Search results for: teaching learning based algorithm
32232 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example
Authors: Guantao Bai
Abstract:
Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.Keywords: computer vision, deep learning, public spaces, using features
Procedia PDF Downloads 7532231 Multi-Cluster Overlapping K-Means Extension Algorithm (MCOKE)
Authors: Said Baadel, Fadi Thabtah, Joan Lu
Abstract:
Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper, we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold to be defined as a priority which can be difficult to determine by novice users.Keywords: data mining, k-means, MCOKE, overlapping
Procedia PDF Downloads 57832230 Genetic Algorithm to Construct and Enumerate 4×4 Pan-Magic Squares
Authors: Younis R. Elhaddad, Mohamed A. Alshaari
Abstract:
Since 2700 B.C the problem of constructing magic squares attracts many researchers. Magic squares one of most difficult challenges for mathematicians. In this work, we describe how to construct and enumerate Pan- magic squares using genetic algorithm, using new chromosome encoding technique. The results were promising within reasonable time.Keywords: genetic algorithm, magic square, pan-magic square, computational intelligence
Procedia PDF Downloads 58432229 Learners as Consultants: Knowledge Acquisition and Client Organisations-A Student as Producer Case Study
Authors: Barry Ardley, Abi Hunt, Nick Taylor
Abstract:
As a theoretical and practical framework, this study uses the student-as-producer approach to learning in higher education, as adopted by the Lincoln International Business School, University of Lincoln, UK. Students as producer positions learners as skilled and capable agents, able to participate as partners with tutors in live research projects. To illuminate the nature of this approach to learning and to highlight its critical issues, the authors report on two guided student consultancy projects. These were set up with the assistance of two local organisations in the city of Lincoln, UK. Using the student as a producer model to deliver the projects enabled learners to acquire and develop a range of key skills and knowledge not easily accessible in more traditional educational settings. This paper presents a systematic case study analysis of the eight organising principles of the student-as-producer model, as adopted by university tutors. The experience of tutors implementing students as producers suggests that the model can be widely applied to benefit not only the learning and teaching experiences of higher education students and staff but additionally a university’s research programme and its community partners.Keywords: consultancy, learning, student as producer, research
Procedia PDF Downloads 8132228 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks
Authors: C. N. Vanitha, M. Usha
Abstract:
In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.Keywords: neural networks, pattern learning, security, wireless sensor networks
Procedia PDF Downloads 40832227 Introducing a Video-Based E-Learning Module to Improve Disaster Preparedness at a Tertiary Hospital in Oman
Authors: Ahmed Al Khamisi
Abstract:
The Disaster Preparedness Standard (DPS) is one of the elements that is evaluated by the Accreditation Canada International (ACI). ACI emphasizes to train and educate all staff, including service providers and senior leaders, on emergency and disaster preparedness upon the orientation and annually thereafter. Lack of awareness and deficit of knowledge among the healthcare providers about DPS have been noticed in a tertiary hospital where ACI standards were implemented. Therefore, this paper aims to introduce a video-based e-learning (VB-EL) module that explains the hospital’s disaster plan in a simple language which will be easily accessible to all healthcare providers through the hospital’s website. The healthcare disaster preparedness coordinator in the targeted hospital will be responsible to ensure that VB-EL is ready by 25 April 2019. This module will be developed based on the Kirkpatrick evaluation method. In fact, VB-EL combines different data forms such as images, motion, sounds, text in a complementary fashion which will suit diverse learning styles and individual learning pace of healthcare providers. Moreover, the module can be adjusted easily than other tools to control the information that healthcare providers receive. It will enable healthcare providers to stop, rewind, fast-forward, and replay content as many times as needed. Some anticipated limitations in the development of this module include challenges of preparing VB-EL content and resistance from healthcare providers.Keywords: Accreditation Canada International, Disaster Preparedness Standard, Kirkpatrick evaluation method, video-based e-learning
Procedia PDF Downloads 15232226 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm
Authors: Galu Papy Yuma
Abstract:
This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation
Procedia PDF Downloads 45132225 Expert Supporting System for Diagnosing Lymphoid Neoplasms Using Probabilistic Decision Tree Algorithm and Immunohistochemistry Profile Database
Authors: Yosep Chong, Yejin Kim, Jingyun Choi, Hwanjo Yu, Eun Jung Lee, Chang Suk Kang
Abstract:
For the past decades, immunohistochemistry (IHC) has been playing an important role in the diagnosis of human neoplasms, by helping pathologists to make a clearer decision on differential diagnosis, subtyping, personalized treatment plan, and finally prognosis prediction. However, the IHC performed in various tumors of daily practice often shows conflicting and very challenging results to interpret. Even comprehensive diagnosis synthesizing clinical, histologic and immunohistochemical findings can be helpless in some twisted cases. Another important issue is that the IHC data is increasing exponentially and more and more information have to be taken into account. For this reason, we reached an idea to develop an expert supporting system to help pathologists to make a better decision in diagnosing human neoplasms with IHC results. We gave probabilistic decision tree algorithm and tested the algorithm with real case data of lymphoid neoplasms, in which the IHC profile is more important to make a proper diagnosis than other human neoplasms. We designed probabilistic decision tree based on Bayesian theorem, program computational process using MATLAB (The MathWorks, Inc., USA) and prepared IHC profile database (about 104 disease category and 88 IHC antibodies) based on WHO classification by reviewing the literature. The initial probability of each neoplasm was set with the epidemiologic data of lymphoid neoplasm in Korea. With the IHC results of 131 patients sequentially selected, top three presumptive diagnoses for each case were made and compared with the original diagnoses. After the review of the data, 124 out of 131 were used for final analysis. As a result, the presumptive diagnoses were concordant with the original diagnoses in 118 cases (93.7%). The major reason of discordant cases was that the similarity of the IHC profile between two or three different neoplasms. The expert supporting system algorithm presented in this study is in its elementary stage and need more optimization using more advanced technology such as deep-learning with data of real cases, especially in differentiating T-cell lymphomas. Although it needs more refinement, it may be used to aid pathological decision making in future. A further application to determine IHC antibodies for a certain subset of differential diagnoses might be possible in near future.Keywords: database, expert supporting system, immunohistochemistry, probabilistic decision tree
Procedia PDF Downloads 22932224 Impact of an Instructional Design Model in a Mathematics Game for Enhancing Students’ Motivation in Developing Countries
Authors: Shafaq Rubab
Abstract:
One of the biggest reasons of dropouts from schools is lack of motivation and interest among the students, particularly in mathematics. Many developing countries are facing this problem and this issue is lowering the literacy rate in these developing countries. The best solution for increasing motivation level and interest among the students is using tablet game-based learning. However, a pedagogically sound game required a well-planned instructional design model to enhance learner’s attention and confidence otherwise effectiveness of the learning games suffers badly. This research aims to evaluate the impact of the pedagogically sound instructional design model on students’ motivation by using tablet game-based learning. This research was conducted among the out-of-school-students having an age range from 7 to 12 years and the sample size of two hundred students was purposively selected without any gender discrimination. Qualitative research was conducted by using a survey tool named Instructional Material Motivational Survey (IMMS) adapted from Keller Arcs model. A comparison of results from both groups’ i.e. experimental group and control group revealed that motivation level of the students taught by the game was higher than the students instructed by using conventional methodologies. Experimental group’s students were more attentive, confident and satisfied as compared to the control group’s students. This research work not only promoted the trend of digital game-based learning in developing countries but also supported that a pedagogically sound instructional design model utilized in an educational game can increase the motivation level of the students and can make the learning process a totally immersive and interactive fun loving activity.Keywords: digital game-based learning, student’s motivation, instructional design model, learning process
Procedia PDF Downloads 43932223 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision
Procedia PDF Downloads 16532222 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data
Authors: Yuqing Chen, Ying Xu, Renfa Li
Abstract:
The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier
Procedia PDF Downloads 38932221 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review
Authors: Ng Liang Shen, Hau Yuan Wen
Abstract:
Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS
Procedia PDF Downloads 37732220 Image Segmentation of Visual Markers in Robotic Tracking System Based on Differential Evolution Algorithm with Connected-Component Labeling
Authors: Shu-Yu Hsu, Chen-Chien Hsu, Wei-Yen Wang
Abstract:
Color segmentation is a basic and simple way for recognizing the visual markers in a robotic tracking system. In this paper, we propose a new method for color segmentation by incorporating differential evolution algorithm and connected component labeling to autonomously preset the HSV threshold of visual markers. To evaluate the effectiveness of the proposed algorithm, a ROBOTIS OP2 humanoid robot is used to conduct the experiment, where five most commonly used color including red, purple, blue, yellow, and green in visual markers are given for comparisons.Keywords: color segmentation, differential evolution, connected component labeling, humanoid robot
Procedia PDF Downloads 60732219 Efficacy of Learning: Digital Sources versus Print
Authors: Rahimah Akbar, Abdullah Al-Hashemi, Hanan Taqi, Taiba Sadeq
Abstract:
As technology continues to develop, teaching curriculums in both schools and universities have begun adopting a more computer/digital based approach to the transmission of knowledge and information, as opposed to the more old-fashioned use of textbooks. This gives rise to the question: Are there any differences in learning from a digital source over learning from a printed source, as in from a textbook? More specifically, which medium of information results in better long-term retention? A review of the confounding factors implicated in understanding the relationship between learning from the two different mediums was done. Alongside this, a 4-week cohort study involving 76 1st year English Language female students was performed, whereby the participants were divided into 2 groups. Group A studied material from a paper source (referred to as the Print Medium), and Group B studied material from a digital source (Digital Medium). The dependent variables were grading of memory recall indexed by a 4 point grading system, and total frequency of item repetition. The study was facilitated by advanced computer software called Super Memo. Results showed that, contrary to prevailing evidence, the Digital Medium group showed no statistically significant differences in terms of the shift from Remember (Episodic) to Know (Semantic) when all confounding factors were accounted for. The shift from Random Guess and Familiar to Remember occurred faster in the Digital Medium than it did in the Print Medium.Keywords: digital medium, print medium, long-term memory recall, episodic memory, semantic memory, super memo, forgetting index, frequency of repetitions, total time spent
Procedia PDF Downloads 29532218 Pruning Algorithm for the Minimum Rule Reduct Generation
Authors: Sahin Emrah Amrahov, Fatih Aybar, Serhat Dogan
Abstract:
In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.Keywords: rough sets, decision rules, rule induction, classification
Procedia PDF Downloads 52932217 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach
Authors: Hassan M. H. Mustafa
Abstract:
This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology
Procedia PDF Downloads 47532216 Ready Student One! Exploring How to Build a Successful Game-Based Higher Education Course in Virtual Reality
Authors: Robert Jesiolowski, Monique Jesiolowski
Abstract:
Today more than ever before, we have access to new technologies which provide unforeseen opportunities for educators to pursue in online education. It starts with an idea, but that needs to be coupled with the right team of experts willing to take big risks and put in the hard work to build something different. An instructional design team was empowered to reimagine an Introduction to Sociology university course as a Game-Based Learning (GBL) experience utilizing cutting edge Virtual Reality (VR) technology. The result was a collaborative process that resulted in a type of learning based in Game theory, Method of Loci, and VR Immersion Simulations to promote deeper retention of core concepts. The team deconstructed the way that university courses operated, in order to rebuild the educational process in a whole learner-centric manner. In addition to a review of the build process, this paper will explore the results of in-course surveys completed by student participants.Keywords: higher education, innovation, virtual reality, game-based learning, loci method
Procedia PDF Downloads 9932215 Engineering Academics’ Strategies of Modelling Mathematical Concepts into Their Teaching of an Antenna Design
Authors: Vojo George Fasinu, Nadaraj Govender, Predeep Kumar
Abstract:
An Antenna, which remains the hub of technological development in Africa had been found to be a course that is been taught and designed in an abstract manner in some universities. One of the reasons attached to this is that the appropriate approach of teaching antenna design is not yet understood by many engineering academics in some universities in South Africa. Also, another problem reported is the main difficulty encountered when interpreting and applying some of the mathematical concepts learned into their practical antenna design course. As a result of this, some engineering experts classified antenna as a mysterious technology that could not be described by anybody using mathematical concepts. In view of this, this paper takes it as its point of departure in explaining what an antenna is all about with a strong emphasis on its mathematical modelling. It also argues that the place of modelling mathematical concepts into the teaching of engineering design cannot be overemphasized. Therefore, it explains the mathematical concepts adopted during the teaching of an antenna design course, the Strategies of modelling those mathematics concepts, the behavior of antennas, and their mathematics usage were equally discussed. More so, the paper also sheds more light on mathematical modelling in South Africa context, and also comparative analysis of mathematics concepts taught in mathematics class and mathematics concepts taught in engineering courses. This paper focuses on engineering academics teaching selected topics in electronic engineering (Antenna design), with special attention on the mathematical concepts they teach and how they teach them when teaching the course. A qualitative approach was adopted as a means of collecting data in order to report the naturalistic views of the engineering academics teaching Antenna design. The findings of the study confirmed that some mathematical concepts are being modeled into the teaching of an antenna design with the adoption of some teaching approaches. Furthermore, the paper reports a didactical-realistic mathematical model as a conceptual framework used by the researchers in describing how academics teach mathematical concepts during their teaching of antenna design. Finally, the paper concludes with the importance of mathematical modelling to the engineering academics and recommendations for further researchers.Keywords: modelling, mathematical concepts, engineering, didactical, realistic model
