Search results for: generation X
1113 Sustainable Resource Use as a Means of Preserving the Integrity of the Eco-System and Environment
Authors: N. Hedayat, E. Karamifar
Abstract:
Sustainable food and fiber production is emerging as an irresistible option in agrarian planning. Although one should not underestimate the successes of the Green Revolution in enhancing crop production, its adverse environmental and ecosystem consequences have also been remarkable. The aim of this paper is to identify ways of improving crop production to ensure agricultural sustainability and environmental integrity. Systematic observations are used for data collection on intensive farming, deforestation and the environmental implications of industrial pollutants on agricultural sustainability at national and international levels. These were achieved within a comparative analytical model of data interpretation. Results show that while multiple factors enhance yield, they have a simultaneous effect in undermining the ecosystem and environmental integrity. Results show that application of excessive agrichemical have been one of the major cause of polluting the surface and underground water bodies as well as soil layers in affected croplands. Results consider rapid deforestation in the tropical regions has been the underlying cause of impairing the integrity of biodiversity and oxygen-generation regime. These, coupled with production of greenhouse gasses, have contributed to global warming and hydrological irregularities. Continuous production of pollutants and effluents has affected marine and land biodiversity arising from acid rains generated by modern farming and deforestation. Continuous production of greenhouse gases has also been instrumental in affecting climatic behavior manifested in recurring draughts and contraction of lakes and ponds as well as emergence of potential flooding of waterways and floodplains in the future.Keywords: agricultural sustainability, environmental integrity, pollution, eco-system
Procedia PDF Downloads 4011112 Heuristics for Optimizing Power Consumption in the Smart Grid
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Our increasing reliance on electricity, with inefficient consumption trends, has resulted in several economical and environmental threats. These threats include wasting billions of dollars, draining limited resources, and elevating the impact of climate change. As a solution, the smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing the peak power consumption under a fixed delay requirement is a significant problem in the smart grid. In addition, matching demand to supply is a key requirement for the success of the future electricity. In this work, we consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-Hard, we propose two versions of a heuristic algorithm for solving this problem. Our theoretical analysis and experimental results show that our proposed heuristics outperform existing methods by providing a better approximation to the optimal solution. In addition, we consider dynamic pricing methods to minimize the peak load and match demand to supply in the smart grid. Our contribution is the proposal of generic, as well as customized pricing heuristics to minimize the peak demand and match demand with supply. In addition, we propose optimal pricing algorithms that can be used when the maximum deadline period of the power jobs is relatively small. Finally, we provide theoretical analysis and conduct several experiments to evaluate the performance of the proposed algorithms.Keywords: heuristics, optimization, smart grid, peak demand, power supply
Procedia PDF Downloads 881111 The Impact of Technology on Physics Development
Authors: Fady Gaml Malk Mossad
Abstract:
these days, distance training that make use of internet generation is used widely all over the international to triumph over geographical and time primarily based issues in schooling. portraits, animation and other auxiliary visual resources help scholar to apprehend the topics easily. specially some theoretical guides which are pretty hard to understand along with physics and chemistry require visual material for college kids to apprehend subjects really. in this look at, physics packages for laboratory of physics path had been advanced. All facilities of internet-primarily based instructional technology have been used for students in laboratory research to avoid making mistakes and to analyze higher physics subjects.Android is a mobile running machine (OS) primarily based at the linux kerrnel and currently developed by way of google. With a user interface based on direct manipulation, Android is designed often for touchscreen cell deviced which includes smartphone and pill laptop, with specialized person interface for tv (Android television), vehicles (Android automobile), and wrist watches (Android wear). Now, nearly all peoples using cellphone. smartphone seems to be a have to-have item, because phone has many benefits. in addition, of course cellphone have many blessings for education, like resume of lesson that shape of 7451f44f4142a41b41fe20fbf0d491b7. but, this text isn't always approximately resume of lesson. this article is ready realistic based on android, precisely for physics. consequently, we can give an explanation for our concept approximately physics’s realistic primarily based on android and for output, we want many students might be like to reading physics and continually don't forget approximately physics’s phenomenon through physics’s sensible based on android.Keywords: physics education, laboratory, web-based education, distance, educationandroid, smartphone, physics practical
Procedia PDF Downloads 21110 The Impact of Academic Support Practices on Two-Year College Students’ Achievement in Science, Technology, Engineering, and Math Education: An Exploration of Factors
Authors: Gisele Ragusa, Lilian Leung
Abstract:
There are essential needs for science, technology, engineering, and math (STEM) workforces nationally. This important need underscores the necessity of increasing numbers of students attending both two-year community colleges and universities, thereby enabling and supporting a larger pool of students to enter the workforce. The greatest number of students in STEM programs attend public higher education institutions, with an even larger majority beginning their academic experiences enrolled in two-year public colleges. Accordingly, this research explores the impact of experiences and academic support practices on two-year (community) college students’ academic achievement in STEM majors with a focus on supporting students who are the first in their families to attend college. This research is a result of three years of iterative trials of differing supports to improve such students’ academic success with a cross-student comparative research methodological structure involving peer-to-peer and faculty academic supports. Results of this research indicate that background experiences and a combination of peer-to-peer and faculty-led academic support practices, including supplementary instruction, peer mentoring, and study skills support, significantly improve students’ academic success in STEM majors. These results confirm the needs that first-generation students have in navigating their college careers and what can be effective in supporting them.Keywords: higher education policy, student support, two-year colleges, STEM achievement
