Search results for: Matlab efficiency simulation
8978 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading
Authors: Michał Rogala, Jakub Gajewski
Abstract:
As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure
Procedia PDF Downloads 1468977 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates
Authors: Qiong He, S. Thomas Ng
Abstract:
Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.Keywords: overhang, energy analysis, computer-based simulation, design builder, high-rise residential building, climate, BIM model
Procedia PDF Downloads 3668976 Application of Bacteriophage and Essential Oil to Enhance Photocatalytic Efficiency
Authors: Myriam Ben Said, Dhekra Trabelsi, Faouzi Achouri, Marwa Ben Saad, Latifa Bousselmi, Ahmed Ghrabi
Abstract:
This present study suggests the use of biological and natural bactericide, cheap, safe to handle, natural, environmentally benign agents to enhance the conventional wastewater treatment process. In the same sense, to highlight the enhancement of wastewater photocatalytic treatability, we were used virulent bacteriophage(s) and essential oils (EOs). The pre-phago-treatment of wastewater with lytic phage(s), leads to a decrease in bacterial density and, consequently, limits the establishment of intercellular communication (QS), thus preventing biofilm formation and inhibiting the expression of other virulence factors after photocatalysis. Moreover, to increase the photocatalytic efficiency, we were added to the secondary treated wastewater 1/1000 (w/v) of EO of thyme (T. vulgaris). This EO showed in vitro an anti-biofilm activity through the inhibition of plonctonic cell mobility and their attachment on an inert surface and also the deterioration of the sessile structure. The presence of photoactivatable molecules (photosensitizes) in this type of oil allows the optimization of photocatalytic efficiency without hazards relayed to dyes and chemicals reagent. The use of ‘biological and natural tools’ in combination with usual water treatment process can be considered as a safety procedure to reduce and/or to prevent the recontamination of treated water and also to prevent the re-expression of virulent factors by pathogenic bacteria such as biofilm formation with friendly processes.Keywords: biofilm, essential oil, optimization, phage, photocatalysis, wastewater
Procedia PDF Downloads 1548975 Use of Treated and Untreated Sunflower Seed Hulls in Fattening Lamb Feeding
Authors: Mohammad Saleh Fasihi Ramandi
Abstract:
This study investigates the nutritional value of both enriched and non-enriched sunflower seed hulls in lamb-fattening diets. Sunflower seed processing for oil production produces a considerable by-product, with 18–25% of the total seed weight comprised of hulls. These hulls are typically regarded as nutritionally limited due to their high fiber and low protein content, but the application of urea enrichment appears to increase their potential as feed. In this experiment, fifty male lambs, aged 7–8 months, were divided into five groups of ten, each receiving one of five diets: 1) a control diet with cereal straw and no hulls; 2) a diet with 10% non-enriched hulls; 3) a diet with 20% non-enriched hulls; 4) a diet with 10% urea-enriched hulls; and 5) a diet with 20% urea-enriched hulls. The feeding trial lasted 90 days, during which metrics such as daily weight gain, dry matter intake, and feed conversion efficiency were recorded. At the end of the trial, three lambs from each group were randomly selected for slaughter, and their carcass characteristics were documented. The results suggest that diets including enriched sunflower hulls led to significantly greater final weights, weight gain, and improved feed conversion efficiency. Economically, using enriched sunflower hulls in fattening diets for lambs reduced the cost per kilogram of live and carcass weight gain compared to diets with non-enriched hulls and cereal straw.Keywords: sunflower seed hulls, lamb fattening, urea enrichment, feed efficiency
Procedia PDF Downloads 128974 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation
Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar
Abstract:
The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.Keywords: computational fluid dynamics (CFD), erosion, slurry transportation, k-ε Model
Procedia PDF Downloads 4088973 A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation
Authors: Jonghyuk Yoon, Hyoungwoon Song
Abstract:
Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03).Keywords: single-span greenhouse, CFD (computational fluid dynamics), solar radiation, multiband model, absorption coefficient
Procedia PDF Downloads 1368972 Electromagnetic Simulation of Underground Cable Perforation by Nail
Authors: Ahmed Nour El Islam Ayad, Tahar Rouibah, Wafa Krika, Houari Boudjella, Larab Moulay, Farid Benhamida, Selma Benmoussa
