Search results for: laser applications
4869 Rb-Modified Few-Layered Graphene for Gas Sensing Application
Authors: Vasant Reddy, Shivani A. Singh, Pravin S. More
Abstract:
In the present investigation, we demonstrated the fabrication of few-layers of graphene sheets with alkali metal i.e. Rb-G using chemical route method. The obtained materials were characterized by means of chemical, structural and electrical techniques, using the ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and 4 points probe, respectively. The XRD studies were carried out to understand the phase of the samples where we found a sharp peak of Rb-G at 26.470. UV-Spectroscopy of Graphene and Rb-modified graphene samples shows the absorption peaks at ~248 nm and ~318 nm respectively. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.Keywords: chemical route, graphene, gas sensing, UV-spectroscopy
Procedia PDF Downloads 2734868 An Extended Inverse Pareto Distribution, with Applications
Authors: Abdel Hadi Ebraheim
Abstract:
This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation
Procedia PDF Downloads 864867 Fractional-Order Modeling of GaN High Electron Mobility Transistors for Switching Applications
Authors: Anwar H. Jarndal, Ahmed S. Elwakil
Abstract:
In this paper, a fraction-order model for pad parasitic effect of GaN HEMT on Si substrate is developed and validated. Open de-embedding structure is used to characterize and de-embed substrate loading parasitic effects. Unbiased device measurements are implemented to extract parasitic inductances and resistances. The model shows very good simulation for S-parameter measurements under different bias conditions. It has been found that this approach can improve the simulation of intrinsic part of the transistor, which is very important for small- and large-signal modeling process.Keywords: fractional-order modeling, GaNHEMT, si-substrate, open de-embedding structure
Procedia PDF Downloads 3584866 Sizing of Hybrid Source Battery/Supercapacitor for Automotive Applications
Authors: Laid Degaa, Bachir Bendjedia, Nassim Rizoug, Abdelkader Saidane
Abstract:
Energy storage system is a key aspect for the development of clean cars. The work proposed here deals with the modeling of hybrid storage sources composed of a combination of lithium-ion battery and supercapacitors. Simulation results show the performance of the active model for a hybrid source and confirm the feasibility of our approach. In this context, sizing of the electrical energy supply is carried out. The aim of this sizing is to propose an 'optimal' solution that improves the performance of electric vehicles in term of weight, cost and aging.Keywords: battery, electric vehicles, energy, hybrid storage, supercapacitor
Procedia PDF Downloads 7964865 Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies
Authors: Elvira S. Castillo, Surupa Shaw
Abstract:
This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges.Keywords: fluid mechanics, sustainable energy, energy efficiency, green energy
Procedia PDF Downloads 564864 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices
Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das
Abstract:
The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.Keywords: terahertz, detector, responsivity, topological-semimetals
Procedia PDF Downloads 1684863 Porcelain Paste Processing by Robocasting 3D: Parameters Tuning
Authors: A. S. V. Carvalho, J. Luis, L. S. O. Pires, J. M. Oliveira
Abstract:
Additive manufacturing technologies (AM) experienced a remarkable growth in the latest years due to the development and diffusion of a wide range of three-dimensional (3D) printing techniques. Nowadays we can find techniques available for non-industrial users, like fused filament fabrication, but techniques like 3D printing, polyjet, selective laser sintering and stereolithography are mainly spread in the industry. Robocasting (R3D) shows a great potential due to its ability to shape materials with a wide range of viscosity. Industrial porcelain compositions showing different rheological behaviour can be prepared and used as candidate materials to be processed by R3D. The use of this AM technique in industry is very residual. In this work, a specific porcelain composition with suitable rheological properties will be processed by R3D, and a systematic study of the printing parameters tuning will be shown. The porcelain composition was formulated based on an industrial spray dried porcelain powder. The powder particle size and morphology was analysed. The powders were mixed with water and an organic binder on a ball mill at 200 rpm/min for 24 hours. The batch viscosity was adjusted by the addition of an acid solution and mixed again. The paste density, viscosity, zeta potential, particle size distribution and pH were determined. In a R3D system, different speed and pressure settings were studied to access their impact on the fabrication of porcelain models. These models were dried at 80 °C, during 24 hours and sintered in air at 1350 °C for 2 hours. The stability of the models, its walls and