Search results for: virtual machine migration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4933

Search results for: virtual machine migration

2653 Non-Contact Digital Music Instrument Using Light Sensing Technology

Authors: Aishwarya Ravichandra, Kirtana Kirtivasan, Adithi Mahesh, Ashwini S.Savanth

Abstract:

A Non-Contact Digital Music System has been conceptualized and implemented to create a new era of digital music. This system replaces the strings of a traditional stringed instrument with laser beams to avoid bruising of the user’s hand. The system consists of seven laser modules, detector modules and distance sensors that form the basic hardware blocks of this instrument. Arduino ATmega2560 microcontroller is used as the primary interface between the hardware and the software. MIDI (Musical Instrument Digital Interface) is used as the protocol to establish communication between the instrument and the virtual synthesizer software.

Keywords: Arduino, detector, laser, MIDI, note on, note off, pitch bend, Sharp IR distance sensor

Procedia PDF Downloads 407
2652 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 77
2651 Nuancing the Indentured Migration in Amitav Ghosh's Sea of Poppies

Authors: Murari Prasad

Abstract:

This paper is motivated by the implications of indentured migration depicted in Amitav Ghosh’s critically acclaimed novel, Sea of Poppies (2008). Ghosh’s perspective on the experiences of North Indian indentured labourers moving from their homeland to a distant and unknown location across the seas suggests a radical attitudinal change among the migrants on board the Ibis, a schooner chartered to carry the recruits from Calcutta to Mauritius in the late 1830s. The novel unfolds the life-altering trauma of the bonded servants, including their efforts to maintain a sense of self while negotiating significant social and cultural transformations during the voyage which leads to the breakdown of familiar life-worlds. Equally, the migrants are introduced to an alternative network of relationships to ensure their survival away from land. They relinquish their entrenched beliefs and prejudices and commit themselves to a new brotherhood formed by ‘ship siblings.’ With the official abolition of direct slavery in 1833, the supply of cheap labour to the sugar plantation in British colonies as far-flung as Mauritius and Fiji to East Africa and the Caribbean sharply declined. Around the same time, China’s attempt to prohibit the illegal importation of opium from British India into China threatened the lucrative opium trade. To run the ever-profitable plantation colonies with cheap labour, Indian peasants, wrenched from their village economies, were indentured to plantations as girmitiyas (vernacularized from ‘agreement’) by the colonial government using the ploy of an optional form of recruitment. After the British conquest of the Isle of France in 1810, Mauritius became Britain’s premier sugar colony bringing waves of Indian immigrants to the island. In the articulations of their subjectivities one notices how the recruits cope with the alienating drudgery of indenture, mitigate the hardships of the voyage and forge new ties with pragmatic acts of cultural syncretism in a forward-looking autonomous community of ‘ship-siblings’ following the fracture of traditional identities. This paper tests the hypothesis that Ghosh envisions a kind of futuristic/utopian political collectivity in a hierarchically rigid, racially segregated and identity-obsessed world. In order to ground the claim and frame the complex representations of alliance and love across the boundaries of caste, religion, gender and nation, the essential methodology here is a close textual analysis of the novel. This methodology will be geared to explicate the utopian futurity that the novel gestures towards by underlining new regulations of life during voyage and dissolution of multiple differences among the indentured migrants on board the Ibis.

Keywords: indenture, colonial, opium, sugar plantation

Procedia PDF Downloads 398
2650 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 148
2649 Ternary Content Addressable Memory Cell with a Leakage Reduction Technique

Authors: Gagnesh Kumar, Nitin Gupta

Abstract:

Ternary Content Addressable Memory cells are mainly popular in network routers for packet forwarding and packet classification, but they are also useful in a variety of other applications that require high-speed table look-up. The main TCAM-design challenge is to decrease the power consumption associated with the large amount of parallel active circuitry, without compromising with speed or memory density. Furthermore, when the channel length decreases, leakage power becomes more significant, and it can even dominate dynamic power at lower technologies. In this paper, we propose a TCAM-design technique, called Virtual Power Supply technique that reduces the leakage by a substantial amount.

