Search results for: linear%20frequency%20modulation%20signal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3362

Search results for: linear%20frequency%20modulation%20signal

1082 Limited Ventilation Efficacy of Prehospital I-Gel Insertion in Out-of-Hospital Cardiac Arrest Patients

Authors: Eunhye Cho, Hyuk-Hoon Kim, Sieun Lee, Minjung Kathy Chae

Abstract:

Introduction: I-gel is a commonly used supraglottic advanced airway device in prehospital out-of-hospital cardiac arrest (OHCA) allowing for minimal interruption of continuous chest compression. However, previous studies have shown that prehospital supraglottic airway had inferior neurologic outcomes and survival compared to no advanced prehospital airway with conventional bag mask ventilation. We hypothesize that continuous compression with i-gel as an advanced airway may cause insufficient ventilation compared to 30:2 chest compression with conventional BVM. Therefore, we investigated the ventilation efficacy of i-gel with the initial arterial blood gas analysis in OHCA patients visiting our ER. Material and Method: Demographics, arrest parameters including i-gel insertion, initial arterial blood gas analysis was retrospectively analysed for 119 transported OHCA patients that visited our ER. Linear regression was done to investigate the association with i-gel insertion and initial pCO2 as a surrogate of prehospital ventilation. Result: A total of 52 patients were analysed for the study. Of the patients who visited the ER during OHCA, 24 patients had i-gel insertion and 28 patients had BVM as airway management in the prehospital phase. Prehospital i-gel insertion was associated with the initial pCO2 level (B coefficient 29.9, SE 10.1, p<0.01) after adjusting for bystander CPR, cardiogenic cause of arrest, EMS call to arrival. Conclusion: Despite many limitations to the study, prehospital insertion of i-gel was associated with high initial pCO2 values in OHCA patients visiting our ER, possibly indicating insufficient ventilation with prehospital i-gel as an advanced airway and continuous chest compressions.

Keywords: arrest, I-gel, prehospital, ventilation

Procedia PDF Downloads 337
1081 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands

Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert

Abstract:

Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.

Keywords: damping, energy-based seismic design, hysteretic energy, input energy

Procedia PDF Downloads 172
1080 Analysis of Accurate Direct-Estimation of the Maximum Power Point and Thermal Characteristics of High Concentration Photovoltaic Modules

Authors: Yan-Wen Wang, Chu-Yang Chou, Jen-Cheng Wang, Min-Sheng Liao, Hsuan-Hsiang Hsu, Cheng-Ying Chou, Chen-Kang Huang, Kun-Chang Kuo, Joe-Air Jiang

Abstract:

Performance-related parameters of high concentration photovoltaic (HCPV) modules (e.g. current and voltage) are required when estimating the maximum power point using numerical and approximation methods. The maximum power point on the characteristic curve for a photovoltaic module varies when temperature or solar radiation is different. It is also difficult to estimate the output performance and maximum power point (MPP) due to the special characteristics of HCPV modules. Based on the p-n junction semiconductor theory, a brand new and simple method is presented in this study to directly evaluate the MPP of HCPV modules. The MPP of HCPV modules can be determined from an irradiated I-V characteristic curve, because there is a non-linear relationship between the temperature of a solar cell and solar radiation. Numerical simulations and field tests are conducted to examine the characteristics of HCPV modules during maximum output power tracking. The performance of the presented method is evaluated by examining the dependence of temperature and irradiation intensity on the MPP characteristics of HCPV modules. These results show that the presented method allows HCPV modules to achieve their maximum power and perform power tracking under various operation conditions. A 0.1% error is found between the estimated and the real maximum power point.

Keywords: energy performance, high concentrated photovoltaic, maximum power point, p-n junction semiconductor

Procedia PDF Downloads 587
1079 Influence of Molecular and Supramolecular Structure on Thermally Stimulated Short-Circuit Currents in Polyvinylidene Fluoride Films

Authors: Temnov D., Volgina E., Gerasimov D.