surface quality were studied and their physical properties were accessed. The microstructure and layer adhesion were observed by SEM. The studied processing parameters have a high impact on the models quality. Moreover, they have a high impact on the stacking of the filaments. The adequate tuning of the parameters has a huge influence on the final properties of the porcelain models. This work contributes to a better assimilation of AM technologies in ceramic industry. Acknowledgments: The RoboCer3D project – project of additive rapid manufacturing through 3D printing ceramic material (POCI-01-0247-FEDER-003350) financed by Compete 2020, PT 2020, European Regional Development Fund – FEDER through the International and Competitive Operational Program (POCI) under the PT2020 partnership agreement.Keywords: additive manufacturing, porcelain, robocasting, R3D
Procedia PDF Downloads 1654862 VR/AR Applications in Personalized Learning
Authors: Andy Wang
Abstract:
Personalized learning refers to an educational approach that tailors instruction to meet the unique needs, interests, and abilities of each learner. This method of learning aims at providing students with a customized learning experience that is more engaging, interactive, and relevant to their personal lives. With generative AI technology, the author has developed a Personal Tutoring Bot (PTB) that supports personalized learning. The author is currently testing PTB in his EE 499 – Microelectronics Metrology course. Virtual Reality (VR) and Augmented Reality (AR) provide interactive and immersive learning environments that can engage student in online learning. This paper presents the rationale of integrating VR/AR tools in PTB and discusses challenges and solutions of incorporating VA/AR into the Personal Tutoring Bot (PTB).Keywords: personalized learning, online education, hands-on practice, VR/AR tools
Procedia PDF Downloads 734861 System Engineering Design of Offshore Oil Drilling Production Platform from Marine Environment
Authors: C. Njoku Paul
Abstract:
This paper deals with systems engineering applications design for offshore oil drilling production platform in the Nigerian Marine Environment. Engineering Design model of the distribution and accumulation of petroleum hydrocarbons discharged into marine environment production platform and sources of impact of an offshore is treated.Keywords: design of offshore oil drilling production platform, marine, environment, petroleum hydrocarbons
Procedia PDF Downloads 5444860 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 1974859 Impact of Instructional Designing in Digital Game-Based Learning for Enhancing Students' Motivation
Authors: Shafaq Rubab
Abstract:
The primary reason for dropping out of school is associated with students’ lack of motivation in class, especially in mathematics. Digital game-based learning is an approach that is being actively explored; there are very few learning games based on proven instructional design models or frameworks due to which the effectiveness of the learning games suffers. The purpose of this research was twofold: first, developing an appropriate instructional design model and second, evaluating the impact of the instructional design model on students’ motivation. This research contributes significantly to the existing literature in terms of student motivation and the impact of instructional design model in digital game-based learning. The sample size for this study consists of two hundred out-of-school students between the age of 6 and 12 years. The research methodology used for this research was a quasi-experimental approach and data was analyzed by using the instructional material motivational survey questionnaire which is adapted from the Keller Arcs model. Control and experimental groups consisting of two hundred students were analyzed by utilizing instructional material motivational survey (IMMS), and comparison of result from both groups showed the difference in the level of motivation of the students. The result of the research showed that the motivational level of student in the experimental group who were taught by the game was higher than the student in control group (taught by conventional methodology). The mean score of the experimental group against all subscales (attention, relevance, confidence, and satisfaction) of IMMS survey was higher; however, no statistical significance was found between the motivational scores of control and experimental group. The positive impact of game-based learning on students’ level of motivation, as measured in this study, strengthens the case for the use of pedagogically sound instructional design models in the design of interactive learning applications. In addition, the present study suggests learning from interactive, immersive applications as an alternative solution for children, especially in Third World countries, who, for various reasons, do not attend school. The mean score of experimental group against all subscales of IMMS survey was higher; however, no statistical significance was found between motivational scores of control and experimental group.Keywords: digital game-based learning, students’ motivation, and instructional designing, instructional material motivational survey