Abstract:
The purpose of this study is to evaluate the electromagnetic field of an underground cable of very high voltage perforated by nail. The aim of this work shows a numerical simulation of the electromagnetic field of 400 kV line after perforation through a ferrous nail in four positions for the pinch pin at different distances. From results for a longitudinal section, we observe and evaluate the distribution and the variation of the electromagnetic field in the cable and the earth. When the nail approaches the underground power cable, the distribution of the magnetic field changes and takes several forms, the magnetic field increase and become very important when the nail breaks the metal screen and will produce a significant leak of the electric field, characterized by a large electric arc and or electric discharge to earth and then a fault in the electrical network. These electromagnetic analysis results help to detect defects in underground cables.Keywords: underground, electromagnetic, nail, defect
Procedia PDF Downloads 2318971 Thermodynamic Analysis of Zeotropic Mixture Used in Low Temperature Solar Rankine Cycle with Ejector for Power Generation
Authors: Basma Hamdi, Lakdar Kairouani, Ezzedine Nahdi
Abstract:
The objective of this work is to present a thermodynamic analysis of low temperature solar Rankine cycle with ejector for power generation using zeotropic mixtures. Based on theoretical calculation, effects of zeotropic mixtures compositions on the performance of solar Rankine cycle with ejector are discussed and compared with corresponding pure fluids. Variations of net power output, thermal efficiency were calculating with changing evaporation temperature. The ejector coefficient had analyzed as independent variable. The result show that (R245fa/R152a) has a higher thermal efficiency than using pure fluids.Keywords: zeotropic mixture, thermodynamic analysis, ejector, low-temperature solar rankine cycle
Procedia PDF Downloads 2818970 Analysis of Possible Equipment in the Reduction Unit of a Low Tonnage Liquefied Natural Gas Production Plant
Authors: Pavel E. Mikriukov
Abstract:
The demand for natural gas (NG) is increasing every year around the world, so it is necessary to produce and transport NG in large quantities. To solve this problem, liquefied natural gas (LNG) plants are used, using different equipment and different technologies to achieve the required LNG quality. To determine the best efficiency of the LNG liquefaction plant, it is necessary to analyze the equipment used in this process and identify other technological solutions for LNG production using more productive and energy-efficient equipment. Based on this, mathematical models of the technological process of the LNG plant were created, which are based on a two-circuit system of heat exchange equipment and a nitrogen isolated cycle for NG cooling. The final liquefaction of natural gas is performed on the construction of the basic principle of the Joule-Thompson effect. The pressure and temperature drop are considered on different types of equipment such as throttle valve, which was used in the basic scheme; turbo expander and supersonic separator, which act as new equipment, to be compared with the efficiency of the basic scheme of the unit. New configurations of LNG plants are suggested, which can be used in almost all LNG facilities. As a result of the analysis, it turned out that the turbo expander and the supersonic separator have comparatively equal potential in comparison with the baseline scheme execution on the throttle valve. A more rational method of selecting the technology and the equipment used for natural gas liquefaction can improve the efficiency of low-tonnage plants and reduce the cost of gas for own needs.Keywords: gas liquefaction, gas, Joule-Thompson effect, LNG, low-tonnage LNG, supersonic separator, Throttle valve, turbo expander
Procedia PDF Downloads 1118969 Investigation of Input Energy Efficiency in Corn (KSC704) Farming in Khoy City, Iran
Authors: Nasser Hosseini
Abstract:
Energy cycle is one of the essential points in agricultural ecosystems all over the world. Corn is one of the important products in Khoy city. Knowing input energy level and evaluating output energy from farms to reduce energy and increase efficiency in farms is very important if one can reduce input energy level into farms through the indices like poisons, fertilization, tractor energy and labour force. In addition to the net income of the farmers, this issue would play a significant role in preserving farm ecosystem from pollution and wrecker factors. For this reason, energy balance sheet in corn farms as well as input and output energy in 2012-2013 were researched by distributing a questionnaire among farmers in various villages in Khoy city. Then, the input energy