Abstract:

Relaxation processes in polyvinylidene fluoride (PVDF) films were studied by the method of thermally stimulated fractional polarization currents (TSTF). The films were obtained by extrusion of a polymer melt followed by isometric annealing. PVDF granules of the Kynar-720 brand (Atofina Chemicals, USA) with a molecular weight of Mw=190,000 g•mol-1 were used for the manufacture of films. The annealing temperature was varied in the range from 120 °C to 170 °C in increments of 10 °C. The dependences of the degree of crystallinity of films (χ) and the intensity of thermally stimulated depolarization currents on the annealing temperature (Toc) are investigated. The TSTF spectra were obtained at the TSC II facility (Setaram, France). Measurements were carried out in a helium atmosphere, and the values of currents were determined by a Keithley electrometer. The annealed PVDF films were polarized at an electric field strength of 100 V/mm at a temperature of 31°C, after which they were cooled to 26°C, at which they were kept for 1 minute. During depolarization, the external field was removed, and the short-circuit sample was cooled to 0°C. The thermally stimulated short-circuit current was recorded during linear heating. Relaxation processes in PVDF films were studied in the temperature range from 0 – 70 °C. It is shown that the intensity curve of the peaks of TST FP has a course that is the reverse of the dependence of the degree of crystallinity on the annealing temperature. This allows us to conclude that the relaxation processes occurring in PVDF in the 35°C region are associated with the amorphous part of the structure of PVDF films between the layers of the spherulite crystalline phase.

Keywords: molecular and supramolecular structure, thermally stimulated currents, polyvinylidene fluoride films, relaxation processes

Procedia PDF Downloads 50
1078 Development of a Dairy Drink Made of Cocoa, Coffee and Orange By-Products with Antioxidant Activity

Authors: Gianella Franco, Karen Suarez, María Quijano, Patricia Manzano

Abstract:

Agro-industries generate large amounts of waste, which are mostly untapped. This research was carried out to use cocoa, coffee and orange industrial by-products to develop a dairy drink. The product was prepared by making a 10% aqueous extract of the mixture of cocoa and coffee beans shells and orange peel. Extreme Vertices Mixture Design was applied to vary the proportions of the ingredients of the aqueous extract, getting 13 formulations. Each formulation was mixed with skim milk and pasteurized. The attributes of taste, smell, color and appearance were evaluated by a semi-trained panel by multiple comparisons test, comparing the formulations against a standard marked as "R", which consisted of a coffee commercial drink. The formulations with the highest scores were selected to maximize the Total Polyphenol Content (TPC) through a process of linear optimization resulting in the formulation 80.5%: 18.37%: 1.13% of cocoa bean shell, coffee bean shell and orange peel, respectively. The Total Polyphenol Content was 4.99 ± 0.34 mg GAE/g of drink, DPPH radical scavenging activity (%) was 80.14 ± 0.05 and caffeine concentration of 114.78 mg / L, while the coffee commercial drink presented 3.93 ± 0.84 mg GAE / g drink, 55.54 ± 0.03 % and 47.44 mg / L of TPC, DPPH radical scavenging activity and caffeine content, respectively. The results show that it is possible to prepare an antioxidant - rich drink with good sensorial attributes made of industrial by-products.

Keywords: DPPH, polyphenols, waste, food science

Procedia PDF Downloads 472
1077 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 101
1076 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer

Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari

Abstract:

Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.

Keywords: cosmetic products, methylparaben, molecularly imprinted polymer, wastewater

Procedia PDF Downloads 324
1075 Management of Urban Watering: A Study of Appliance of Technologies and Legislation in Goiania, Brazil

Authors: Vinicius Marzall, Jussanã Milograna

Abstract:

The urban drainwatering remains a major challenge for most of the Brazilian cities. Not so different of the most part, Goiania, a state capital located in Midwest of the country has few legislations about the subject matter and only one registered solution of compensative techniques for drainwater. This paper clam to show some solutions which are adopted in other Brazilian cities with consolidated legislation, suggesting technics about detention tanks in a building sit. This study analyzed and compared the legislation of Curitiba, Porto Alegre e Sao Paulo, with the actual legislation and politics of Goiania. After this, were created models with adopted data for dimensioning the size of detention tanks using the envelope curve method considering synthetic series for intense precipitations and building sits between 250 m² and 600 m², with an impermeabilization tax of 50%. The results showed great differences between the legislation of Goiania and the documentation of the others cities analyzed, like the number of techniques for drainwatering applied to the reality of the cities, educational actions to awareness the population about care the water courses and political management by having a specified funds for drainwater subjects, for example. Besides, the use of detention tank showed itself practicable, have seen that the occupation of the tank is minor than 3% of the building sit, whatever the size of the terrain, granting the exit flow to pre-occupational taxes in extreme rainfall events. Also, was developed a linear equation to measure the detention tank based in the size of the building sit in Goiania, making simpler the calculation and implementation for non-specialized people.

Keywords: clean technology, legislation, rainwater management, urban drainwater

Procedia PDF Downloads 162
1074 Development of Stability Indicating Method and Characterization of Degradation Impurity of Nirmaltrelvir in Its Self-Emulsifying Drug Delivery System

Authors: Ravi Patel, Ravisinh Solanki, Dignesh Khunt

Abstract:

A stability-indicating reverse phase high performance liquid chromatography (RP-HPLC) method was developed and validated for estimating Nirmatrelvir in its self-emulsifying drug delivery system (SEDDS). The separation of Nirmatrelvir and its degradation products was accomplished by employing an Agilent Zorbax Eclipse plus C18 (250 mm x 4.6 mm, 5 µm) column, through which the mobile phase 5 mM phosphate buffer (pH 4.0) as mobile phase A and Acetonitrile as mobile phase B in a ratio of (40:60 % v/v) was pumped at a flow rate of 1.0 mL/min, through the HPLC system. Chromatographic separation and elution were monitored by a photo-diode array detector at 210 nm. Stress studies have been employed to evaluate this method's ability to indicate stability. Nirmatrelvir was exposed to several stress conditions, such as acid, alkali, oxidative, photolytic, and thermal degradations. Significant degradation was observed during acid and alkali hydrolysis, and the resulting degradation product was successfully separated from the Nirmatrelvir peak, preventing any interference. Furthermore, the primary degradant produced under alkali degradation conditions was identified using UPLC-ESI-TQ-MS/MS. The method was validated in accordance with the International Council on Harmonization (ICH) and found to be selective, precise, accurate, linear, and robust. The apparent permeability of Nirmatrelvir SEDDS was 4.20 ± 0.21×10-6 cm/sec, and the average proportion of free drug recovered was 0.5%. The method developed in this study was feasible and accurate for routine quality control evaluation of Nirmatrelvir SEDDS.

Keywords: Nirmatrelvir, SEDDS, degradation study, HPLC, LC-MS/MS

Procedia PDF Downloads 24
1073 Design Optimization of a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami

Abstract:

The use of Micro Gas Turbine (MGT) as the engine in Unmanned Aerobic Vehicles (UAVs) and power source in Robotics is widespread these days. Research has been conducted in the past decade or so to improve the performance of different components of MGT. This type of engine has interrelated components which have non-linear characteristics. Therefore, the overall engine performance depends on the individual engine element’s performance. Computational Fluid Dynamics (CFD) is one of the simulation method tools used to analyze or even optimize MGT system performance. In this study, the compressor of the MGT is designed, and performance optimization is being done using CFD. Performance of the micro compressor is improved in order to increase the overall performance of MGT. A high value of pressure ratio is to be achieved by studying the effect of change of different operating parameters like mass flow rate and revolutions per minute (RPM) and aerodynamical and geometrical parameters on the pressure ratio of the compressor. Two types of compressor designs are considered in this study; 3D centrifugal and ‘planar’ designs. For a 10 mm impeller, the planar model is the simplest compressor model with the ease in manufacturability. On the other hand, 3D centrifugal model, although more efficient, is very difficult to manufacture using current microfabrication resources. Therefore, the planar model is the best-suited model for a micro compressor. So. a planar micro compressor has been designed that has a good pressure ratio, and it is easy to manufacture using current microfabrication technologies. Future work is to fabricate the compressor to get experimental results and validate the theoretical model.

