Search results for: Support vector machine (SVM)
7720 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.Keywords: rotordynamic, finite element model, timoshenko beam, 3D solid elements, Guyan reduction method
Procedia PDF Downloads 2727719 Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier
Authors: Blaž Likozar, Andraž Pavlišič, Matic Pavlin, Taja Žibert, Aleksandra Zamljen, Sašo Gyergyek, Matej Huš
Abstract:
Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing.Keywords: hydrogen, ammonia, catalysis, modelling, kinetics
Procedia PDF Downloads 697718 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 217717 Mordenite as Catalyst Support for Complete Volatile Organic Compounds Oxidation
Authors: Yuri A. Kalvachev, Totka D. Todorova
Abstract:
Zeolite mordenite has been investigated as a transition metal support for the preparation of efficient catalysts in the oxidation of volatile organic compounds (VOCs). The highly crystalline mordenite samples were treated with hydrofluoric acid and ammonium fluoride to get hierarchical material with secondary porosity. The obtained supports by this method have a high active surface area, good diffusion properties and prevent the extraction of metal components during catalytic reactions. The active metal phases platinum and copper were loaded by impregnation on both mordenite materials (parent and acid treated counterparts). Monometalic Pt and Cu, and bimetallic Pt/Cu catalysts were obtained. The metal phases were fine dispersed as nanoparticles on the functional porous materials. The catalysts synthesized in this way were investigated in the reaction of complete oxidation of propane and benzene. Platinum, copper and platinum/copper were loaded and there catalytic activity was investigated and compared. All samples are characterized by X-ray diffraction analysis, nitrogen adsorption, scanning electron microscopy (SEM), X-ray photoelectron measurements (XPS) and temperature programed reduction (TPR). The catalytic activity of the samples obtained is investigated in the reaction of complete oxidation of propane and benzene by using of Gas Chromatography (GC). The oxidation of three organic molecules was investigated—methane, propane and benzene. The activity of metal loaded mordenite catalysts for methane oxidation is almost the same for parent and treated mordenite as a support. For bigger molecules as propane and benzene, the activity of catalysts based on treated mordenite is higher than those based on parent zeolite.Keywords: metal loaded catalysts, mordenite, VOCs oxidation, zeolites
Procedia PDF Downloads 1317716 Determining Which Material Properties Resist the Tool Wear When Machining Pre-Sintered Zirconia
Authors: David Robert Irvine
Abstract:
In the dental restoration sector, there has been a shift to using zirconia. With the ever increasing need to decrease lead times to deliver restorations faster the zirconia is machined in its pre-sintered state instead of grinding the very hard sintered state. As with all machining, there is tool wear and while investigating the tooling used to machine pre-sintered zirconia it became apparent that the wear rate is based more on material build up and abrasion than it is on plastic deformation like conventional metal machining. It also came to light that the tool material can currently not be selected based on wear resistance, as there is no data. Different works have analysed the effect of the individual wear mechanism separately using similar if not the same material. In this work, the testing method used to analyse the wear was a modified from ISO 8688:1989 to use the pre-sintered zirconia and the cutting conditions used in dental to machine it. This understanding was developed through a series of tests based in machining operations, to give the best representation of the multiple wear factors that can occur in machining of pre-sintered zirconia such as 3 body abrasion, material build up, surface welding, plastic deformation, tool vibration and thermal cracking. From the testing, it found that carbide grades with low trans-granular rupture toughness would fail due to abrasion while those with high trans-granular rupture toughness failed due to edge chipping from build up or thermal properties. The results gained can assist the development of these tools and the restorative dental process. This work was completed with the aim of assisting in the selection of tool material for future tools along with a deeper understanding of the properties that assist in abrasive wear resistance and material build up.Keywords: abrasive wear, cemented carbide, pre-sintered zirconia, tool wear
Procedia PDF Downloads 1607715 Making Permanent Supportive Housing Work for Vulnerable Populations
Authors: Olayinka Ariba, Abe Oudshoorn, Steve Rolfe, Carrie Anne Marshall, Deanna Befus, Jason Gilliland, Miranda Crockett, Susana Caxaj, Sarah McLean, Amy Van Berkum, Natasha Thuemler
Abstract:
Background: Secure housing is a platform for health and well-being. Those who struggle with housing stability have complex life and health histories and often require some support services such as the provision of permanent supportive housing. Poor access to supportive resources creates an exacerbation of chronic homelessness, particularly affecting individuals who need immediate access to mental health and addiction supports. This paper presents the first phase of a three-part study examining how on-site support impacts housing stability for recently-re-housed persons. Method: This study utilized a community-based participatory research methodology. Twenty in-depth interviews were conducted with permanent supportive housing residents from a single-site dwelling. Interpretative description analysis was used to draw common themes and understand the experiences and challenges of housing support. Results: Three interconnected themes were identified: 1) Available and timely supports; 2) Affordability; and 3) Community, but with independence as desired. These interconnected components are helping residents transition from homelessness or long-term mental health inpatient care to live in the community. Despite some participant concerns about resident conflicts, staff availability, and affordability, this has been a welcome and successful move for most. Conclusion: Supportive housing is essential for successful tenancies as a platform for health and well-being among Canada’s most vulnerable and, from the perspective of persons recently re-housed, permanent supportive housing is a worthwhile investment.Keywords: homelessness, supportive housing, rehoused, housing stability
Procedia PDF Downloads 1067714 Meaningful Habit for EFL Learners
Authors: Ana Maghfiroh
Abstract:
Learning a foreign language needs a big effort from the learner itself to make their language ability grows better day by day. Among those, they also need a support from all around them including teacher, friends, as well as activities which support them to speak the language. When those activities developed well as a habit which are done regularly, it will help improving the students’ language competence. It was a qualitative research which aimed to find out and describe some activities implemented in Pesantren Al Mawaddah, Ponorogo, in order to teach the students a foreign language. In collecting the data, the researcher used interview, questionnaire, and documentation. From the study, it was found that Pesantren Al Mawaddah had successfully built the language habit on the students to speak the target language. More than 15 hours a day students were compelled to speak foreign language, Arabic or English, in turn. It aimed to habituate the students to keep in touch with the target language. The habit was developed through daily language activities, such as dawn vocabs giving, dictionary handling, daily language use, speech training and language intensive course, daily language input, and night vocabs memorizing. That habit then developed the students awareness towards the language learned as well as promoted their language mastery.Keywords: habit, communicative competence, daily language activities, Pesantren
Procedia PDF Downloads 5397713 Academic Staff Perspective of Adoption of Augmented Reality in Teaching Practice to Support Students Learning Remotely in a Crisis Time in Higher
Authors: Ebtisam Alqahtani
Abstract:
The purpose of this study is to investigate academic staff perspectives on using Augmented Reality in teaching practice to support students learning remotely during the COVID pandemic. the study adopted the DTPB theoretical model to guide the identification of key potential factors that could motivate academic staff to use or not use AR in teaching practices. A mixing method design was adopted for a better understanding of the study problem. A survey was completed by 851 academic staff, and this was followed by interviews with 20 academic staff. Statistical analyses were used to assess the survey data, and thematic analysis was used to assess the interview data. The study finding indicates that 75% of academic staff were aware of AR as a pedagogical tool, and they agreed on the potential benefits of AR in teaching and learning practices. However, 36% of academic staff use it in teaching and learning practice, and most of them agree with most of the potential barriers to adopting AR in educational environments. In addition, the study results indicate that 91% of them are planning to use it in the future. The most important factors that motivated them to use it in the future are the COVID pandemic factor, hedonic motivation factor, and academic staff attitude factor. The perceptions of academic staff differed according to the universities they attended, the faculties they worked in, and their gender. This study offers further empirical support for the DTPB model, as well as recommendations to help higher education implement technology in its educational environment based on the findings of the study. It is unprecedented the study the necessity of the use of AR technologies in the time of Covid-19. Therefore, the contribution is both theoretical and practiceKeywords: higher education, academic staff, AR technology as pedological tools, teaching and learning practice, benefits of AR, barriers of adopting AR, and motivating factors to adopt AR