amount into farms via energy-consuming factors, mentioned above, with regard to special coefficients was computed. Energy was computed on the basis of seed corn function, chemical compound and its content as well. In this investigation, we evaluated the level of stored energy 10792831 kcal per hectare. We found out that the greatest part of energy depended on irrigation which has 5136141.8 kcal and nitrate fertilizer energy with 2509760 kcal and the lowest part of energy depended on phosphor fertilizer, the rate of posited energy equaled 36362500 kcal and energy efficiency on the basis of seed corn function were estimated as 3.36. We found some ways to reduce consumptive energy in farm and nitrate fertilizer and, on the other hand, to increase balance sheet. They are, to name a few, using alternative farming and potherbs for biological stabilizing of nitrogen and changing kind of fertilizers such as urea fertilizer with sulphur cover, and using new generation of irrigation, the compound of water super absorbent like colored hydrogels and using natural fertilizer to preserve.Keywords: corn (KSC704), output and input, energy efficiency, Khoy city
Procedia PDF Downloads 4418968 Numerical Approach for Characterization of Flow Field in Pump Intake Using Two Phase Model: Detached Eddy Simulation
Authors: Rahul Paliwal, Gulshan Maheshwari, Anant S. Jhaveri, Channamallikarjun S. Mathpati
Abstract:
Large pumping facility is the necessary requirement of the cooling water systems for power plants, process and manufacturing facilities, flood control and water or waste water treatment plant. With a large capacity of few hundred to 50,000 m3/hr, cares must be taken to ensure the uniform flow to the pump to limit vibration, flow induced cavitation and performance problems due to formation of air entrained vortex and swirl flow. Successful prediction of these phenomena requires numerical method and turbulence model to characterize the dynamics of these flows. In the past years, single phase shear stress transport (SST) Reynolds averaged Navier Stokes Models (like k-ε, k-ω and RSM) were used to predict the behavior of flow. Literature study showed that two phase model will be more accurate over single phase model. In this paper, a 3D geometries simulated using detached eddy simulation (LES) is used to predict the behavior of the fluid and the results are compared with experimental results. Effect of different grid structure and boundary condition is also studied. It is observed that two phase flow model can more accurately predict the mean flow and turbulence statistics compared to the steady SST model. These validate model will be used for further analysis of vortex structure in lab scale model to generate their frequency-plot and intensity at different location in the set-up. This study will help in minimizing the ill effect of vortex on pump performance.Keywords: grid structure, pump intake, simulation, vibration, vortex
Procedia PDF Downloads 1758967 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence
Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang
Abstract:
Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics
Procedia PDF Downloads 748966 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.Keywords: voltage source inverter, space vector pulse width modulation, model predictive control, comparison
Procedia PDF Downloads 5088965 Emotional Security in Relation to Students' Emotional Efficiency
Authors: Ibtisam Mahmoud Mohammed Sultan
Abstract:
The present research aimed to identify the level of both emotional and emotional competence among students in Tikrit University aimed to know the assumptions in statistical significance for both variables as gender variables (m-f) and specialty (scientific-humanistic), as research to learn what Relationship between emotional safety and efficiency alanfaalet Tikrit University students. The researcher built emotional security measure (54) as built measure emotional competence (46), as the researcher extract full alsaykomtrih characteristics of both scales. The research sample consisted of (600) students selected by the random way and applying the scales on a basic search sample and processed statistical data using a variety of methods, including statistical test (test T.) and Pearson correlation coefficient, the researcher found a set of results. The following: 1. that the Tikrit University students possess a high level of emotional security. 2. to safely enjoy passionate males more than females. 3. that there is no difference between students of scientific and humanitarian specialization in variable emotional security. 4. that the Tikrit University students enjoy a high level of emotional competence. 5. the female-male outperforming in emotional competence level. 6. the humanitarian specialization students Excel in emotional competence for those of specialty. 7. the existence of a positive correlation between variables. Through search results, the researcher has developed a set of conclusions, proposals, and recommendations.Keywords: relation, emotional security, students, efficiency
