Search results for: industrial wireless network (IWN)
5944 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather
Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa
Abstract:
A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.Keywords: adverse space weather, DST index, geomagnetically induced currents, KP index, reactive power
Procedia PDF Downloads 1165943 Tensile and Flexural Behavior of Particulate Filled/Polymer Matrix Composites
Authors: M. Alsaadi, A. Erkliğ, M. Bulut
Abstract:
This paper experimentally investigates the flexural and tensile properties of the industrial wastes sewage sludge ash (SSA) and fly ash (FA), and conventional ceramic powder silicon carbide (SiC) filled polyester composites. Four weight fractions (5, 10, 15 and 20 wt%) for each micro filler were used for production of composites. Then, test samples were produced according to ASTM. The resulting degree of particle dispersion in the polymer matrix was visualized by using scanning electron microscope (SEM). Results from this study showed that the tensile strength increased up to its maximum value at filler content 5 wt% of SSA, FA and SiC. Flexural strength increased with addition of particulate filler up to its maximum value at filler content 5 wt% of SSA and FA while for SiC decreased for all weight fractions gradually. The addition of SSA, FA and SiC fillers resulted in increase of tensile and flexural modulus for all the particulate composites. Industrial waste SSA can be used as an additive with polymer to produce composite materials.Keywords: particle-reinforcement, sewage sludge ash, polymer matrix composites, mechanical properties
Procedia PDF Downloads 3725942 Real-Time Inventory Management and Operational Efficiency in Manufacturing
Authors: Tom Wanyama
Abstract:
We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing
Procedia PDF Downloads 385941 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 265940 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 1765939 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity
Procedia PDF Downloads 1545938 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 2675937 Why is the Recurrence Rate of Residual or Recurrent Disease Following Endoscopic Mucosal Resection (EMR) of the Oesophageal Dysplasia’s and T1 Tumours Higher in the Greater Midlands Cancer Network?
Authors: Harshadkumar Rajgor, Jeff Butterworth
Abstract:
Background: Barretts oesophagus increases the risk of developing oesophageal adenocarcinoma. Over the last 40 years, there has been a 6 fold increase in the incidence of oesophageal adenocarcinoma in the western world and the incidence rates are increasing at a greater rate than cancers of the colon, breast and lung. Endoscopic mucosal resection (EMR) is a relatively new technique being used by 2 centres in the greater midlands cancer network. EMR can be used for curative or staging purposes, for high-grade dysplasia’s and T1 tumours of the oesophagus. EMR is also suitable for those who are deemed high risk for oesophagectomy. EMR has a recurrence rate of 21% according to the Wiesbaden data. Method: A retrospective study of prospectively collected data was carried out involving 24 patients who had EMR for curative or staging purposes. Complications of residual or recurrent disease following EMR that required further treatment were investigated. Results: In 54% of cases residual or recurrent disease was suspected. 96% of patients were given clear and concise information regarding their diagnosis of high-grade dysplasia or T1 tumours. All 24 patients consulted the same specialist healthcare team. Conclusion: EMR is a safe and effective treatment for patients who have high-grade dysplasia and T1NO tumours. In 54% of cases residual or recurrent disease was suspected. Initially, only single resections were undertaken. Multiple resections are now being carried out to reduce the risk of recurrence. Complications from EMR remain low in this series and consisted of a single episode of post procedural bleeding.Keywords: endoscopic mucosal resection, oesophageal dysplasia, T1 tumours, cancer network
Procedia PDF Downloads 3175936 Scientific Recommender Systems Based on Neural Topic Model
Authors: Smail Boussaadi, Hassina Aliane
Abstract:
With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model
Procedia PDF Downloads 1005935 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications
Abstract:
Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate
Procedia PDF Downloads 1545934 Biological Treatment of a Mixture of Iodine-Containing Aromatic Compounds from Industrial Wastewaster
Authors: A. Elain, M. Le Fellic, A. Le Pemp, N. Hachet
Abstract:
Iodinated Compounds (IC) are widely detected contaminants in most aquatic environments including sewage treatment plant, surface water, ground water and even drinking water, up to the µg.L-1 range. As IC contribute in the adsorbable organic halides (AOX) level, their removal or dehalogenation is expected. We report here on the biodegradability of a mixture of IC from an industrial effluent using a microbial consortium adapted to grow on IC as well as the native microorganisms. Both aerobic and anaerobic treatments were studied during batch experiments in 500-mL flasks. The degree of mineralization and recovery of iodide were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron acceptor was found to stimulate anaerobic reductive deiodination of IC while sodium chloride even at high concentration (22 g.l-1) had no influence on the degradation rates nor on the microbial viability. Phylogenetic analysis of 16S RNA gene sequence (MicroSeq®) was applied to provide a better understanding of the degradative microbial community.Keywords: iodinated compounds, biodegradability, deiodination, electron-accepting conditions, microbial consortium
Procedia PDF Downloads 3315933 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 3835932 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 1765931 Cavitas Sensors into Human Cavities: Soft-Contact Lens and Mouthguard Sensors
Authors: Kohji Mitsubayashi, Takahiro Arakawa, Kohji Mitsubayashi
Abstract:
‘Cavitas sensors’ attached to human body cavities such as a contact lens type and a mouthguard (‘no implantable', ‘no wearable’) attracted attention as self-detachable devices for daily medicine. In this contribution, the soft contact lens glucose sensor for tear sugar monitoring will be introduced. And the mouthguard sensor with dental materials integrated with Bluetooth low energy (BLE) wireless module for real-time monitoring of saliva glucose would also be demonstrated. In the near future, those self-detachable cavitas sensors are expected to improve quality of life in view of the aging of society.Keywords: cavitas sensor, biosensor, contact lens, mouthguard
Procedia PDF Downloads 2875930 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini
Abstract:
In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor
Procedia PDF Downloads 1475929 Solid Waste Generation, Composition and Potentiality of Waste to Resource Recovery in Narayanganj City Corporation
Authors: Md. Jisan Ahmed, M. A. Taher
Abstract:
One of the cities in Bangladesh that is developing the fastest is Narayanganj City Corporation. In 2011, the municipality of Narayanganj was transformed into a city corporation, with 27 wards combining Kadamrasul Municipality, Siddhirganj Municipality, and Narayanganj Town. It is also one of Bangladesh's most important industrial centers in Bangladesh. Narayanganj City Corporation (NCC), which has had high development growth, is also generating more solid waste on a high per-capita basis. Because of the increasing rate of population expansion, business activity, industrial development, and fast urbanization, NCC is today creating more waste than ever before. The enormous amount of solid garbage produced in NCC is currently causing air pollution, soil contamination, water pollution, drainage system blockages, and an unpleasant urban environment. The study aimed to find out the amount of solid waste produced per day in NCC by exploring the waste composition and potentiality of resource recovery from the produced solid waste. This study considered household surveys, polythene bag surveys, questionnaire surveys in commercial and industrial sectors, KIIs, FGDs, and lab tests to identify the total amount of waste generated in NCC with waste composition and potentiality for energy recovery from the generated waste. This study has explored that NCC is producing about 922 tons of solid waste per day from households, commercial activities, and industrial sectors where the existing waste collection rate by NCC authority is only about 50% of total generated waste. This study has also explored that about 75% of daily-produced solid waste is perishable with comparatively high moisture content whereas 18 % and 7% are non-perishable and hazardous. It is also explored that there is no resource recovery plant for solid waste management in NCC. On the other hand, this study has explored that the calorific value of the produced solid waste favors resource recovery like waste to electricity. The generated solid waste composition is also in favor of waste-to-biogas, and waste-to-compost fertilizer production. This study has advocated that initiatives need to develop a solid waste management plant in NCC for resource recovery from solid waste. This research may provide a quick overview of the rate of solid waste generation, its composition, and the potential for resource recovery from solid waste in Bangladesh's metropolitan regions. It can also provide information and knowledge to other trash departments in different cities and municipalities in Bangladesh.Keywords: solid waste, waste composition, waste management, resource recovery from solid waste
Procedia PDF Downloads 245928 Measuring Investigation and Computational Simulation of Cavitation Phenomenon Effects on the Industrial Centrifugal Pump Vibration
Authors: Mahdi Hamzehei, Homan Alimoradzadeh, Mahdi Shahriyari
Abstract:
In this paper, vibration of the industrial centrifugal pumps studied by measuring analysis and computational simulation. Effects of different parameters on pump vibration were investigated. Also, simulation of cavitation in the centrifugal pump was down. First, via CF-TURBO software, the pump impeller and the fluid passing through the pump is modelled and finally, the phenomenon of cavitation in the impeller has been modelled by Ansys software. Also, the effects of changes in the amount of NPSH and bubbles generation in the pump impeller were investigated. By simulation of piping with pipe flow software, effect of fluid velocity and pressure on hydraulics and vibration were studied computationally by applying Computational Fluid Dynamic (CFD) techniques, fluent software and experimentally. Furthermore, this comparison showed that the model can predict hydraulics and vibration behaviour.Keywords: cavitation, vibration, centrifugal pumps, performance curves, NPSH
Procedia PDF Downloads 5435927 Assessment of Pollution of the Rustavi City’s Atmosphere with Microaerosols
Authors: Natia Gigauri, Aleksandre Surmava
Abstract:
According to observational data, experimental measurements, and numerical modeling, is assessed pollution of one of the industrial centers of Georgia, Rustavi city’s atmosphere with microaerosols. Monthly, daily and hourly changes of the concentrations of PM2.5 and PM10 in the city atmosphere are analyzed. It is accepted that PM2.5 concentrations are always lower than PM10 concentrations, but their change curve is the same. In addition, it has been noted that the maximum concentrations of particles in the atmosphere of Rustavi city will be reached at any part of the day, which is determined by the total impact of the traffic flow and industrial facilities. By numerical modeling has calculated the influence of background western light air and gentle and fresh breeze on the distribution of PM particles in the atmosphere. Calculations showed that background light air and gentle breeze lead to an increase the concentrations of microaerosols in the city's atmosphere, while fresh breeze contribute to the dispersion of dusty clouds. As a result, the level of dust in the city is decreasing, but the distribution area is expanding.Keywords: pollution, modelling, PM2.5, PM10, experimental measurement
Procedia PDF Downloads 895926 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant
Authors: Lucero Luciano, Cesar Celis, Jose Ramos
Abstract:
Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.Keywords: desalination, design and integration, polygeneration systems, renewable energy
Procedia PDF Downloads 1265925 Conception of a Reliable Low Cost, Autonomous Explorative Hovercraft 1
Authors: A. Brand, S. Burgalat, E. Chastel, M. Jumeline, L. Teilhac
Abstract:
The paper presents actual benefits and drawbacks of a multidirectional Hovercraft conceived with limited resources and designed for indoor exploration. Recent developments in the field have led to apparition of very powerful automotive systems capable of very high calculation and exploration in complex unknown environments. They usually propose very complex algorithms, high precision/cost sensors and sometimes have heavy calculation consumption with complex data fusion. Those systems are usually powerful but have a certain price and the benefits may not be worth the cost, especially considering their hardware limitations and their power consumption. Present approach is to build a compromise between cost, power consumption and results preciseness.Keywords: Hovercraft, indoor exploration, autonomous, multidirectional, wireless control
Procedia PDF Downloads 4185924 Dental Fluorosis in Domestic Animals Inhabiting Industrial Area of Udaipur, Rajasthan, India
Authors: Lalita Panchal, Zulfiya Sheikh
Abstract:
Fluoride is essential for teeth and bones development not only for human beings but also for animals. But excess intake of fluoride causes harmful effects on health. Fluorosis is a worldwide health hazard and India is also one of the endemic countries. Udaipur district of Rajasthan is also prone to fluorosis and superphosphate industries are aggravating fluoride toxicity in this area. Grazing fields for animals in the close vicinity of the industries, fodder and water are fluoride contaminated. Fluoride toxicity in the form of dental fluorosis was observed in domestic animals, inhabiting industrial area near Udaipur, where superphosphate fertilizer plants are functioning and releasing fluoride and fumes and effluents into the surroundings. These fumes and gases directly affect the vegetation of grazing field, thus allowing entry of fluoride into the food chain. A survey was conducted in this area to assess the severity of fluorosis, in 2015-16. It was a house to house survey and animal owners were asked for their fodder and water supply. Anterior teeth of the animal were observed. Domestic animals exhibited mild to severe signs of dental fluorosis. Teeth showed deep brown staining, patches, lines and abrasions. Even immature animals were affected badly. Most of the domestic animals were affected, but goats of this area showed chronic symptoms of fluorosis. Due to abrasion of teeth and paining teeth their chewing or grazing capacity and appetite reduced. Eventually, it reduced the life span of animals and increased the mortality rate.Keywords: domestic animals, fluoride toxicity, industrial fluorosis, superphosphate fertilizers