Keywords: match line (ML), search line (SL), ternary content addressable memory (TCAM), Leakage power (LP)

Procedia PDF Downloads 299
2648 Migration, Accessing Health Services and Mental Health Outcomes: Evidence From Microdata Analysis

Authors: Suzan Odabasi

Abstract:

Suicide attempts and mental health problems among immigrants have been increasing and have become important public health concerns during the last century. Immigrants may face more difficulties in society because of social conflict, language barriers, inadequate social support, socioeconomic problems, and delay in accessing help. The limited number of research has shown that: first-generation migrants may be at higher risk of mental disorders and a higher prevalence of suicide attempts. The main aim of the proposed work is to identify to what degree each of these pressures is causing higher suicides currently observed. In addition, a comparison will be conducted between females and males and also rural and urban areas for which recent data are available. Specifically, this study investigates how accessing mental health services, the uninsured population rate, socioeconomic factors, and being an immigrant affect Turkish immigrants’ mental health and suicide attempts.

Keywords: access to healthcare, immigration, health economics, mental health economics

Procedia PDF Downloads 107
2647 Smart Safari: Safari Guidance Mobile Application

Authors: D. P. Lawrence, T. M. M. D. Ariyarathna, W. N. K. De Silva, M. D. S. C. De Silva, Lasantha Abeysiri, Pradeep Abeygunawardhna

Abstract:

Safari traveling is one of the most famous hobbies all over the world. In Sri Lanka, 'Yala' is the second-largest national park, which is a better place to go for a safari. Many number of local and foreign travelers are coming to go for a safari in 'Yala'. But 'Yala' does not have a mobile application that is made to facilitate the traveler with some important features that the traveler wants to achieve in the safari experience. To overcome these difficulties, the proposed mobile application by adding those identified features to make travelers, guiders, and administration's works easier. The proposed safari traveling guidance mobile application is called 'SMART SAFARI' for the 'Yala' National Park in Sri Lanka. There are four facilities in this mobile application that provide for travelers as well as the guiders. As the first facility, the guider and traveler can view the created map of the park, and the guider can add temporary locations of animals and special locations on the map. This is a Geographic Information System (GIS) to capture, analyze, and display geographical data. And as the second facility is to generate optimal paths according to the travelers' requirements through the park by using machine learning techniques. In the third part, the traveler can get information about animals using an animal identification system by capturing the animal. As in the other facility, the traveler will be facilitated to add reviews and a rate and view those comments under categorized sections and pre-defined score range. With those facilities, this user-friendly mobile application provides the user to get a better experience in safari traveling, and it will probably help to develop tourism culture in Sri Lanka.

Keywords: animal identification system, geographic information system, machine learning techniques, pre defined score range

Procedia PDF Downloads 134
2646 Roll Forming Process and Die Design for a Large Size Square Tube

Authors: Jinn-Jong Sheu, Cang-Fu Liang, Cheng-Hsien Yu

Abstract:

This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making.

Keywords: cold roll forming, FEM analysis, roll forming die design, tube roll forming

Procedia PDF Downloads 311
2645 Armenian in the Jordanian Linguistic Landscape: Marginalisation and Revitalisation

Authors: Omar Alomoush

Abstract:

This paper examines the Armenian language in the linguistic landscape of Jordanian cities. The results indicate that Armenian is chiefly marginalised in the LL. By quantitative and qualitative methods, the current study attempts to identify the main reasons behind this marginalisation. In the light of the fact that Armenian is completely absent from the commercial streets of major Jordanian cities, all monolingual and multilingual signs in Armenian Neighbourhood in Amman city are photographed to identify them according to function and language. To provide plausible explanations for the marginalisation of the Armenian language in the LL, the current study builds upon issues of language maintenance and underlying language policy. According to the UNESCO Endangerment Framework, it can be assumed that Armenian is a vulnerable language, even though the Armenian Church exerted great efforts to revitalise Armenian in all social settings, including the LL. It was found that language policies enacted by the state of Jordan, language shift, language hostility, voluntary migration and economic pressures are among the reasons behind this marginalisation.

Keywords: linguistic landscape, multilingualism, Armenian, marginalisation and revitalisation

Procedia PDF Downloads 261
2644 The Application of ICT in E-Assessment and E-Learning in Language Learning and Teaching

Authors: Seyyed Hassan Seyyedrezaei

Abstract:

The advent of computer and ICT thereafter has introduced many irrevocable changes in learning and teaching. There is substantially growing need for the use of IT and ICT in language learning and teaching. In other words, the integration of Information Technology (IT) into online teaching is of vital importance for education and assessment. Considering the fact that the image of education is undergone drastic changes by the advent of technology, education systems and teachers move beyond the walls of traditional classes and methods in order to join with other educational centers to revitalize education. Given the advent of distance learning, online courses and virtual universities, e-assessment has taken a prominent place in effective teaching and meeting the learners' educational needs. The purpose of this paper is twofold: first, scrutinizing e-learning, it discusses how and why e-assessment is becoming widely used by educationalists and administrators worldwide. As a second purpose, a couple of effective strategies for online assessment will be enumerated.