Procedia PDF Downloads 1208964 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery
Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko
Abstract:
In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analysed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realised via a two-way coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary lagrangian-eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analysed in the study. The axial velocity at normalised position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.Keywords: Large Eddy Simulation, Fluid Structural Interaction, constricted artery, Computational Fluid Dynamics
Procedia PDF Downloads 2938963 Design and Simulation of a Double-Stator Linear Induction Machine with Short Squirrel-Cage Mover
Authors: David Rafetseder, Walter Bauer, Florian Poltschak, Wolfgang Amrhein
Abstract:
A flat double-stator linear induction machine (DSLIM) with a short squirrel-cage mover is designed for high thrust force at moderate speed < 5m/s. The performance and motor parameters are determined on the basis of a 2D time-transient simulation with the finite element (FE) software Maxwell 2015. Design guidelines and transformation rules for space vector theory of the LIM are presented. Resulting thrust calculated by flux and current vectors is compared with the FE results showing good coherence and reduced noise. The parameters of the equivalent circuit model are obtained.Keywords: equivalent circuit model, finite element model, linear induction motor, space vector theory
Procedia PDF Downloads 5668962 Simulation Study on Polymer Flooding with Thermal Degradation in Elevated-Temperature Reservoirs
Authors: Lin Zhao, Hanqiao Jiang, Junjian Li
Abstract:
Polymers injected into elevated-temperature reservoirs inevitably suffer from thermal degradation, resulting in severe viscosity loss and poor flooding performance. However, for polymer flooding in such reservoirs, present simulators fail to provide accurate results for lack of description on thermal degradation. In light of this, the objectives of this paper are to provide a simulation model for polymer flooding with thermal degradation and study the effect of thermal degradation on polymer flooding in elevated-temperature reservoirs. Firstly, a thermal degradation experiment was conducted to obtain the degradation law of polymer concentration and viscosity. Different types of polymers degraded in the Thermo tank with elevated temperatures. Afterward, based on the obtained law, a streamline-assistant model was proposed to simulate the degradation process under in-situ flow conditions. Model validation was performed with field data from a well group of an offshore oilfield. Finally, the effect of thermal degradation on polymer flooding was studied using the proposed model. Experimental results showed that the polymer concentration remained unchanged, while the viscosity degraded exponentially with time after degradation. The polymer viscosity was functionally dependent on the polymer degradation time (PDT), which represented the elapsed time started from the polymer particle injection. Tracing the real flow path of polymer particle was required. Therefore, the presented simulation model was streamline-assistant. Equation of PDT vs. time of flight (TOF) along streamline was built by the law of polymer particle transport. Based on the field polymer sample and dynamic data, the new model proved its accuracy. Study of degradation effect on polymer flooding indicated: (1) the viscosity loss increased with TOF exponentially in the main body of polymer-slug and remained constant in the slug front; (2) the responding time of polymer flooding was delayed, but the effective time was prolonged; (3) the breakthrough of subsequent water was eased; (4) the capacity of polymer adjusting injection profile was diminished; (5) the incremental recovery was reduced significantly. In general, the effect of thermal degradation on polymer flooding performance was rather negative. This paper provides a more comprehensive insight into polymer thermal degradation in both the physical process and field application. The proposed simulation model offers an effective means for simulating the polymer flooding process with thermal degradation. The negative effect of thermal degradation suggests that the polymer thermal stability should be given full consideration when designing polymer flooding project in elevated-temperature reservoirs.Keywords: polymer flooding, elevated-temperature reservoir, thermal degradation, numerical simulation