Procedia PDF Downloads 19132214 Active Development of Tacit Knowledge Using Social Media and Learning Communities
Authors: John Zanetich
Abstract:
This paper uses a pragmatic research approach to investigate the relationships between Active Development of Tacit Knowledge (ADTK), social media (Facebook) and classroom learning communities. This paper investigates the use of learning communities and social media as the context and means for changing tacit knowledge to explicit and presents a dynamic model of the development of a classroom learning community. The goal of this study is to identify the point that explicit knowledge is converted to tacit knowledge and to test a way to quantify the exchange using social media and learning communities.Keywords: tacit knowledge, knowledge management, college programs, experiential learning, learning communities
Procedia PDF Downloads 36732213 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia PDF Downloads 13332212 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby
Authors: Jazim Sohail, Filipe Teixeira-Dias
Abstract:
Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI
Procedia PDF Downloads 21932211 Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique
Authors: Ashwini Gowda K. S, Archana M. R, Anjaneyappa V
Abstract:
This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively.Keywords: genetic algorithm, maintenance and rehabilitation, optimization technique, pavement condition index
Procedia PDF Downloads 15632210 A Comparative Case Study on Teaching Romanian Language to Foreign Students: Swedes in Lund versus Arabs in Alba Iulia
Authors: Lucian Vasile Bagiu, Paraschiva Bagiu
Abstract:
The study is a contrastive essay on language acquisition and learning and follows the outcomes of teaching Romanian language to foreign students both at Lund University, Sweden (from 2014 to 2017) and at '1 Decembrie 1918' University in Alba Iulia, Romania (2017-2018). Having employed the same teaching methodology (on campus, same curricula) for the same level of study (beginners’ level: A1-A2), the essay focuses on the written exam at the end of the semester. The study argues on grammar exercises concerned with: the indefinite and the definite article; the conjugation of verbs in the present indicative; the possessive; verbs in the past tense; the subjunctive; the degrees of comparison for adjectives. Identifying similar errors when solving identical grammar exercises by different groups of foreign students is an opportunity to emphasize the major challenges any foreigner has to face and overcome when trying to acquire Romanian language. The conclusion draws attention to the complexity of the morphology of Romanian language in several key elements which may be insurmountable for a foreign speaker no matter if the language acquisition takes place in a foreign country or a Romanian university.Keywords: Arab students, morphological errors, Romanian language, Swedish students, written exam
Procedia PDF Downloads 26132209 The Practices and Challenges of Secondary School Cluster Supervisors in Implementing School Improvement Program in Saesie Tsaeda Emba Woreda, Eastern Zone of Tigray Region
Authors: Haftom Teshale Gebre
Abstract:
According to the ministry of education’s school improvement program blueprint document (2007), the timely and basic aim of the program is to improve students’ academic achievement through creating conducive teaching and learning environments and with the active involvement of parents in the teaching and learning process. The general objective of the research is to examine the practices of cluster school supervisors in implementing school improvement programs and the major factors affecting the study area. The study used both primary and secondary sources, and the sample size was 93. Twelve people are chosen from each of the two clusters (Edaga Hamus and Adi-kelebes). And cluster ferewyni are Tekli suwaat, Edaga robue, and Kiros Alemayo. In the analysis stage, several interrelated pieces of information were summarized and arranged to make the analysis easily manageable by using statistics and data (STATA). Study findings revealed that the major four domains impacted by school improvement programs through their mean, standard deviation, and variance were 2.688172, 1.052724, and 1.108228, respectively. And also, the researcher can conclude that the major factors of the school improvement program and mostly cluster supervisors were inadequate attention given to supervision service and no experience in the practice of supervision in the study area.Keywords: cluster, eastern Tigray, Saesie Tsaeda Emba, SPI
Procedia PDF Downloads 3632208 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 13432207 The Digitalization of Occupational Health and Safety Training: A Fourth Industrial Revolution Perspective
Authors: Deonie Botha
Abstract:
Digital transformation and the digitization of occupational health and safety training have grown exponentially due to a variety of contributing factors. The literature suggests that digitalization has numerous benefits but also has associated challenges. The aim of the paper is to develop an understanding of both the perceived benefits and challenges of digitalization in an occupational health and safety context in an effort to design and develop e-learning interventions that will optimize the benefits of digitalization and address the associated challenges. The paper proposes, deliberate and tests the design principles of an e-learning intervention to ensure alignment with the requirements of a digitally transformed environment. The results of the research are based on a literature review regarding the requirements and effect of the Fourth Industrial Revolution on learning and e-learning in particular. The findings of the literature review are enhanced with empirical research in the form of a case study