Procedia PDF Downloads 2955923 Crude Oil Electrostatic Mathematical Modelling on an Existing Industrial Plant
Authors: Fatemeh Yazdanmehr, Iulian Nistor
Abstract:
The scope of the current study is the prediction of water separation in a two-stage industrial crude oil desalting plant. This research study was focused on developing a desalting operation in an existing production unit of one Iranian heavy oil field with 75 MBPD capacity. Because of some operational issues, such as oil dehydration at high temperatures, the optimization of the desalter operational parameters was essential. The mathematical desalting is modeled based on the population balance method. The existing operational data is used for tuning and validation of the accuracy of the modeling. The inlet oil temperature to desalter used was decreased from 110°C to 80°C, and the desalted electrical field was increased from 0.75 kv to 2.5 kv. The proposed condition for the desalter also meets the water oil specification. Based on these conditions of desalter, the oil recovery is increased by 574 BBL/D, and the gas flaring decrease by 2.8 MMSCF/D. Depending on the oil price, the additional production of oil can increase the annual income by about $15 MM and reduces greenhouse gas production caused by gas flaring.Keywords: desalter, demulsification, modelling, water-oil separation, crude oil emulsion
Procedia PDF Downloads 795922 Industrial Practical Training for Mechanical Engineering Students: A Multidisciplinary Approach
Authors: Bashiru Olayinka Adisa, Najeem Lateef
Abstract:
The integrated knowledge in the application of mechanical engineering, microprocessor and electronic sensor technologies is becoming the basic skill of a modern engineer in machinery based processes. To meet this objective, we have developed a cross-disciplinary industrial training to teach essential hard technical and soft project skills to the mechanical engineering students in mid-curriculum. Ten groups of students were selected to participate in a 150 hour program. The students were required to design and build a robot with ability to follow tracks and pick/place target blocks in specific locations. The students were trained to integrate the knowledge of computer aid design, electronics, sensor theories and motor technology to fabricate a workable robot as a major outcome of this course. On completion of the project, students competed for top robot honors by demonstrating their robots' movements and performance in pick/place to a panel of judges.Keywords: electronics, sensor theories and motor, robot, technology
Procedia PDF Downloads 2815921 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 1925920 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1455919 Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap
Authors: Mathieu Bourdeau, Philippe Basset, Julien Waeytens, Elyes Nefzaoui
Abstract:
As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases.Keywords: calibration, building energy modeling, performance gap, sensor network
Procedia PDF Downloads 1615918 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting
Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro
Abstract:
Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket
Procedia PDF Downloads 555917 Research on Eco-Sustainable Recycling of Industrial Wastes
Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu
Abstract:
In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible.Keywords: fly ash, drilled solid wastes, metallurgical slag, recycling, building materials
Procedia PDF Downloads 3125916 Alternator Fault Detection Using Wigner-Ville Distribution
Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi
Abstract:
This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution
Procedia PDF Downloads 3745915 CFD Modeling and Optimization of Gas Cyclone Separator for Performance Improvement
Authors: N. Beit Saeid
Abstract:
Cyclones are used in the field of air industrial gases pollution and control the pollution with centrifugal forces that is generated with spatial geometry of the cyclone. Their simple design, low capital and maintenance costs and adaptability to a wide range of operating conditions have made cyclones one of the most widely used industrial dust collectors. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Optimized geometry of outlet diffuser of the cyclones potentially could reduce exit pressure losses without affecting collection efficiency. Three rectangular outlets and a radial outlet with a variable opening had been analyzed on two cyclones. Pressure drop was investigated for inlet velocities from about 10 to 20 m s−1. The radial outlet reduced cyclone pressure drop by between 8.7 and 11.9 percent when its exit area was equal to the flow area of the cyclone vortex finder or gas exit. A simple payback based on avoided energy costs was estimated to be between 3600 and 5000 h, not including installation cost.Keywords: cyclone, CFD, optimization, genetic algorithm
Procedia PDF Downloads 383