Procedia PDF Downloads 1438961 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons
Authors: Su Ying-Ming
Abstract:
High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.Keywords: urban ventilation path, ventilation efficiency indices, CFD, building layout
Procedia PDF Downloads 3858960 The Integrated Strategy of Maintenance with a Scientific Analysis
Authors: Mahmoud Meckawey
Abstract:
This research is dealing with one of the most important aspects of maintenance fields, that is Maintenance Strategy. It's the branch which concerns the concepts and the schematic thoughts in how to manage maintenance and how to deal with the defects in the engineering products (buildings, machines, etc.) in general. Through the papers we will act with the followings: i) The Engineering Product & the Technical Systems: When we act with the maintenance process, in a strategic view, we act with an (engineering product) which consists of multi integrated systems. In fact, there is no engineering product with only one system. We will discuss and explain this topic, through which we will derivate a developed definition for the maintenance process. ii) The factors or basis of the functionality efficiency: That is the main factors affect the functional efficiency of the systems and the engineering products, then by this way we can give a technical definition of defects and how they occur. iii) The legality of occurrence of defects (Legal defects and Illegal defects): with which we assume that all the factors of the functionality efficiency been applied, and then we will discuss the results. iv) The Guarantee, the Functional Span Age and the Technical surplus concepts: In the complementation with the above topic, and associated with the Reliability theorems, where we act with the Probability of Failure state, with which we almost interest with the design stages, that is to check and adapt the design of the elements. But in Maintainability we act in a different way as we act with the actual state of the systems. So, we act with the rest of the story that means we have to act with the complementary part of the probability of failure term which refers to the actual surplus of the functionality for the systems.Keywords: engineering product and technical systems, functional span age, legal and illegal defects, technical and functional surplus
Procedia PDF Downloads 4758959 Sustainable Hydrogen Generation via Gasification of Pig Hair Biowaste with NiO/Al₂O₃ Catalysts
Authors: Jamshid Hussain, Kuen Song Lin
Abstract:
Over one thousand tons of pig hair biowaste (PHB) are produced yearly in Taiwan. The improper disposal of PHB can have a negative impact on the environment, consequently contributing to the spread of diseases. The treatment of PHB has become a major environmental and economic challenge. Innovative treatments must be developed because of the heavy metal and sulfur content of PHB. Like most organic materials, PHB is composed of many organic volatiles that contain large amounts of hydrogen. Hydrogen gas can be effectively produced by the catalytic gasification of PHB using a laboratory-scale fixed-bed gasifier, employing 15 wt% NiO/Al₂O₃ catalyst at 753–913 K. The derived kinetic parameters were obtained and refined using simulation calculations. FE–SEM microphotograph showed that NiO/Al₂O₃ catalyst particles are Spherical or irregularly shaped with diameters of 10–20 nm. HR–TEM represented that the fresh Ni particles were evenly dispersed and uniform in the microstructure of Al₂O₃ support. The sizes of the NiO nanoparticles were vital in determining catalyst activity. As displayed in the pre-edge XANES spectra of the NiO/Al₂O₃ catalysts, it exhibited a non-intensive absorbance nature for the 1s to 3d transition, which is prohibited by the selection rule for an ideal octahedral symmetry. Similarly, the populace of Ni(II) and Ni(0) onto Al₂O₃ supports are proportional to the strength of the 1s to 4pxy transition, respectively. The weak shoulder at 8329–8334 eV and a strong character at 8345–8353 eV were ascribed to the 1s to 4pxy shift, which suggested the presence of NiO types onto Al₂O₃ support in PHB catalytic gasification. As determined by the XANES analyses, Ni(II)→Ni(0) reduction was mostly observed. The oxidation of PHB onto the NiO/Al₂O₃ surface may have resulted in Ni(0) and the formation of tar during the gasification process. The EXAFS spectra revealed that the Ni atoms with Ni–Ni/Ni–O bonds were found. The Ni–O bonding proved that the produced syngas were unable to reduce NiO to Ni(0) completely. The weakness of the Ni–Ni bonds may have been caused by the highly dispersed Ni in the Al₂O₃ support. The central Ni atoms have Ni–O (2.01 Å) and Ni–Ni (2.34 Å) bond distances in the fresh NiO/Al₂O₃ catalyst. The PHB was converted into hydrogen-rich syngas (CO + H₂, >89.8% dry basis). When PHB (250 kg h−1) was catalytically gasified at 753–913 K, syngas was produced at approximately 5.45 × 105 kcal h−1 of heat recovery with 76.5%–83.5% cold gas efficiency. The simulation of the pilot-scale PHB catalytic gasification demonstrated that the system could provide hydrogen (purity > 99.99%) and generate electricity for an internal combustion engine of 100 kW and a proton exchange membrane fuel cell (PEMFC) of 175 kW. A projected payback for a PHB catalytic gasification plant with a capacity of 10- or 20-TPD (ton per day) was around 3.2 or 2.5 years, respectively.Keywords: pig hair biowaste, catalytic gasification, hydrogen production, PEMFC, resource recovery
