building, considering and ignoring the effect of masonry, is numerically investigated using response spectrum (RS) analysis. The considered herein building is designed as a moment resisting frame (MRF) system following the Egyptian code (EC) requirements. Two developed models in terms of bare frame and infill walls frame are used in the study. Equivalent diagonal strut methodology is used to represent the behavior of infill walls, whilst the well-known software package ETABS is used for implementing all frame models and performing the analysis. The results of the numerical simulations such as base shear, displacements, and internal forces for the bare frame as well as the infill wall frame are presented in a comparative way. The results of the study indicate that the interaction between infill walls and frames significantly change the responses of buildings during earthquakes compared to the results of bare frame building model. Specifically, the seismic analysis of RC bare frame structure leads to underestimation of base shear and consequently damage or even collapse of buildings may occur under strong shaking. On the other hand, considering infill walls significantly decrease the peak floor displacements and drifts in both X and Y-directions.

Keywords: masonry infill, bare frame, response spectrum, seismic response

Procedia PDF Downloads 390
5824 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction

Authors: Sudhir Kumar Tiwari

Abstract:

The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.

Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model

Procedia PDF Downloads 337
5823 Review on the Role of Sustainability Techniques in Development of Green Building

Authors: Ubaid Ur Rahman, Waqar Younas, Sooraj Kumar Chhabira

Abstract:

Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands.

Keywords: sustainable construction, green building, recycled waste material, environment

Procedia PDF Downloads 230
5822 A Simple Chemical Approach to Regenerating Strength of Thermally Recycled Glass Fibre

Authors: Sairah Bashir, Liu Yang, John Liggat, James Thomason

Abstract:

Glass fibre is currently used as reinforcement in over 90% of all fibre-reinforced composites produced. The high rigidity and chemical resistance of these composites are required for optimum performance but unfortunately results in poor recyclability; when such materials are no longer fit for purpose, they are frequently deposited in landfill sites. Recycling technologies, for example, thermal treatment, can be employed to address this issue; temperatures typically between 450 and 600 °C are required to allow degradation of the rigid polymeric matrix and subsequent extraction of fibrous reinforcement. However, due to the severe thermal conditions utilised in the recycling procedure, glass fibres become too weak for reprocessing in second-life composite materials. In addition, more stringent legislation is being put in place regarding disposal of composite waste, and so it is becoming increasingly important to develop long-term recycling solutions for such materials. In particular, the development of a cost-effective method to regenerate strength of thermally recycled glass fibres will have a positive environmental effect as a reduced volume of composite material will be destined for landfill. This research study has demonstrated the positive impact of sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution, prepared at relatively mild temperatures and at concentrations of 1.5 M and above, on the strength of heat-treated glass fibres. As a result, alkaline treatments can potentially be implemented to glass fibres that are recycled from composite waste to allow their reuse in second-life materials. The optimisation of the strength recovery process is being conducted by varying certain reaction parameters such as molarity of alkaline solution and treatment time. It is believed that deep V-shaped surface flaws exist commonly on severely damaged fibre surfaces and are effectively removed to form smooth, U-shaped structures following alkaline treatment. Although these surface flaws are believed to be present on glass fibres they have not in fact been observed, however, they have recently been discovered in this research investigation through analytical techniques such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Reaction conditions such as molarity of alkaline solution affect the degree of etching of the glass fibre surface, and therefore the extent to which fibre strength is recovered. A novel method in determining the etching rate of glass fibres after alkaline treatment has been developed, and the data acquired can be correlated with strength. By varying reaction conditions such as alkaline solution temperature and molarity, the activation energy of the glass etching process and the reaction order can be calculated respectively. The promising results obtained from NaOH and KOH treatments have opened an exciting route to strength regeneration of thermally recycled glass fibres, and the optimisation of the alkaline treatment process is being continued in order to produce recycled fibres with properties that match original glass fibre products. The reuse of such glass filaments indicates that closed-loop recycling of glass fibre reinforced composite (GFRC) waste can be achieved. In fact, the development of a closed-loop recycling process for GFRC waste is already underway in this research study.

Keywords: glass fibers, glass strengthening, glass structure and properties, surface reactions and corrosion

Procedia PDF Downloads 240
5821 Metacognitive Processing in Early Readers: The Role of Metacognition in Monitoring Linguistic and Non-Linguistic Performance and Regulating Students' Learning

Authors: Ioanna Taouki, Marie Lallier, David Soto

Abstract:

Metacognition refers to the capacity to reflect upon our own cognitive processes. Although there is an ongoing discussion in the literature on the role of metacognition in learning and academic achievement, little is known about its neurodevelopmental trajectories in early childhood, when children begin to receive formal education in reading. Here, we evaluate the metacognitive ability, estimated under a recently developed Signal Detection Theory model, of a cohort of children aged between 6 and 7 (N=60), who performed three two-alternative-forced-choice tasks (two linguistic: lexical decision task, visual attention span task, and one non-linguistic: emotion recognition task) including trial-by-trial confidence judgements. Our study has three aims. First, we investigated how metacognitive ability (i.e., how confidence ratings track accuracy in the task) relates to performance in general standardized tasks related to students' reading and general cognitive abilities using Spearman's and Bayesian correlation analysis. Second, we assessed whether or not young children recruit common mechanisms supporting metacognition across the different task domains or whether there is evidence for domain-specific metacognition at this early stage of development. This was done by examining correlations in metacognitive measures across different task domains and evaluating cross-task covariance by applying a hierarchical Bayesian model. Third, using robust linear regression and Bayesian regression models, we assessed whether metacognitive ability in this early stage is related to the longitudinal learning of children in a linguistic and a non-linguistic task. Notably, we did not observe any association between students’ reading skills and metacognitive processing in this early stage of reading acquisition. Some evidence consistent with domain-general metacognition was found, with significant positive correlations between metacognitive efficiency between lexical and emotion recognition tasks and substantial covariance indicated by the Bayesian model. However, no reliable correlations were found between metacognitive performance in the visual attention span and the remaining tasks. Remarkably, metacognitive ability significantly predicted children's learning in linguistic and non-linguistic domains a year later. These results suggest that metacognitive skill may be dissociated to some extent from general (i.e., language and attention) abilities and further stress the importance of creating educational programs that foster students’ metacognitive ability as a tool for long term learning. More research is crucial to understand whether these programs can enhance metacognitive ability as a transferable skill across distinct domains or whether unique domains should be targeted separately.

Keywords: confidence ratings, development, metacognitive efficiency, reading acquisition

Procedia PDF Downloads 135
5820 Play-Based Intervention Training Program for Daycare Workers Attending to Children with Autism

Authors: Raymond E. Raguindin

Abstract:

Objective: This research studied the teaching improvement of daycare workers in imitation, joint attention, and language activities using the play-based early intervention training program in Cabanatuan City, Nueva Ecija. Methods: Focus group discussions were developed to explore the attitude, beliefs, and practices of daycare workers. Results: Findings of the study revealed that daycare workers have existing knowledge and experience in teaching children with autism. Their workshops on managing inappropriate behaviors of children with autism resulting in a general positive perception of accepting and teaching children with autism in daycare centers. Play based activities were modelled and participated in by daycare workers. These include demonstration, modelling, prompting and providing social reinforcers as reward. Five lectures and five training days were done to implement the training program. Daycare workers’ levels of skill in teaching imitation, joint attention and language were gathered before and after the participation in the training program. Findings suggest significant differences between pre-test and post test scores. They have shown significant improvement in facilitating imitation, joint attention, and language children with autism after the play-based early intervention training. They were able to initiate and sustain imitation, joint attention, and language activities with adequate knowledge and confidence. Conclusions: 1. Existing attitudes and beliefs greatly influenced the positive delivery mode of instruction. 2. Teacher-directed approach to improve attention, imitation, joint attention, and language of children with autism can be acquired by daycare workers. 3. Teaching skills and experience can be used as reference and basis for identifying future training needs.

Keywords: early intervention, imitation, joint attention, language

Procedia PDF Downloads 112
5819 The Descending Genicular Artery Perforator Free Flap as a Reliable Flap: Literature Review

Authors: Doran C. Kalmin

Abstract:

The descending genicular artery (DGA) perforator free flap provides an alternative to free flap reconstruction based on a review of the literature detailing both anatomical and clinical studies. The descending genicular artery (DGA) supplies skin, muscle, tendon, and bone located around the medial aspect of the knee that has been used in several pioneering reports in reconstructing defects located in various areas throughout the body. After the success of the medial femoral condyle flap in early studies, a small number of studies have been published detailing the use of the DGA in free flap reconstruction. Despite early success in the use of the DGA flap, acceptance within the Plastic and Reconstructive Surgical community has been limited due primarily to anatomical variations of the pedicle. This literature review is aimed at detailing the progression of the DGA perforator free flap and its variations as an alternative and reliable free flap for reconstruction of composite defects with an exploration into both anatomical and clinical studies. A literature review was undertaken, and the progression of the DGA flap is explored from the early review by Acland et al. pioneering the saphenous free flap to exploring modern changes and studies of the anatomy of the DGA. An extensive review of the literature was undertaken that details the anatomy and its variations, approaches to harvesting the flap, the advantages, and disadvantages of the DGA perforator free flap as well as flap outcomes. There are 15 published clinical series of DGA perforator free flaps that incorporate cutaneous, osteoperiosteal, cartilage, osteocutaneous, osteoperiosteal and muscle, osteoperiosteal and subcutaneous and tendocutatenous. The commonest indication for using a DGA free flap was for non-union of bone, particularly that of the scaphoid whereby the medial femoral condyle could be used. In the case series, a success rate of over 90% was established, showing that these early studies have had good success with a wide range of tissue transfers. The greatest limitation is the anatomical variation of the DGA and therefore, the challenges associated with raising the flap. Despite the variation in anatomy and around 10-15% absence of the DGA, the saphenous artery can be used as well as the superior medial genicular artery if the vascular bone is required as part of the flap. Despite only a handful of anatomical and clinical studies describing the DGA perforator free flap, it ultimately provides a reliable flap that can include a variety of composite structure used for reconstruction in almost any area throughout the body. Although it has limitations, it provides a reliable option for free flap reconstruction that can routinely be performed as a single-stage procedure.

Keywords: anatomical study, clinical study, descending genicular artery, literature review, perforator free flap reconstruction

Procedia PDF Downloads 133