Procedia PDF Downloads 4274858 Trial Version of a Systematic Material Selection Tool in Building Element Design
Authors: Mine Koyaz, M. Cem Altun
Abstract:
Selection of the materials satisfying the expected performances is significantly important for any design. Today, with the constantly evolving and developing technologies, the material options are so wide that the necessity of the use of some support tools in the selection process is arising. Therefore, as a sub process of building element design, a systematic material selection tool is developed, that defines four main steps of the material selection; definition, research, comparison and decision. The main purpose of the tool is being an educational instrument that would show a methodic way of material selection in architectural detailing for the use of architecture students. The tool predefines the possible uses of various material databases and other sources of information on material properties. Hence, it is to be used as a guidance for designers, especially with a limited material knowledge and experience. The material selection tool not only embraces technical properties of materials related with building elements’ functional requirements, but also its sensual properties related with the identity of design and its environmental impacts with respect to the sustainability of the design. The method followed in the development of the tool has two main sections; first the examination and application of the existing methods and second the development of trial versions and their applications. Within the scope of the existing methods; design support tools, methodic approaches for the building element design and material selection process, material properties, material databases, methodic approaches for the decision making process are examined. The existing methods are applied by architecture students and newly graduate architects through different design problems. With respect to the results of these applications, strong and weak sides of the existing material selection tools are presented. A main flow chart of the material selection tool has been developed with the objective to apply the strong aspects of the existing methods and develop their weak sides. Through different stages, a different aspect of the material selection process is investigated and the tool took its final form. Systematic material selection tool, within the building element design process, guides the users with a minimum background information, to practically and accurately determine the ideal material that is to be chosen, satisfying the needs of their design. The tool has a flexible structure that answers different needs of different designs and designers. The trial version issued in this paper shows one of the paths that could be followed and illustrates its application over a design problem.Keywords: architectural education, building element design, material selection tool, systematic approach
Procedia PDF Downloads 3544857 The Role of Artificial Intelligence in Creating Personalized Health Content for Elderly People: A Systematic Review Study
Authors: Mahnaz Khalafehnilsaz, Rozina Rahnama
Abstract:
Introduction: The elderly population is growing rapidly, and with this growth comes an increased demand for healthcare services. Artificial intelligence (AI) has the potential to revolutionize the delivery of healthcare services to the elderly population. In this study, the various ways in which AI is used to create health content for elderly people and its transformative impact on the healthcare industry will be explored. Method: A systematic review of the literature was conducted to identify studies that have investigated the role of AI in creating health content specifically for elderly people. Several databases, including PubMed, Scopus, and Web of Science, were searched for relevant articles published between 2000 and 2022. The search strategy employed a combination of keywords related to AI, personalized health content, and the elderly. Studies that utilized AI to create health content for elderly individuals were included, while those that did not meet the inclusion criteria were excluded. A total of 20 articles that met the inclusion criteria were identified. Finding: The findings of this review highlight the diverse applications of AI in creating health content for elderly people. One significant application is the use of natural language processing (NLP), which involves the creation of chatbots and virtual assistants capable of providing personalized health information and advice to elderly patients. AI is also utilized in the field of medical imaging, where algorithms analyze medical images such as X-rays, CT scans, and MRIs to detect diseases and abnormalities. Additionally, AI enables the development of personalized health content for elderly patients by analyzing large amounts of patient data to identify patterns and trends that can inform healthcare providers in developing tailored treatment plans. Conclusion: AI is transforming the healthcare industry by providing a wide range of applications that can improve patient outcomes and reduce healthcare costs. From creating chatbots and virtual assistants to analyzing medical images and developing personalized treatment plans, AI is revolutionizing the way healthcare is delivered to elderly patients. Continued investment in this field is essential to ensure that elderly patients receive the best possible care.Keywords: artificial intelligence, health content, older adult, healthcare