Procedia PDF Downloads 138958 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 1858957 Analysis and Modeling of Graphene-Based Percolative Strain Sensor
Authors: Heming Yao
Abstract:
Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.Keywords: graphene, gauge factor, percolative transport, strain sensor
Procedia PDF Downloads 4168956 Drama in the Classroom: Work and Experience with Standardized Patients and Classroom Simulation of Difficult Clinical Scenarios
Authors: Aliyah Dosani, Kerri Alderson
Abstract:
Two different simulations using standardized patients were developed to reinforce content and foster undergraduate nursing students’ practice and development of interpersonal skills in difficult clinical situations in the classroom. The live actor simulations focused on fostering interpersonal skills, traditionally considered by students to be simple and easy. However, seemingly straightforward interactions can be very stressful, particularly in women’s complex social/emotional situations. Supporting patients in these contexts is fraught with complexity and high emotion, requiring skillful support, assessment and intervention by a registered nurse. In this presentation, the personal and professional perspectives of the development, incorporation, and execution of the live actor simulations will be discussed, as well as the inclusion of student perceptions, and the learning gained by the involved faculty.Keywords: adult learning, interpersonal skill development, simulation learning, teaching and learning
Procedia PDF Downloads 1438955 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes
Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze
Abstract:
A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.Keywords: decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation
Procedia PDF Downloads 3118954 Gender Difference and Conflict Management Strategy Preference among Managers in Public Organizations in South-Western Nigeria
Authors: D. I. Akintayo, C. O. Aje
Abstract:
This study investigated the moderating influence of gender difference and conflict resolution strategy preference on managers` efficiency in managing industrial conflict in work organizations in South-Western Nigeria. This was for the purpose of ascertaining the relevance of gender difference and conflict resolution strategy preference to managerial efficiency towards ensuring sustainable industrial peace and harmonious labour-management relations at workplaces in Nigeria. Descriptive ex-post-facto research design was adopted for the study. A total of 185 respondents were selected for the study using purposive stratified sampling technique. A set of questionnaire titled ‘Rahim Organizational Conflict Inventory’ (ROCI) and Managerial Conflict Efficiency Scale (MCES) were adopted for the study. The three generated hypotheses were tested using Pearson Product Moment Correlation and t-test statistical methods. The findings of the study revealed that: A significant relationship exists between gender difference and conflict management preference of the managers(r = 0.644; P < 0.05). I t was also found that there was no significant difference between male and female managers’ conflict management strategy preference (t (181) = 11.08; P > 0.05).The finding reveals that there is no significant difference between female and male managers’ conflict management efficiency on the basis of conflict management preference of the managers (t (181) = 10.23; P > 0.05). Based on the findings of the study, it is recommended that collective bargaining strategy should be encouraged as conflict resolution strategy in order to guarantee effective management of industrial conflict and harmonious labour-management relations. Also, both male and female managers should be empowered to be appointed to managerial positions and should avoid the use of coercion, competition, aggressiveness and pro-task in the course of managing industrial conflict. Rather, persuasion, compromising, relational, lobbying and participatory approaches should be employed during collective bargaining process in order to foster effective management of conflict at workplaces.Keywords: conflict management, gender difference, managerial studies, public organization and managers, strategy preference