conducted in an organization that designs and develops e-learning content in the occupational health and safety industry. The primary findings of the research indicated that: (i) The requirements of learners and organizations in respect of e-learning are different than previously (i.e., a pre-Fourth Industrial Revolution related work setting). (ii) The design principles of an e-learning intervention need to be aligned with the entire value chain of the organization. (iii) Digital twins support and enhance the design and development of e-learning. (iv)Learning should incorporate a multitude of sensory experiences and should not only be based on visual stimulation. (v) Data that are generated as a result of e-learning interventions should be incorporated into big data streams to be analyzed and to become actionable. It is therefore concluded that there is general consensus on the requirements that e-learning interventions need to adhere to in a digitally transformed occupational health and safety work environment. The challenge remains for organizations to incorporate data generated as a result of e-learning interventions into the digital ecosystem of the organization.Keywords: digitalization, training, fourth industrial revolution, big data
Procedia PDF Downloads 16232206 EFL Vocabulary Learning Strategies among Students in Greece, Their Preferences and Internet Technology
Authors: Theodorou Kyriaki, Ypsilantis George
Abstract:
Vocabulary learning has attracted a lot of attention in recent years, contrary to the neglected part of the past. Along with the interest in finding successful vocabulary teaching strategies, many scholars focused on locating learning strategies used by language learners. As a result, more and more studies in the area of language pedagogy have been investigating the use of strategies in vocabulary learning by different types of learners. A common instrument in this field is the questionnaire, a tool of work that was enriched by questions involving current technology, and it was further implemented to a sample of 300 Greek students whose age varied from 9 and 17 years. Strategies located were grouped into the three categories of memory, cognitive, and compensatory type and associations between these dependent variables were investigated. In addition, relations between dependent and independent variables (such as age, sex, type of school, cultural background, and grade in English) were pursued to investigate the impact on strategy selection. Finally, results were compared to findings of other studies in the same field to contribute to a hypothesis of ethnic differences in strategy selection. Results initially discuss preferred strategies of all participants and further indicate that: a) technology affects strategy selection while b) differences between ethnic groups are not statistically significant. A number of successful strategies are presented, resulting from correlations of strategy selection and final school grade in English.Keywords: acquisition of English, internet technology, research among Greek students, vocabulary learning strategies
Procedia PDF Downloads 51332205 Hate Speech Detection Using Machine Learning: A Survey
Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile
Abstract:
Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection
Procedia PDF Downloads 18532204 Writing a Parametric Design Algorithm Based on Recreation and Structural Analysis of Patkane Model: The Case Study of Oshtorjan Mosque
Authors: Behnoush Moghiminia, Jesus Anaya Diaz
Abstract:
The current study attempts to present the relationship between the structure development and Patkaneh as one of the Iranian geometric patterns and parametric algorithms by introducing two practical methods. While having a structural function, Patkaneh is also used as an ornamental element. It can be helpful in the scientific and practical review of Patkaneh. The current study aims to use Patkaneh as a parametric form generator based on the algorithm. The current paper attempts to express how can a more complete algorithm of this covering be obtained based on the parametric study and analysis of a sample of a Patkaneh and also investigate the relationship between the development of the geometrical pattern of Patkaneh as a structural-decorative element of Iranian architecture and digital design. In this regard, to achieve the research purposes, researchers investigated the oldest type of Patkaneh in the architecture history of Iran, such as the Northern Entrance Patkaneh of Oshtorjan Jame’ Mosque. An accurate investigation was done on the history of the background to answer the questions. Then, by investigating the structural behavior of Patkaneh, the decorative or structural-decorative role of Patkaneh was investigated to eliminate the ambiguity. Then, the geometrical structure of Patkaneh was analyzed by introducing two practical methods. The first method is based on the constituent units of Patkaneh (Square and diamond) and investigating the interactive relationships between them in 2D and 3D. This method is appropriate for cases where there are rational and regular geometrical relationships. The second method is based on the separation of the floors and the investigation of their interrelation. It is practical when the constituent units are not geometrically regular and have numerous diversity. Finally, the parametric form algorithm of these methods was codified.Keywords: geometric properties, parametric design, Patkaneh, structural analysis
Procedia PDF Downloads 15632203 Decision Trees Constructing Based on K-Means Clustering Algorithm
Authors: Loai Abdallah, Malik Yousef
Abstract:
A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.Keywords: ensemble clustering, decision trees, classification, K nearest neighbors
Procedia PDF Downloads 197