Procedia PDF Downloads 724856 Investigation of Antimicrobial Activity of Dielectric Barrier Discharge Oxygen Plasma Combined with ZnO NPs-Treated Cotton Fabric Coated with Natural Green Tea Leaf Extracts
Authors: Fatma A. Mohamed, Hend M. Ahmed
Abstract:
This research explores the antimicrobial effects of dielectric barrier discharge (DBD) oxygen plasma treatment combined with ZnO NPs on the cotton fabric, focusing on various treatment durations (5, 10, 15, 20, and 30 minutes) and discharge powers (15.5–17.35 watts) at flow rate 0.5 l/min. After treatment with oxygen plasma and ZnO NPs, the fabric was printed with green tea (Camellia sinensis) at five different concentrations. The study evaluated the treatment's effectiveness by analyzing surface wettability, specifically through wet-out time and hydrophilicity, as well as measuring contact angles. To investigate the chemical changes on the fabric's surface, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy was employed to identify the functional groups formed as a result of the plasma treatment. This comprehensive approach aims to understand how DBD oxygen plasma treatment and ZnO nanoparticles change cotton fabric properties and enhance its antimicrobial potential, paving the way for innovative applications in textiles. In addition to the chemical analysis, the surface morphology of the O₂ plasma/ZnO NPs-treated cotton fabric was examined using scanning electron microscopy (SEM). FTIR analysis revealed an increase in polar functional groups (-COOH, -OH, and -C≡O) on the fabric's surface, contributing to enhanced hydrophilicity and functionality. The antimicrobial properties were evaluated using qualitative and quantitative methods, including agar plate assays and modified Hoenstein tests against Staphylococcus aureus and Escherichia coli. The results indicated a significant improvement in antimicrobial effectiveness for the cotton fabric treated with plasma and coated with natural extracts, maintaining this efficacy even after four washing cycles. This research demonstrates that utilizing oxygen DBD plasma/ZnO NPs treatment, combined with the absorption of tea and tulsi leaf extracts, presents a promising strategy for developing natural antimicrobial textiles. This approach is particularly relevant given the increasing medical and healthcare demands for effective antimicrobial materials. Overall, the method not only enhances the absorption of plant extracts but also significantly boosts antimicrobial efficacy, offering valuable insights for future textile applications.Keywords: cotton, ZnO NPs, green tea leaf, antimicrobial avtivity, DBD oxygen plasma
Procedia PDF Downloads 194855 Fabrication and Characteristics of Ni Doped Titania Nanotubes by Electrochemical Anodization
Authors: J. Tirano, H. Zea, C. Luhrs
Abstract:
It is well known that titanium dioxide is a semiconductor with several applications in photocatalytic process. Its band gap makes it very interesting in the photoelectrodes manufacturing used in photoelectrochemical cells for hydrogen production, a clean and environmentally friendly fuel. The synthesis of 1D titanium dioxide nanostructures, such as nanotubes, makes possible to produce more efficient photoelectrodes for solar energy to hydrogen conversion. In essence, this is because it increases the charge transport rate, decreasing recombination options. However, its principal constraint is to be mainly sensitive to UV range, which represents a very low percentage of solar radiation that reaches earth's surface. One of the alternatives to modifying the TiO2’s band gap and improving its photoactivity under visible light irradiation is to dope the nanotubes with transition metals. This option requires fabricating efficient nanostructured photoelectrodes with controlled morphology and specific properties able to offer a suitable surface area for metallic doping. Hence, currently one of the central challenges in photoelectrochemical cells is the construction of nanomaterials with a proper band position for driving the reaction while absorbing energy over the VIS spectrum. This research focuses on the synthesis and characterization of Nidoped TiO2 nanotubes for improving its photocatalytic activity in solar energy conversion applications. Initially, titanium dioxide nanotubes (TNTs) with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C - 550 °C. Afterwards, the nanotubes were superficially modified by nickel deposition. Morphology and crystalline phase of the samples were carried out by SEM, EDS and XRD analysis before and after nickel deposition. Determining the photoelectrochemical performance of photoelectrodes is based on typical electrochemical characterization techniques. Also, the morphological characterization associated electrochemical behavior analysis were discussed to establish the effect of nickel nanoparticles modification on the TiO2 nanotubes. The methodology proposed in this research allows using other transition metal for nanotube surface modification.Keywords: dimensionally stable electrode, nickel nanoparticles, photo-electrode, TiO₂ nanotubes