Keywords: computational fluid dynamics, microfabrication, MEMS, unmanned aerobic vehicles

Procedia PDF Downloads 147
1072 Shear Stress and Effective Structural Stress ‎Fields of an Atherosclerotic Coronary Artery

Authors: Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, Stephen J. Nicholls, Peter J. Psaltis

Abstract:

A three-dimensional numerical model of an atherosclerotic coronary ‎artery is developed for the determination of high-risk situation and ‎hence heart attack prediction. Employing the finite element method ‎‎(FEM) using ANSYS, fluid-structure interaction (FSI) model of the ‎artery is constructed to determine the shear stress distribution as well ‎as the von Mises stress field. A flexible model for an atherosclerotic ‎coronary artery conveying pulsatile blood is developed incorporating ‎three-dimensionality, artery’s tapered shape via a linear function for ‎artery wall distribution, motion of the artery, blood viscosity via the ‎non-Newtonian flow theory, blood pulsation via use of one-period ‎heartbeat, hyperelasticity via the Mooney-Rivlin model, viscoelasticity ‎via the Prony series shear relaxation scheme, and micro-calcification ‎inside the plaque. The material properties used to relate the stress field ‎to the strain field have been extracted from clinical data from previous ‎in-vitro studies. The determined stress fields has potential to be used as ‎a predictive tool for plaque rupture and dissection.‎ The results show that stress concentration due to micro-calcification ‎increases the von Mises stress significantly; chance of developing a ‎crack inside the plaque increases. Moreover, the blood pulsation varies ‎the stress distribution substantially for some cases.‎

Keywords: atherosclerosis, fluid-structure interaction‎, coronary arteries‎, pulsatile flow

Procedia PDF Downloads 176
1071 The Impact of Civilian Syrian War on Human Wellbeing as Inflected by Depression General Status Among Patients Treated in Royal Medical Services, Jordan

Authors: Zeyad Suleiman Bataineh

Abstract:

Introduction: civilian wars are associated with severe humanitarian effects that include loss of individuals and properties. Psychological dimensions are also included depression. Objectives: the main objectives of the present study were to investigate the depression level among Syrian patients who visited internal medicine clinics and other related variables. Methods and subjects: this study was conducted based on cross sectional study design. A total of 175 patients were involved. Patients were asked to fill a questionnaire to assess the level of depression that include demographic variables such as gender, age, educational level, and social status. Beck Aaron scale for depression was used. Participation in this study was voluntary, and all patients were informed about their rights to withdraw from the study without being negatively affected. Data were entered into excel spreading sheet for all participants. SPSS version 21 was used to analyze data. Data were described as means, the standard deviation for linear variables, frequencies, and percentages for categorical variables. The relationships between variables were evaluated using independent t test and One Way ANOVA test. Significance was considered at α≤0.05. Results: Depression was found in 152 (87%) of participants. The majority of participants with depression had moderate to severe depression. Depression was significantly associated gender, age, educational level, and social status (p<0.05). Conclusion: psychological rehabilitation is required for patients who experienced civilian wars.

Keywords: mental health, deprssion, health system, psychological dimension

Procedia PDF Downloads 132
1070 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing

Authors: S. Bouhouche, R. Drai, J. Bast

Abstract:

This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.

Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement

Procedia PDF Downloads 288
1069 Spatial Analysis of Festival Spaces in Traditional Festivals in Taipei City

Authors: Liu Szu Yin

Abstract:

The center of urban development lies in commercial transactions and folk religious activities. In Taipei City, temples serve as crucial urban spaces and centers for civic activities and religious beliefs. The appearance of local temples can be influenced by the prosperity of the surrounding communities. Apart from being centers of religious worship, Taipei's temples also host festival celebrations, allowing people to gather in front of the temples and form collective urban memories. The spatial attributes for hosting festival activities include streets, squares, parks, and buildings. In Taipei, many traditional festivals take place on the streets, either as round-trip routes or linear routes with a single starting and ending point. Given the processions and parades involving palanquins and other ceremonial objects during traditional festival activities, street spaces are frequently utilized. Therefore, this study analyzes the historical context and street spaces of three traditional festivals in Taipei City, including Qingshan Temple in Monga, Xiahai City God Temple in Dadaocheng, and Baoan Temple in Dalongdong, through on-site research. Most urban festival planners need to understand the characteristics of the city's streets in order to effectively utilize street spaces for festival planning. Taipei's traditional festivals not only preserve Chinese traditional culture but also incorporate modern elements, ensuring the transmission of culture and faith and allowing the city to become characterized by sustainable culture and unique urban memories.