Keywords: e-assessment, e learning, ICT, online assessment

Procedia PDF Downloads 568
2643 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 22
2642 Determining Which Material Properties Resist the Tool Wear When Machining Pre-Sintered Zirconia

Authors: David Robert Irvine

Abstract:

In the dental restoration sector, there has been a shift to using zirconia. With the ever increasing need to decrease lead times to deliver restorations faster the zirconia is machined in its pre-sintered state instead of grinding the very hard sintered state. As with all machining, there is tool wear and while investigating the tooling used to machine pre-sintered zirconia it became apparent that the wear rate is based more on material build up and abrasion than it is on plastic deformation like conventional metal machining. It also came to light that the tool material can currently not be selected based on wear resistance, as there is no data. Different works have analysed the effect of the individual wear mechanism separately using similar if not the same material. In this work, the testing method used to analyse the wear was a modified from ISO 8688:1989 to use the pre-sintered zirconia and the cutting conditions used in dental to machine it. This understanding was developed through a series of tests based in machining operations, to give the best representation of the multiple wear factors that can occur in machining of pre-sintered zirconia such as 3 body abrasion, material build up, surface welding, plastic deformation, tool vibration and thermal cracking. From the testing, it found that carbide grades with low trans-granular rupture toughness would fail due to abrasion while those with high trans-granular rupture toughness failed due to edge chipping from build up or thermal properties. The results gained can assist the development of these tools and the restorative dental process. This work was completed with the aim of assisting in the selection of tool material for future tools along with a deeper understanding of the properties that assist in abrasive wear resistance and material build up.

Keywords: abrasive wear, cemented carbide, pre-sintered zirconia, tool wear

Procedia PDF Downloads 160
2641 The Greek Diaspora in Australia: Identity and Transnational Identity

Authors: Panayiota Romios

Abstract:

As the use of 'diaspora' has proliferated in the last decade, its meaning has been stretched in various directions. Current diaspora frames of identity representation do not adequately capture the complexities of everyday lived experiences of transnational individuals and groups. This paper presents the findings of a qualitative research project conducted in Melbourne, Australia with second generation Greek Australians. It analyses the forms of intercultural identities of the second generation Greek Australians returning to Australia post-2008, after living in Greece for an extended period of time. The discussion highlights key characteristics in relation to diaspora-homeland ties, seeking to denaturalise the commonplace assumptions and imaginations about the cultures and identities of Greek Australian diaspora communities and probe the relevance of identity markers such a country of origin, nationality, ethnicity, ethnic origin, language and mother tongue. The definition of diaspora experienced in this transnational lexicon is interestingly quite distinct from original articulations and also from others returning ‘home’.

Keywords: diaspora, identity, migration, displacement

Procedia PDF Downloads 361
2640 Induction Motor Analysis Using LabVIEW

Authors: E. Ramprasath, P. Manojkumar, P. Veena

Abstract:

Proposed paper dealt with the modelling and analysis of induction motor based on the mathematical expression using the graphical programming environment of Laboratory Virtual Instrument Engineering Workbench (LabVIEW). Induction motor modelling with the mathematical expression enables the motor to be simulated with the various required parameters. Owing to the invention of variable speed drives study about the induction motor characteristics became complex.In this simulation motor internal parameter such as stator resistance and reactance, rotor resistance and reactance, phase voltage, frequency and losses will be given as input. By varying the speed of motor corresponding parameters can be obtained they are input power, output power, efficiency, torque induced, slip and current.

Keywords: induction motor, LabVIEW software, modelling and analysi, electrical and mechanical characteristics of motor

Procedia PDF Downloads 555
2639 Foreign Human Capital as a Fiscal Burden on the UK's Exchequer: An Intellectual Capital Perspective

Authors: Tasawar Nawaz

Abstract:

Migration has once again become a lively topic in Europe and UK, in particular. A burgeoning concern in the public debate, however, is driven by the fear that migrants are fiscal burden because they drain public resources by drawing on the generous social transfers introduced in Europe to prevent social exclusion. This study challenges these beliefs by gathering empirical evidence through a qualitative research approach on the subject matter. The analysis suggests that UK provides a rich social and economic environment for intellectual profiles especially, human intellectual capital of migrants to flourish and add value to the exchequer. Contrary to the beliefs held by politicians and general public, the empirical evidence suggests that migrants add higher fiscal contribution by working longer hours, paying consistent taxes, and bringing skills which UK may lack thus, are not fiscal burdens on the UK exchequer.