Procedia PDF Downloads 1804854 Proposal of a Rectenna Built by Using Paper as a Dielectric Substrate for Electromagnetic Energy Harvesting
Authors: Ursula D. C. Resende, Yan G. Santos, Lucas M. de O. Andrade
Abstract:
The recent and fast development of the internet, wireless, telecommunication technologies and low-power electronic devices has led to an expressive amount of electromagnetic energy available in the environment and the smart applications technology expansion. These applications have been used in the Internet of Things devices, 4G and 5G solutions. The main feature of this technology is the use of the wireless sensor. Although these sensors are low-power loads, their use imposes huge challenges in terms of an efficient and reliable way for power supply in order to avoid the traditional battery. The radio frequency based energy harvesting technology is especially suitable to wireless power sensors by using a rectenna since it can be completely integrated into the distributed hosting sensors structure, reducing its cost, maintenance and environmental impact. The rectenna is an equipment composed of an antenna and a rectifier circuit. The antenna function is to collect as much radio frequency radiation as possible and transfer it to the rectifier, which is a nonlinear circuit, that converts the very low input radio frequency energy into direct current voltage. In this work, a set of rectennas, mounted on a paper substrate, which can be used for the inner coating of buildings and simultaneously harvest electromagnetic energy from the environment, is proposed. Each proposed individual rectenna is composed of a 2.45 GHz patch antenna and a voltage doubler rectifier circuit, built in the same paper substrate. The antenna contains a rectangular radiator element and a microstrip transmission line that was projected and optimized by using the Computer Simulation Software (CST) in order to obtain values of S11 parameter below -10 dB in 2.45 GHz. In order to increase the amount of harvested power, eight individual rectennas, incorporating metamaterial cells, were connected in parallel forming a system, denominated Electromagnetic Wall (EW). In order to evaluate the EW performance, it was positioned at a variable distance from the internet router, and a 27 kΩ resistive load was fed. The results obtained showed that if more than one rectenna is associated in parallel, enough power level can be achieved in order to feed very low consumption sensors. The 0.12 m2 EW proposed in this work was able to harvest 0.6 mW from the environment. It also observed that the use of metamaterial structures provide an expressive growth in the amount of electromagnetic energy harvested, which was increased from 0. 2mW to 0.6 mW.Keywords: electromagnetic energy harvesting, metamaterial, rectenna, rectifier circuit
Procedia PDF Downloads 1744853 Luminescent Enhancement with Morphology Controlled Gd2O3:Eu Phosphors
Authors: Ruby Priya, Om Parkash Pandey
Abstract:
Eu doped Gd₂O₃ phosphors are synthesized via co-precipitation method using ammonia as a precipitating agent. The concentration of the Eu was set as 4 mol% for all the samples. The effect of the surfactants (CTAB, PEG, and SDS) on the structural, morphological and luminescent properties has been studied in details. The as-synthesized phosphors were characterized by X-ray diffraction technique, Field emission scanning electron microscopy, Fourier transformed infrared spectroscopy and photoluminescence technique. It was observed that the surfactants have not changed the crystal structure, but influenced the morphology of as-synthesized phosphors to a great extent. The as-synthesized phosphors are expected to be promising candidates for optoelectronic devices, biosensors, MRI contrast agents and various biomedical applications.Keywords: co-precipitation, Europium, photoluminescence, surfactants
Procedia PDF Downloads 1914852 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications
Authors: Júlio Cesar Lopes de Oliveira, Carlos Henrique Gonçalves Treviso
Abstract:
The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.Keywords: DC-DC power converters, converters, power conversion, pulse width modulation converters
Procedia PDF Downloads 3894851 Semirings of Graphs: An Approach Towards the Algebra of Graphs
Authors: Gete Umbrey, Saifur Rahman
Abstract:
Graphs are found to be most capable in computing, and its abstract structures have been applied in some specific computations and algorithms like in phase encoding controller, processor microcontroller, and synthesis of a CMOS switching network, etc. Being motivated by these works, we develop an independent approach to study semiring structures and various properties by defining the binary operations which in fact, seems analogous to an existing definition in some sense but with a different approach. This work emphasizes specifically on the construction of semigroup and semiring structures on the set of undirected graphs, and their properties are investigated therein. It is expected that the investigation done here may have some interesting applications in theoretical computer science, networking and decision making, and also on joining of two network systems.Keywords: graphs, join and union of graphs, semiring, weighted graphs
Procedia PDF Downloads 1514850 An Improved Photovolatic System Balancer Architecture
Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Cyuan-Jyun Wong
Abstract:
An improved PV balancer for photovoltaic applications is proposed in this paper. The proposed PV balancer senses the voltage and current of PV module and adjusts the output voltage of converter. Thus, the PV system can implement maximum power point tracking (MPPT) independently for each module whether it is under shading, different irradiation or degradation of PV cell. In addition, the cost of PV balancer can be reduced due to the low power rating of converter. To assess the effectiveness of the proposed system, two PV balancers are designed and verified through simulation under different shading conditions. The proposed PV balancers can provide more energy than the traditional PV balancer.Keywords: MPPT, partial shading, PV System, converter
Procedia PDF Downloads 2964849 The Analyzer: Clustering Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human Computer Interaction
Authors: Dona Shaini Abhilasha Nanayakkara, Kurugamage Jude Pravinda Gregory Perera
Abstract:
E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. The Analyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling The Analyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.Keywords: data clustering, data standardization, dimensionality reduction, human computer interaction, user profiling
Procedia PDF Downloads 764848 A Miniaturized Circular Patch Antenna Based on Metamaterial for WI-FI Applications
Authors: Fatima Zahra Moussa, Yamina Belhadef, Souheyla Ferouani
Abstract:
In this work, we present a new form of miniature circular patch antenna based on CSRR metamaterials with an extended bandwidth proposed for 5 GHz Wi-Fiapplications. A reflection coefficient of -35 dB and a radiation pattern of 7.47 dB are obtained when simulating the initial proposed antenna with the CST microwave studio simulation software. The notch insertion technique in the radiating element was used for matching the antenna to the desired frequency in the frequency band [5150-5875] MHz.An extension of the bandwidth from 332 MHz to 1423 MHz was done by the DGS (defected ground structure) technique to meet the user's requirement in the 5 GHz Wi-Fi frequency band.Keywords: patch antenna, miniaturisation, CSRR, notches, wifi, DGS
Procedia PDF Downloads 1254847 Electrocardiogram Signal Denoising Using a Hybrid Technique
Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim
Abstract:
This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.Keywords: hybrid technique, ADTF, DWT, thresholding, ECG signal
Procedia PDF Downloads 3254846 Infrared Thermography Applications for Building Investigation
Authors: Hamid Yazdani, Raheleh Akbar
Abstract:
Infrared thermography is a modern non-destructive measuring method for the examination of redeveloped and non-renovated buildings. Infrared cameras provide a means for temperature measurement in building constructions from the inside, as well as from the outside. Thus, heat bridges can be detected. It has been shown that infrared thermography is applicable for insulation inspection, identifying air leakage and heat losses sources, finding the exact position of heating tubes or for discovering the reasons why mold, moisture is growing in a particular area, and it is also used in conservation field to detect hidden characteristics, degradations of building structures. The paper gives a brief description of the theoretical background of infrared thermography.Keywords: infrared thermography, examination of buildings, emissivity, heat losses sources
Procedia PDF Downloads 5224845 Synthesis, Characterization and Applications of Hydrogels Based on Chitosan Derivatives
Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa
Abstract:
Firstly, synthesis of N-Quaternized Chitosan (NQC), then it was proven by FTIR and 1H-NMR analysis. The degree of quaternization(DQ 35% ) was determined by equation. Secondly, synthesis of cross-linked hydrogels composed of NQC and poly (vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde (GA) as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, SEM, XRD,and TGA. Swellability in simulated body fluid (SBF) solutions applied on NQC / PVA hydrogels and swelling rate(Wt%) and metal ions uptake was done on it.Keywords: hydrogel, metal ions uptake, N-quaternized chitosan, poly (vinyl alcohol), swellability