Keywords: festival space, urban festival, taipei, urban memory

Procedia PDF Downloads 74
1068 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization

Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi

Abstract:

This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.

Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities

Procedia PDF Downloads 508
1067 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 118
1066 Exploring Weld Rejection Rate Limits and Tracers Effects in Construction Projects

Authors: Abdalaziz M. Alsalhabi, Loai M. Alowa

Abstract:

This paper investigates Weld Rejection Rate (WRR) limits and tracer effects in construction projects, with a specific focus on a Gas Plant Project, a mega-project held by Saudi Aramco (SA) in Saudi Arabia. The study included a comprehensive examination of various factors impacting WRR limits. It commenced by comparing the Company practices with ASME standards, followed by an in-depth analysis of both weekly and cumulative projects' historical WRR data, evaluation of Radiographic Testing (RT) reports for rejected welds, and proposal of mitigation methods to eliminate future rejections. Additionally, the study revealed the causes of fluctuation in WRR data and benchmarked with the industry practices. Furthermore, a case study was conducted to explore the impact of tracers on WRR, providing insights into their influence on the welding process. This paper aims to achieve three primary objectives. Firstly, it seeks to validate the existing practices of WRR limits and advocate for their inclusion within relevant International Industry Standards. Secondly, it aims to validate the effectiveness of the WRR formula that incorporates tracer effects, ensuring its reliability in assessing weld quality. Lastly, this study aims to identify opportunities for process improvement in WRR control, with the ultimate goal of enhancing project processes and ensuring the integrity, safety, and efficiency of constructed assets.

Keywords: weld rejection rate, weld repair rate in joint and linear basis, tracers effects, construction projects

Procedia PDF Downloads 51
1065 Comparative Fragility Analysis of Shallow Tunnels Subjected to Seismic and Blast Loads

Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed

Abstract:

Underground structures are crucial components which required detailed analysis and design. Tunnels, for instance, are massively constructed as transportation infrastructures and utilities network especially in urban environments. Considering their prime importance to the economy and public safety that cannot be compromised, thus any instability to these tunnels will be highly detrimental to their performance. Recent experience suggests that tunnels become vulnerable during earthquakes and blast scenarios. However, a very limited amount of studies has been carried out to study and understanding the dynamic response and performance of underground tunnels under those unpredictable extreme hazards. In view of the importance of enhancing the resilience of these structures, the overall aims of the study are to evaluate probabilistic future performance of shallow tunnels subjected to seismic and blast loads by developing detailed fragility analysis. Critical non-linear time history numerical analyses using sophisticated finite element software Midas GTS NX have been presented about the current methods of analysis, taking into consideration of structural typology, ground motion and explosive characteristics, effect of soil conditions and other associated uncertainties on the tunnel integrity which may ultimately lead to the catastrophic failure of the structures. The proposed fragility curves for both extreme loadings are discussed and compared which provide significant information the performance of the tunnel under extreme hazards which may beneficial for future risk assessment and loss estimation.

Keywords: fragility analysis, seismic loads, shallow tunnels, blast loads

Procedia PDF Downloads 346
1064 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 305
1063 Assessment of Personal Level Exposures to Particulate Matter among Children in Rural Preliminary Schools as an Indoor Air Pollution Monitoring

Authors: Seyedtaghi Mirmohammadi, J. Yazdani, S. M. Asadi, M. Rokni, A. Toosi

Abstract:

There are many indoor air quality studies with an emphasis on indoor particulate matters (PM2.5) monitoring. Whereas, there is a lake of data about indoor PM2.5 concentrations in rural area schools (especially in classrooms), since preliminary children are assumed to be more defenseless to health hazards and spend a large part of their time in classrooms. The objective of this study was indoor PM2.5 concentration quality assessment. Fifteen preliminary schools by time-series sampling were selected to evaluate the indoor air quality in the rural district of Sari city, Iran. Data on indoor air climate parameters (temperature, relative humidity and wind speed) were measured by a hygrometer and thermometer. Particulate matters (PM2.5) were collected and assessed by Real Time Dust Monitor, (MicroDust Pro, Casella, UK). The mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3 in average. The multiple linear regression revealed that a correlation between PM2.5 concentration and relative humidity, distance from city center and classroom size. Classroom size yields reasonable negative relationship, the PM2.5 concentration was ranged from 65 to 540μg/m3 and statistically significant at 0.05 level and the relative humidity was ranged from 70 to 85% and dry bulb temperature ranged from 28 to 29°C were statistically significant at 0.035 and 0.05 level, respectively. A statistical predictive model was obtained from multiple regressions modeling for PM2.5 and indoor psychrometric parameters.

Keywords: particulate matters, classrooms, regression, concentration, humidity

Procedia PDF Downloads 313
1062 Challenges for Adopting Circular Economy Toward Business Innovation and Supply Chain

Authors: Kapil Khanna, Swee Kuik, Joowon Ban

Abstract:

The current linear economic system is unsustainable due to its dependence on the uncontrolled exploitation of diminishing natural resources. The integration of business innovation and supply chain management has brought about the redesign of business processes through the implementation of a closed-loop approach. The circular economy (CE) offers a sustainable solution to improve business opportunities in the near future by following the principles of rejuvenation and reuse inspired by nature. Those business owners start to rethink and consider using waste as raw material to make new products for consumers. The implementation of CE helps organisations to incorporate new strategic plans for decreasing the use of virgin materials and nature resources. Supply chain partners that are geographically dispersed rely heavily on innovative approaches to support supply chain management. Presently, numerous studies have attempted to establish the concept of supply chain management (SCM) by integrating CE principles, which are commonly denoted as circular SCM. While many scholars have recognised the challenges of transitioning to CE, there is still a lack of consensus on business best practices that can facilitate companies in embracing CE across the supply chain. Hence, this paper strives to scrutinize the SCM practices utilised for CE, identify the obstacles, and recommend best practices that can enhance a company's ability to incorporate CE principles toward business innovation and supply chain performance. Further, the paper proposes future research in the field of using specific technologies such as artificial intelligence, Internet of Things, and blockchain as business innovation tools for supply chain management and CE adoption.

Keywords: business innovation, challenges, circular supply chain, supply chain management, technology

Procedia PDF Downloads 108
1061 A Mathematical Programming Model for Lot Sizing and Production Planning in Multi-Product Companies: A Case Study of Azar Battery Company

Authors: Farzad Jafarpour Taher, Maghsud Solimanpur

Abstract:

Production planning is one of the complex tasks in multi-product firms that produce a wide range of products. Since resources in mass production companies are limited and different products use common resources, there must be a careful plan so that firms can respond to customer needs efficiently. Azar-battery Company is a firm that provides twenty types of products for its customers. Therefore, careful planning must be performed in this company. In this research, the current conditions of Azar-battery Company were investigated to provide a mathematical programming model to determine the optimum production rate of the products in this company. The production system of this company is multi-stage, multi-product and multi-period. This system is studied in terms of a one-year planning horizon regarding the capacity of machines and warehouse space limitation. The problem has been modeled as a linear programming model with deterministic demand in which shortage is not allowed. The objective function of this model is to minimize costs (including raw materials, assembly stage, energy costs, packaging, and holding). Finally, this model has been solved by Lingo software using the branch and bound approach. Since the computation time was very long, the solver interrupted, and the obtained feasible solution was used for comparison. The proposed model's solution costs have been compared to the company’s real data. This non-optimal solution reduces the total production costs of the company by about %35.

Keywords: multi-period, multi-product production, multi-stage, production planning

Procedia PDF Downloads 101
1060 Process Monitoring Based on Parameterless Self-Organizing Map

Authors: Young Jae Choung, Seoung Bum Kim

Abstract:

Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.

Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property

Procedia PDF Downloads 279
1059 Pellegrini-Stieda Syndrome: A Physical Medicine and Rehabilitation Approach

Authors: Pedro Ferraz-Gameiro

Abstract:

Introduction: The Pellegrini-Stieda lesion is the result of post-traumatic calcification and/or ossification on the medial collateral ligament (MCL) of the knee. When this calcification is accompanied by gonalgia and limitation of knee flexion, it is called Pellegrini-Stieda syndrome. The pathogenesis is probably the calcification of a post-traumatic hematoma at least three weeks after the initial trauma or secondary to repetitive microtrauma. On anteroposterior radiographs, a Pellegrini-Stieda lesion is a linear vertical ossification or calcification of the proximal portion of the MCL and usually near the medial femoral condyle. Patients with Pellegrini-Stieda syndrome present knee pain associated with loss of range of motion. The treatment is usually conservative with analgesic and anti-inflammatory drugs, either systemic or intra-articular. Physical medicine and rehabilitation techniques associated with shock wave therapy can be a way of reduction of pain/inflammation. Patients who maintain instability with significant limitation of knee mobility may require surgical excision. Methods: Research was done using PubMed central using the terms Pellegrini-Stieda syndrome. Discussion/conclusion: Medical treatment is the rule, with initial rest, anti-inflammatory, and physiotherapy. If left untreated, this ossification can potentially form a significant bone mass, which can compromise the range of motion of the knee. Physical medicine and rehabilitation techniques associated with shock wave therapy are a way of reduction of pain/inflammation.

Keywords: knee, Pellegrini-Stieda syndrome, rehabilitation, shock waves therapy

Procedia PDF Downloads 145
1058 Obsession of Time and the New Musical Ontologies. The Concert for Saxophone, Daniel Kientzy and Orchestra by Myriam Marbe

Authors: Dutica Luminita

Abstract:

For the music composer Myriam Marbe the musical time and memory represent 2 (complementary) phenomena with conclusive impact on the settlement of new musical ontologies. Summarizing the most important achievements of the contemporary techniques of composition, her vision on the microform presented in The Concert for Daniel Kientzy, saxophone and orchestra transcends the linear and unidirectional time in favour of a flexible, multi-vectorial speech with spiral developments, where the sound substance is auto(re)generated by analogy with the fundamental processes of the memory. The conceptual model is of an archetypal essence, the music composer being concerned with identifying the mechanisms of the creation process, especially of those specific to the collective creation (of oral tradition). Hence the spontaneity of expression, improvisation tint, free rhythm, micro-interval intonation, coloristic-timbral universe dominated by multiphonics and unique sound effects. Hence the atmosphere of ritual, however purged by the primary connotations and reprojected into a wonderful spectacular space. The Concert is a work of artistic maturity and enforces respect, among others, by the timbral diversity of the three species of saxophone required by the music composer (baritone, sopranino and alt), in Part III Daniel Kientzy shows the performance of playing two saxophones concomitantly. The score of the music composer Myriam Marbe contains a deeply spiritualized music, full or archetypal symbols, a music whose drama suggests a real cinematographic movement.

Keywords: archetype, chronogenesis, concert, multiphonics

Procedia PDF Downloads 547
1057 The Imminent Other in Anna Deavere Smith’s Performance

Authors: Joy Shihyi Huang

Abstract:

This paper discusses the concept of community in Anna Deavere Smith’s performance, one that challenges and explores existing notions of justice and the other. In contrast to unwavering assumptions of essentialism that have helped to propel a discourse on moral agency within the black community, Smith employs postmodern ideas in which the theatrical attributes of doubling and repetition are conceptualized as part of what Marvin Carlson coined as a ‘memory machine.’ Her dismissal of the need for linear time, such as that regulated by Aristotle’s The Poetics and its concomitant ethics, values, and emotions as a primary ontological and epistemological construct produced by the existing African American historiography, demonstrates an urgency to produce an alternative communal self to override metanarratives in which the African Americans’ lives are contained and sublated by specific historical confines. Drawing on Emmanuel Levinas’ theories in ethics, specifically his notion of ‘proximity’ and ‘the third,’ the paper argues that Smith enacts a new model of ethics by launching an acting method that eliminates the boundary of self and other. Defying psychological realism, Smith conceptualizes an approach to acting that surpasses the mere mimetic value of invoking a ‘likeness’ of an actor to a character, which as such, resembles the mere attribution of various racial or sexual attributes in identity politics. Such acting, she contends, reduces the other to a representation of, at best, an ultimate rendering of me/my experience. She instead appreciates ‘unlikeness,’ recognizes the unavoidable actor/character gap as a power that humbles the self, whose irreversible journey to the other carves out its own image.