Keywords: austerity, European union, human intellectual capital, migrants, social welfare, United Kingdom

Procedia PDF Downloads 311
2638 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 229
2637 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research

Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde

Abstract:

Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.

Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing

Procedia PDF Downloads 95
2636 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market

Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago

Abstract:

An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.

Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis

Procedia PDF Downloads 64
2635 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 176
2634 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 112
2633 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 107
2632 Augmented Reality as Enhancer of the Lean Philosophy: An Exploratory Study

Authors: P. Gil, F. Charrua-Santos, A. A. Baptista, S. Azevedo, A. Espirito-Santo, J. Páscoa

Abstract:

Lean manufacturing is a philosophy of industrial management that aims to identify and eliminate any waste that exists in the companies. The augmented reality is a new technology that stills being developed in terms of software and hardware. This technology consists of an image capture device, a device for data processing and an image visualization equipment to visualize collected and processed images. It is characterized by being a technology that merges the reality with the virtual environment, so there is an instantaneous interaction between the two environments. The present work intends to demonstrate that the use of the augmented reality will contribute to improve some tools and methods used in Lean manufacturing philosophy. Through several examples of application in industry it will be demonstrated that the technological impact of the augmented reality on the Lean Manufacturing philosophy contribute to added value improvements.

Keywords: lean manufacturing, augmented reality, case studies, value

Procedia PDF Downloads 624
2631 Customized Temperature Sensors for Sustainable Home Appliances

Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy

Abstract:

Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.

Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency

Procedia PDF Downloads 73
2630 Flap Structure Geometry in Breakthrough Structure: A Case Study from the Southern Tunisian Atlas Example, Orbata Anticline

Authors: Soulef Amamria, Mohamed Sadok Bensalem, Mohamed Ghanmi

Abstract:

The structural and sedimentological study of fault-related- folds in the Southern Tunisian Atlas is distinguished by a special geometry of the gravitational structures. This distinct geometry is observable in the example of a flap structure in Jebel Ben Zannouch with the formation of a stuck syncline. This geometry can be explained by the mechanism of major thrusting in Orbata anticline in the occidental extremity of Gafsa chains, with asymmetrical flank dips and hinge migration kinematics. These kinematics was originally controlled by the Breakthrough structure; the study of this special geometry of gravity flap structure depends on the sedimentation domain, shortening ratios, and erosion speed. This study constitutes one of the complete examples of kinematic model validation on a field scale.

Keywords: fault-related-folds, southern Tunisian Atlas, flap structure, breakthrough

Procedia PDF Downloads 101
2629 Development of a Catalogs System for Augmented Reality Applications

Authors: J. Ierache, N. A. Mangiarua, S. A. Bevacqua, N. N. Verdicchio, M. E. Becerra, D. R. Sanz, M. E. Sena, F. M. Ortiz, N. D. Duarte, S. Igarza

Abstract:

Augmented Reality is a technology that involves the overlay of virtual content, which is context or environment sensitive, on images of the physical world in real time. This paper presents the development of a catalog system that facilitates and allows the creation, publishing, management and exploitation of augmented multimedia contents and Augmented Reality applications, creating an own space for anyone that wants to provide information to real objects in order to edit and share it then online with others. These spaces would be built for different domains without the initial need of expert users. Its operation focuses on the context of Web 2.0 or Social Web, with its various applications, developing contents to enrich the real context in which human beings act permitting the evolution of catalog’s contents in an emerging way.

Keywords: augmented reality, catalog system, computer graphics, mobile application

Procedia PDF Downloads 352
2628 Pros and Cons of Teaching/Learning Online during COVID-19: English Department at Tahri Muhammed University of Bechar as a Case Study

Authors: Fatiha Guessabi

Abstract:

Students of the Tahri Muhammed University of Bechar shifted to the virtual platform using E-learning platforms when the lockdown started due to the Coronavirus. This paper aims to explore the advantages and inconveniences of online learning and teaching in EFL classes at Tahri Mohammed University. For this investigation, a questionnaire was addressed to EFL students and an interview was arranged with EFL teachers. Data analysis was obtained from 09 teachers and 70 students. After the investigation, the results show that some of the most applied educational technologies and applications are used to turn online EFL classes effectively exciting. Thus, EFL classes became more interactive. Although learners give positive viewpoints about online learning/teaching, they prefer to learn in the classroom.