Procedia PDF Downloads 1277712 Education 5.0 and the Proliferation of Social Entrepreneurs in Zimbabwe: Challenges and Opportunities for the Nation
Authors: Tsuu Faith Machingura, Doreen Nkala, Daniel Madzanire
Abstract:
Higher and tertiary Education in Zimbabwe is driven by is a five-pillar Education 5.0 model, which thrusts upon teaching, community engagement, research, innovation and industrialisation. Migration from the previous three-pillar model, the focus of which was on teaching, research and community engagement, to the current one saw universities churning out prolific social entrepreneurs. Apart from examining challenges social entrepreneurs face, the study aimed to identify opportunities that are available for the country as a corollary of the proliferation of social entrepreneurs. A sample of 20 participants comprising 15 social entrepreneurs and five lecturers was purposively drawn. Focus group and face to face interviews were used to gather data. The study revealed that the current higher and tertiary education model in Zimbabwe has stimulated proliferation of social entrepreneurs. It was recommended that a sound financial support system was needed to support new entrepreneurs.Keywords: social entrepreneurs, education 5.0, innovation, industrialisation
Procedia PDF Downloads 877711 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance
Procedia PDF Downloads 1067710 A Study Regarding Nanotechnologies as a Vector of New European Business Model
Authors: Adriana Radan Ungureanu
Abstract:
The industrial landscape is changing due to the financial crises, poor availability of raw materials, new discoveries and interdisciplinary collaborations. New ideas shape the change through technologies and bring responses for a better life. The process of change is leaded by big players like states and companies, but they cannot keep their places on the market without the help of the small ones. The main tool of change is technology and the entire developed world dedicated efforts for decades in this direction. Even the expectations are not yet met, the research for finding adequate solutions is far from to be stopped. A relevant example is nanotechnology where most of discoveries still remain into laboratory and could not succeed to find the right way to the market. In front of this situation the right question could be: ”Is it worth investing in nanotechnology in the name of an uncertain future but with very little impact on present?” This paper tries to find a positive answer from a three-dimensional approach using a descriptive analyse based on available database supplied by the European case studies, reports, and literature.Keywords: Europe, KET’s, nanotechnology, technology
Procedia PDF Downloads 4177709 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research
Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde
Abstract:
Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing
Procedia PDF Downloads 957708 Students’ Perceptions of the Use of Social Media in Higher Education in Saudi Arabia
Authors: Omar Alshehri, Vic Lally
Abstract:
This paper examined the attitudes of using social media tools to support learning at a university in Saudi Arabia. Moreover, it investigated the students’ current usage of these tools and examined the barriers they could face during the use of social media tools in the education process. Participants in this study were 42 university students. A web-based survey was used to collect data for this study. The results indicate that all of the students were familiar with social media and had used at least one type of social media for learning. It was found out that all students had very positive attitudes towards the use of social media and welcomed using these tools as a supplementary to the curriculum. However, the results indicated that the major barriers to using these tools in learning were distraction, opposing Islamic religious teachings, privacy issues, and cyberbullying. The study recommended that this study could be replicated at other Saudi universities to investigate factors and barriers that might affect Saudi students’ attitudes toward using social media to support learning.Keywords: barriers to social media use, benefits of social media use, higher education, Saudi Arabia, social media
Procedia PDF Downloads 1677707 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market
Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago
Abstract:
An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis
Procedia PDF Downloads 647706 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping
Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru
Abstract:
This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier
Procedia PDF Downloads 3287705 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.Keywords: road safety, crash prediction, exploratory analysis, machine learning
Procedia PDF Downloads 1117704 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 1077703 Decision Support System for Fetus Status Evaluation Using Cardiotocograms
Authors: Oyebade K. Oyedotun
Abstract:
The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.Keywords: decision support, cardiotocogram, classification, neural networks
Procedia PDF Downloads 3327702 Customized Temperature Sensors for Sustainable Home Appliances
Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy
Abstract:
Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency
Procedia PDF Downloads 737701 Lessons Learned from a Chronic Care Behavior Change Program: Outcome to Make Physical Activity a Habit
Authors: Doaa Alhaboby
Abstract:
Behavior change is a complex process that often requires ongoing support and guidance. Telecoaching programs have emerged as effective tools in facilitating behavior change by providing personalized support remotely. This abstract explores the lessons learned from a randomized controlled trial (RCT) evaluation of a telecoaching program focused on behavior change for Diabetics and discusses strategies for implementing these lessons to overcome the challenge of making physical activity a habit. The telecoaching program involved participants engaging in regular coaching sessions delivered via phone calls. These sessions aimed to address various aspects of behavior change, including goal setting, self-monitoring, problem-solving, and social support. Over the course of the program, participants received personalized guidance tailored to their unique needs and preferences. One of the key lessons learned from the RCT was the importance of engagement, readiness to change and the use of technology. Participants who set specific, measurable, attainable, relevant, and time-bound (SMART) goals were more likely to make sustained progress toward behavior change. Additionally, regular self-monitoring of behavior and progress was found to be instrumental in promoting accountability and motivation. Moving forward, implementing the lessons learned from the RCT can help individuals overcome the hardest part of behavior change: making physical activity a habit. One strategy is to prioritize consistency and establish a regular routine for physical activity. This may involve scheduling workouts at the same time each day or week and treating them as non-negotiable appointments. Additionally, integrating physical activity into daily life routines and taking into consideration the main challenges that can stop the process of integrating physical activity routines into the daily schedule can help make it more habitual. Furthermore, leveraging technology and digital tools can enhance adherence to physical activity goals. Mobile apps, wearable activity trackers, and online fitness communities can provide ongoing support, motivation, and accountability. These tools can also facilitate self-monitoring of behavior and progress, allowing individuals to track their activity levels and adjust their goals as needed. In conclusion, telecoaching programs offer valuable insights into behavior change and provide strategies for overcoming challenges, such as making physical activity a habit. By applying the lessons learned from these programs and incorporating them into daily life, individuals can cultivate sustainable habits that support their long-term health and well-being.Keywords: lifestyle, behavior change, physical activity, chronic conditions
Procedia PDF Downloads 597700 A Sociopreneur Based on Creative Services of Merchandise (Kedaikampus)
Authors: Wildan Maulana, M. Machfudz Sa'idi
Abstract:
Special Region of Yogyakarta (DIY) has more than one hundred campuses of State Universities, and private sector amounted to 137, of course, is not a small amount, from 137 universities in the province there are hundreds of thousands of students, therefore, many kinds of businesses and business opportunities can provide support facilities supporting the needs of students ranging from life support classes or students who come from various regions in Indonesia and Abroad can be fulfilled during his education in DI Yogyakarta including the need for primary and secondary needs. KedaiKampus present to facilitate the needs of students in providing secondary needs such as clothing Students and merchandise or trinkets typical college respectively, but the difference with the other, KedaiKampus is to provide distinctive products and clothing and merchandise every college respectively. One goal KedaiKampus presence is to create a culture of confidence in every student who is proud of the college with the products of KedaiKampus because not a few students who are not accepted at State Universities have not been able to forget. In producing a wide range of products, we work with young entrepreneurs engaged in creative services and souvenirs. In addition, we are also working with various designers reliable to make the best design.Keywords: markedplace, sociopreneur, merchandise, creative services
Procedia PDF Downloads 2567699 Exploring Challenges Faced by People Living with HIV/AIDS After Disclosure in Sub-Saharan Countries
Authors: Veliswa Nonfundo Hoho, Jabulani Gilford Kheswa
Abstract:
HIV/AIDS has been a long-term condition worldwide, which does not only affect physical health but also causes psychological and social challenges in people living with this condition. In Sub-Saharan countries, namely; Nigeria, Uganda, Zimbabwe and South Africa, people living with HIV/AIDS come across different challenges especially after one has disclosed his/her status. They experience stigma and discrimination, isolation, lack of accessing and receiving treatment, lack of support and experience psychological distress. By using the evidence-based systematic review as a form of methodology, journal articles, dissertations, internet, and books were explored. This paper seeks to describe the challenges faced by people living with HIV/AIDS after disclosure, which forms a critical component of HIV/AIDS prevention and treatment interventions. The disclosure process model is used to underpin the study. This theory allows one to understand when and why interpersonal and verbal self-disclosure is beneficial for individuals who live with concealable stigmatized identities such as HIV/AIDS. Literature findings advocate that both negative and positive results were noted after disclosing one’s HIV status and psychosocial well-being of the majority of people living with HIV/AIDS also get affected especially in societies which subscribe HIV/AIDS pandemic to witchcraft. As for the infected homosexuals, research indicates that they suffer in silence and to cover their emotional emptiness due to ostracism, they often report low- self-efficacy with regard to condom use and become susceptible to reinfections which further place their lives at heightened risk for low immune system. In this regard, this paper challenges the policies which protect the dignity of people living with HIV/AIDS and calls for unity and financial support in favour of psychoeducational programmes and support groups aimed at curbing discrimination.Keywords: disclosure, discrimination, homosexuality, self-efficacy
Procedia PDF Downloads 2357698 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine
Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland
Abstract:
The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.Keywords: force-velocity, leg-press, power-velocity, profiling, reliability
Procedia PDF Downloads 587697 Public Policy as a Component of Entrepreneurship Ecosystems: Challenges of Implementation
Authors: José Batista de Souza Neto
Abstract:
This research project has as its theme the implementation of public policies to support micro and small businesses (MSEs). The research problem defined was how public policies for access to markets that drive the entrepreneurial ecosystem of MSEs are implemented. The general objective of this research is to understand the process of implementing a public policy to support the entrepreneurial ecosystem of MSEs by the Support Service for Micro and Small Enterprises of the State of São Paulo (SEBRAESP). Public policies are constituent elements of entrepreneurship ecosystems that influence the creation and development of ventures from the action of the entrepreneur. At the end of the research, it is expected to achieve the results for the following specific objectives: (a) understand how the entrepreneurial ecosystem of MSEs is constituted; (b) understand how market access public policies for MSEs are designed and implemented; (c) understand SEBRAE's role in the entrepreneurship ecosystem; and (d) offer an action plan and monitor its execution up to march, 2023. The field research will be conducted based on Action Research, with a qualitative and longitudinal approach to the data. Data collection will be based on narratives produced since 2019 when the decision to implement Comércio Brasil program, a public policy focused on generating market access for 4280 MSEs yearly, was made. The narratives will be analyzed by the method of document analysis and narrative analysis. It is expected that the research will consolidate the relevance of public policies to market access for MSEs and the role of SEBRAE as a protagonist in the implementation of these public policies in the entrepreneurship ecosystem will be demonstrated. Action research is recognized as an intervention method, it is expected that this research will corroborate its role in supporting management processes.Keywords: entrepreneurship, entrepreneurship ecosystem, public policies, SEBRAE, action research
Procedia PDF Downloads 1877696 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 907695 The Impact of a Staff Well-Being Service for a Multi-Site Research Study
Authors: Ruth Elvish, Alex Turner, Jen Wells
Abstract:
Over recent years there has been an increasing interest in the topic of well-being at work, and staff support is an area of continued growth. The present qualitative study explored the impact of a staff well-being service that was specifically attached to a five-year multi-site research programme (the Neighbourhoods and Dementia Study, funded by the ESRC/NIHR). The well-being service was led by a clinical psychologist, who offered 1:1 sessions for staff and co-researchers with dementia. To our knowledge, this service was the first of its kind. Methodology: Interviews were undertaken with staff who had used the service and who opted to take part in the study (n=7). Thematic analysis was used as the method of analysis. Findings: Themes included: triggers, mechanisms of change, impact/outcomes, and unique aspects of a dedicated staff well-being service. Conclusions: The study highlights stressors that are pertinent amongst staff within academic settings, and shows the ways in which a dedicated staff well-being service can impact on both professional and personal lives. Positive change was seen in work performance, self-esteem, relationships, and coping. This exploratory study suggests that this well-being service model should be further trialled and evaluated.Keywords: academic, service, staff, support, well-being
Procedia PDF Downloads 1997694 A Real Time Expert System for Decision Support in Nuclear Power Plants
Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru
Abstract:
In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.Keywords: emergence procedure, expert system, operator support, PWR nuclear power plant
Procedia PDF Downloads 3337693 Requirements for the Development of Competencies to Mentor Trainee Teachers: A Case Study of Vocational Education Cooperating Teachers in Quebec
Authors: Nathalie Gagnon, Andréanne Gagné, Julie Courcy
Abstract:
Quebec's vocational education teachers experience an atypical induction process into the workplace and thus face unique challenges. In contrast to elementary and high school teachers, who must undergo initial teacher training in order to access the profession, vocational education teachers, in most cases, are hired based on their professional expertise in the trade they are teaching, without prior pedagogical training. In addition to creating significant stress, which does not foster the acquisition of teaching roles and skills, this approach also forces recruits into a particular posture during their practical training: that of juggling their dual identities as teacher and trainee simultaneously. Recruits are supported by Cooperating Teachers (CPs) who, as experienced educators, take a critical and constructive look at their practices, observe them in the classroom, give them constructive feedback, and encourage them in their reflective practice. Thus, the vocational setting CP also assumes a distinctive posture and role due to the characteristics of the trainees they support. Although it is recognized that preparation, training, and supervision of CPs are essential factors in improving the support provided to trainees, there is little research about how CPs develop their support skills, and very little research focuses on the distinct posture they occupy. However, in order for them to be properly equipped for the important role they play in recruits’ practical training, it is vital to know more about their experience. An individual’s competencies cannot be studied without first examining what characterizes their experience, how they experience any given situation on cognitive, emotional, and motivational levels, in addition to how they act and react in situ. Depending on its nature, the experience will or will not promote the development of a specific competency. The research from which this communication originates focuses on describing the overall experience of vocational education CP in an effort to better understand the mechanisms linked to the development of their mentoring competencies. Experience and competence were, therefore, the two main theoretical concepts leading the research. As per methodology choices, case study methods were used since it proves to be adequate to describe in a rich and detailed way contemporary phenomena within contexts of life. The set of data used was collected from semi-structured interviews conducted with 15 vocational education CP in Quebec (Canada), followed by the use of a data-driven semi-inductive analysis approach to let the categories emerge organically. Focusing on the development needs of vocational education CP to improve their mentoring skills, this paper presents the results of our research, namely the importance of adequate training, better support offered by university supervisors, greater recognition of their role, and specific time slots dedicated to trainee support. The knowledge resulting from this research could improve the quality of support for trainee teachers in vocational education settings and to a more successful induction into the workplace. This communication also presents recommendations regarding the development of training systems that meet the specific needs of vocational education CP.Keywords: development of competencies, cooperating teacher, mentoring trainee teacher, practical training, vocational education
Procedia PDF Downloads 1177692 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity
Authors: M. O. Durojaye, J. T. Agee
Abstract:
This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines
Procedia PDF Downloads 3227691 Influence of Magnetized Water on the Split Tensile Strength of Concrete
Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa
Abstract:
Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine
Procedia PDF Downloads 146