Keywords: Anna Deavere Smith, Emmanuel Levinas, other, performance

Procedia PDF Downloads 158
1056 Correlation Volumic Shrinkage, Conversion Degree of Dental Composites

Authors: A. Amirouche, M. Mouzali, D. C. Watts

Abstract:

During polymerization of dental composites, the volumic shrinkage is related to the conversion degree. The variation of the volumic shrinkage (S max according to the degree of conversion CD.), was examined for the experimental composites: (BisGMA/TEGDMA): (50/50), (75/25), (25/75) mixed with seven radiopac fillers: La2O3, BaO, BaSO4, SrO, ZrO2 , SrZrO3 and BaZrO 3 with different contents in weight, from 0 to 80%. We notice that whatever the filler and the composition in monomers, Smax increases with the increase in CD. This variation is, linear in particular in the case of the fillers containing only one heavy metal, and that whatever the composition in monomers. For a given salt, the increase of BisGMA composition leads to significant increase of S max more pronounced than the increase in CD. The variation of ratio (S max / CD.) with the increase of filler content is negligible. However the fillers containing two types of heavy metals have more effect on the volumic shrinkage than on the degree of conversion. Whatever the composition in monomer, and the content of filler containing only one heavy atom, S max increases with the increase in CD. Nevertheless, S max is affected by the viscosity of the medium compared with CD. For high percentages of mineral fillers (≥ 70% in weight), the diagrams S max according to CD are deviated of the linearity, owing to the fact that S max is affected by the high percentage of fillers compared with CD. The number of heavy atoms influences directly correlation (S max / CD.). In the case of the two mineral fillers: SrZrO3 and BaZrO3 ratio (S max / CD) moves away from the proportionality. The linearity of the diagrams Smax according to CD is less regular, due to the viscosity of high content of BisGMA. The study of Smax and DC of four commercial composites are presented and compared to elaborate experimental composites.

Keywords: Dental composites, degree of conversion, volumic shrinkage, photopolymerization

Procedia PDF Downloads 376
1055 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation

Procedia PDF Downloads 137
1054 Examination of State of Repair of Buildings in Private Housing Estates in Enugu Metropolis, Enugu State Nigeria

Authors: Umeora Chukwunonso Obiefuna

Abstract:

The private sector in housing provision continually take steps towards addressing part of the problem of cushioning the effect of the housing shortage in Nigeria by establishing housing estates since the government alone cannot provide housing for everyone. This research examined and reported findings from research conducted on the state of repair of buildings in private housing estates in Enugu metropolis, Enugu state Nigeria. The objectives of the study were to examine the physical conditions of the building fabrics and appraise the performance of infrastructural services provided in the buildings. The questionnaire was used as a research instrument to elicit data from respondents. Stratified sampling of the estates based on building type was adopted as a sampling method for this study. Findings from the research show that the state of repair of most buildings require minor repairs to make them fit for habitation and sound to ensure the well-being of the residents. In addition, four independent variables from the nine independent variables investigated significantly explained residual variation in the dependent variable - state of repair of the buildings in the study area. These variables are: Average Monthly Income of Residents (AMIR), Length of Stay of the Residents in the estates (LSY), Type of Wall Finishes on the buildings (TWF), and Time Taken to Respond to Resident’s complaints by the estate managers (TTRC). With this, the linear model was established for predicting the state of repair of buildings in private housing estates in the study area. This would assist in identifying variables that are lucid in predicting the state of repair of the buildings.

Keywords: building, housing estate, private, repair

Procedia PDF Downloads 145
1053 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic

Abstract:

The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).

Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences

Procedia PDF Downloads 324