Keywords: advantages, disadvantages, COVID19, EFL, online learning/teaching, university of Bechar

Procedia PDF Downloads 164
2627 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine

Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland

Abstract:

The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.

Keywords: force-velocity, leg-press, power-velocity, profiling, reliability

Procedia PDF Downloads 58
2626 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 90
2625 God, The Master Programmer: The Relationship Between God and Computers

Authors: Mohammad Sabbagh

Abstract:

Anyone who reads the Torah or the Quran learns that GOD created everything that is around us, seen and unseen, in six days. Within HIS plan of creation, HE placed for us a key proof of HIS existence which is essentially computers and the ability to program them. Digital computer programming began with binary instructions, which eventually evolved to what is known as high-level programming languages. Any programmer in our modern time can attest that you are essentially giving the computer commands by words and when the program is compiled, whatever is processed as output is limited to what the computer was given as an ability and furthermore as an instruction. So one can deduce that GOD created everything around us with HIS words, programming everything around in six days, just like how we can program a virtual world on the computer. GOD did mention in the Quran that one day where GOD’s throne is, is 1000 years of what we count; therefore, one might understand that GOD spoke non-stop for 6000 years of what we count, and gave everything it’s the function, attributes, class, methods and interactions. Similar to what we do in object-oriented programming. Of course, GOD has the higher example, and what HE created is much more than OOP. So when GOD said that everything is already predetermined, it is because any input, whether physical, spiritual or by thought, is outputted by any of HIS creatures, the answer has already been programmed. Any path, any thought, any idea has already been laid out with a reaction to any decision an inputter makes. Exalted is GOD!. GOD refers to HIMSELF as The Fastest Accountant in The Quran; the Arabic word that was used is close to processor or calculator. If you create a 3D simulation of a supernova explosion to understand how GOD produces certain elements and fuses protons together to spread more of HIS blessings around HIS skies; in 2022 you are going to require one of the strongest, fastest, most capable supercomputers of the world that has a theoretical speed of 50 petaFLOPS to accomplish that. In other words, the ability to perform one quadrillion (1015) floating-point operations per second. A number a human cannot even fathom. To put in more of a perspective, GOD is calculating when the computer is going through those 50 petaFLOPS calculations per second and HE is also calculating all the physics of every atom and what is smaller than that in all the actual explosion, and it’s all in truth. When GOD said HE created the world in truth, one of the meanings a person can understand is that when certain things occur around you, whether how a car crashes or how a tree grows; there is a science and a way to understand it, and whatever programming or science you deduce from whatever event you observed, it can relate to other similar events. That is why GOD might have said in The Quran that it is the people of knowledge, scholars, or scientist that fears GOD the most! One thing that is essential for us to keep up with what the computer is doing and for us to track our progress along with any errors is we incorporate logging mechanisms and backups. GOD in The Quran said that ‘WE used to copy what you used to do’. Essentially as the world is running, think of it as an interactive movie that is being played out in front of you, in a full-immersive non-virtual reality setting. GOD is recording it, from every angle to every thought, to every action. This brings the idea of how scary the Day of Judgment will be when one might realize that it’s going to be a fully immersive video when we would be getting and reading our book.

Keywords: programming, the Quran, object orientation, computers and humans, GOD

Procedia PDF Downloads 107
2624 A Study of Parameters That Have an Influence on Fabric Prints in Judging the Attractiveness of a Female Body Shape

Authors: Man N. M. Cheung

Abstract:

In judging the attractiveness of female body shape, visual sense is one of the important means. The ratio and proportion of body shape influence the perception of female physical attractiveness. This study aims to examine visual perception of digital textile prints on a virtual 3D model in judging the attractiveness of the body shape. Also, investigate the influences when using different shape parameters and their relationships. Participants were asked to conduct a set of questionnaires with images to rank the attractiveness of the female body shape. Results showed that morphing the fabric prints with a certain ratio and combination of shape parameters - waist and hip, can enhance the attractiveness of the female body shape.

Keywords: digital printing, 3D body modeling, fashion print design, body shape attractiveness

Procedia PDF Downloads 179