Procedia PDF Downloads 4598953 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump
Authors: C. Patrascioiu, Cao Minh Ahn
Abstract:
The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.Keywords: absorption, distillation, heat pump, Unisim design
Procedia PDF Downloads 3388952 Computational Fluid Dynamics Modeling of Flow Properties Fluctuations in Slug-Churn Flow through Pipe Elbow
Authors: Nkemjika Chinenye-Kanu, Mamdud Hossain, Ghazi Droubi
Abstract:
Prediction of multiphase flow induced forces, void fraction and pressure is crucial at both design and operating stages of practical energy and process pipe systems. In this study, transient numerical simulations of upward slug-churn flow through a vertical 90-degree elbow have been conducted. The volume of fluid (VOF) method was used to model the two-phase flows while the K-epsilon Reynolds-Averaged Navier-Stokes (RANS) equations were used to model turbulence in the flows. The simulation results were validated using experimental results. Void fraction signal, peak frequency and maximum magnitude of void fraction fluctuation of the slug-churn flow validation case studies compared well with experimental results. The x and y direction force fluctuation signals at the elbow control volume were obtained by carrying out force balance calculations using the directly extracted time domain signals of flow properties through the control volume in the numerical simulation. The computed force signal compared well with experiment for the slug and churn flow validation case studies. Hence, the present numerical simulation technique was able to predict the behaviours of the one-way flow induced forces and void fraction fluctuations.Keywords: computational fluid dynamics, flow induced vibration, slug-churn flow, void fraction and force fluctuation
Procedia PDF Downloads 1568951 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils
Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira
Abstract:
Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells
Procedia PDF Downloads 1468950 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement: A Case Study
Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák
Abstract:
Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.Keywords: failure, pavement, probability, reliability index, simulation, tensile crack
Procedia PDF Downloads 5468949 Which Mechanisms are Involved by Legume-Rhizobia Symbiosis to Increase Its Phosphorus Use Efficiency under Low Phosphorus Level?
Authors: B. Makoudi, R. Ghanimi, A. Bargaz, M. Mouradi, M. Farissi, A. Kabbaj, J. J. Drevon, C. Ghoulam
Abstract:
Legume species are able to establish a nitrogen fixing symbiosis with soil rhizobia that allows them, when it operates normally, to ensure their necessary nitrogen nutrition. This biological process needs high phosphorus (P) supply and consequently it is limited under low phosphorus availability. To overcome this constraint, legume-rhizobia symbiosis develops many mechanisms to increase P availability in the rhizosphere and also the efficiency of P fertilizers. The objectives of our research works are to understand the physiological and biochemical mechanisms implemented by legume-rhizobia symbiosis to increase its P use efficiency (PUE) in order to select legume genotypes-rhizobia strains combination more performing for BNF under P deficiency. Our studies were carried out on two grain legume species, common bean (Phaseolus vulgaris) and faba bean (Vicia faba) tested in farmers’ fields and in experimental station fewer than two soil phosphorus levels. Under field conditions, the P deficiency caused a significant decrease of Plant and nodule biomasses in all of the tested varieties with a difference between them. This P limitation increased the contents of available P in the rhizospheric soils that was positively correlated with the increase of phosphatases activities in the nodules and the rhizospheric soil. Some legume genotypes showed a significant increase of their P use efficiency under P deficiency. The P solubilization test showed that some rhizobia strains isolated from Haouz region presented an important capacity to grow on solid and liquid media with tricalcium phosphate as the only P source and their P solubilizing activity was confirmed by the assay of the released P in the liquid medium. Also, this P solubilizing activity was correlated with medium acidification and the excretion of acid phosphatases and phytases in the medium. Thus, we concluded that medium acidification and excretion of phosphatases in the rhizosphere are the prominent reactions for legume-rhizobia symbiosis to improve its P nutrition.Keywords: legume, phosphorus deficiency, rhizobia, rhizospheric soil
Procedia PDF Downloads 312