Procedia PDF Downloads 4334844 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.Keywords: mobile health, data integration, expert systems, disease-related malnutrition
Procedia PDF Downloads 4794843 Energy-Efficient Storage of Methane Using Biosurfactant in the Form of Clathrate Hydrate
Authors: Abdolreza Farhadian, Anh Phan, Zahra Taheri Rizi, Elaheh Sadeh
Abstract:
The utilization of solidified gas technology based on hydrates exhibits considerable promise for carbon capture, storage, and natural gas transportation applications. The pivotal factor impeding the industrial implementation of hydrates lies in the need for efficient and non-foaming promoters. In this study, a biosurfactant with sulfonate, amide, and carboxyl groups (BS) was synthesized as a methane hydrate formation promoter, replicating the chemical characteristics of amino acids and sodium dodecyl sulfate (SDS). The synthesis of BS follows a simple, three-step process that is amenable to industrial scale production. The first two steps of the process are solvent-free, which helps reduce potential environmental impacts and makes scaling up more feasible. Additionally, the final step utilizes a water-isopropanol mixture, which is an easily accessible and cost-effective solvent system for large-scale production. High-pressure autoclave experiments demonstrated a significant enhancement in methane hydrate formation kinetics with low BS concentrations. 50 ppm of BS yielded a maximum water-to-hydrate conversion of 66.9%, equivalent to a storage capacity of 119.9 v/v in distilled water. With increasing BS concentration to 500 ppm, the conversion degree and storage capacity reached 97% and 162.6 v/v, respectively. Molecular dynamic simulation revealed that BS molecules acted as collectors for methane molecules, augmenting hydrate growth rate and increasing the number of hydrate cavities. Additionally, BS demonstrated a biodegradability exceeding 60% within 28 days. Toxicity assessments confirmed BS's biocompatibility, with cell viability above 70% for skin and lung cells at concentrations up to 160 and 80 µg/mL, respectively. BS showed significant potential as an environmentally friendly alternative to synthetic surfactants like SDS for methane storage. These findings suggest that the synthesis of effective, such as BS, holds promise for diverse applications, including seawater desalination, carbon capture, and gas storage. Acknowledgments This study was funded by Russian Science Foundation according to the research project № 24-73-10069.Keywords: solidified methane, gas storage, gas hydrates, green surfactant, gas hydrate promoter, computational simulation, sustainability
Procedia PDF Downloads 184842 Artificial Intelligence and Canva App
Authors: Lamar Alhindi, Madhawi Alsharif
Abstract:
This report explores Canva, a user-friendly graphic design platform designed to empower individuals of all skill levels in creating diverse visual content. The study provides a comprehensive overview of Canva’s features, such as its drag-and-drop interface, AI tools, and extensive asset library. A survey was conducted to assess users’ perceptions of Canva’s AI-driven features, highlighting their utility in saving time and improving efficiency. Key insights include the popularity of design suggestions and accessibility for beginners. The report underscores Canva’s versatility for personal and professional applications, emphasizing its role as a go-to design tool for individuals and businesses alike.Keywords: Canva, Ai, Ai driven tools, beginner, editing
Procedia PDF Downloads 134841 Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations
Authors: Ogunrinde Roseline Bosede
Abstract:
This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.Keywords: differential equations, numerical, polynomial, initial value problem, differential equation
Procedia PDF Downloads 4514840 Efficient Hydrosilylation of Functionalized Alkenes via Heterogeneous Zinc Oxide Nanoparticle Catalysis
Authors: Ahlam Chennani, Nadia Anter, Abdelouahed Médaghri Alaoui, Abdellah Hannioui
Abstract:
Non-precious metals such as zinc, copper, iron, and nickel are promising hydrosilylation catalysts due to their abundance, affordability, and low toxicity. This study focuses on the preparation of zinc nanoparticles using a simple, scalable method. Advanced techniques such as X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize these catalysts, revealing their crystal structure and morphology. ZnO nanoparticles demonstrate high efficiency and selectivity in hydrosilylation reactions, producing silylated products. These results highlight the potential of ZnO nanocatalysts for advanced chemical transformations and practical applications in various industrial fields.Keywords: nanoparticles, hydrosilylation, catalysts, non-precious metal
Procedia PDF Downloads 33