Procedia PDF Downloads 961109 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 4251108 Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction
Authors: Wenqian Zhang, Xuelin Wang, Yujin Hu, Siyang Wang
Abstract:
The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer.Keywords: surface machining, EBSD, subsurface layer, local deformation
Procedia PDF Downloads 3311107 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)
Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta
Abstract:
Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.Keywords: advanced oxidation process, ferrate (VI) ion, oils and greases removal, produced water treatment
Procedia PDF Downloads 3191106 Interdisciplinary Collaborative Innovation Mechanism for Sustainability Challenges
Authors: C. Park, H. Lee, Y-J. Lee
Abstract:
Aim: This study presents Interdisciplinary Collaborative Innovation Mechanism as a medium to enable the effective generation of innovations for sustainability challenges facing humanities. Background: Interdisciplinary approach of fusing disparate knowledge and perspectives from diverse expertise and subject areas is one of the key requirements to address the intricate nature of sustainability issues. There is a lack of rigorous empirical study of the systematic structure of interdisciplinary collaborative innovation for sustainability to date. Method: To address this research gap, the action research approach is adopted to develop the Interdisciplinary Collaborative Innovation Mechanism (ICIM) framework based on an empirical study of a total of 28 open innovation competitions in the format of MAKEathons between 2016 to 2023. First, the conceptual framework was formulated based on the literature findings, and the framework was subsequently tested and iterated. Outcomes: The findings provide the ICIM framework composed of five elements: Discipline Diversity Quadruple; Systematic Structure; Inspirational Stimuli; Supportive Collaboration Environment; and Hardware and Intellectual Support. The framework offers a discussion of the key elements when attempting to facilitate interdisciplinary collaboration for sustainability innovation. Contributions: This study contributes to two burgeoning areas of sustainable development and open innovation studies by articulating the concrete structure to bridge the gap. In practice, the framework helps facilitate effective innovation processes and positive social and environmental impact created for real-world sustainability challenges.Keywords: action research, interdisciplinary collaboration, open innovation, problem-solving, sustainable development, sustainability challenges
Procedia PDF Downloads 2471105 Sustainability of Photovoltaic Recycling Planning
Authors: Jun-Ki Choi
Abstract:
The usage of valuable resources and the potential for waste generation at the end of the life cycle of photovoltaic (PV) technologies necessitate a proactive planning for a PV recycling infrastructure. To ensure the sustainability of PV in large scales of deployment, it is vital to develop and institute low-cost recycling technologies and infrastructure for the emerging PV industry in parallel with the rapid commercialization of these new technologies. There are various issues involved in the economics of PV recycling and this research examine those at macro and micro levels, developing a holistic interpretation of the economic viability of the PV recycling systems. This study developed mathematical models to analyze the profitability of recycling technologies and to guide tactical decisions for allocating optimal location of PV take-back centers (PVTBC), necessary for the collection of end of life products. The economic decision is usually based on the level of the marginal capital cost of each PVTBC, cost of reverse logistics, distance traveled, and the amount of PV waste collected from various locations. Results illustrated that the reverse logistics costs comprise a major portion of the cost of PVTBC; PV recycling centers can be constructed in the optimally selected locations to minimize the total reverse logistics cost for transporting the PV wastes from various collection facilities to the recycling center. In the micro- process level, automated recycling processes should be developed to handle the large amount of growing PV wastes economically. The market price of the reclaimed materials are important factors for deciding the profitability of the recycling process and this illustrates the importance of the recovering the glass and expensive metals from PV modules.Keywords: photovoltaic, recycling, mathematical models, sustainability
Procedia PDF Downloads 2551104 Secure Automatic Key SMS Encryption Scheme Using Hybrid Cryptosystem: An Approach for One Time Password Security Enhancement
Authors: Pratama R. Yunia, Firmansyah, I., Ariani, Ulfa R. Maharani, Fikri M. Al
Abstract:
Nowadays, notwithstanding that the role of SMS as a means of communication has been largely replaced by online applications such as WhatsApp, Telegram, and others, the fact that SMS is still used for certain and important communication needs is indisputable. Among them is for sending one time password (OTP) as an authentication media for various online applications ranging from chatting, shopping to online banking applications. However, the usage of SMS does not pretty much guarantee the security of transmitted messages. As a matter of fact, the transmitted messages between BTS is still in the form of plaintext, making it extremely vulnerable to eavesdropping, especially if the message is confidential, for instance, the OTP. One solution to overcome this problem is to use an SMS application which provides security services for each transmitted message. Responding to this problem, in this study, an automatic key SMS encryption scheme was designed as a means to secure SMS communication. The proposed scheme allows SMS sending, which is automatically encrypted with keys that are constantly changing (automatic key update), automatic key exchange, and automatic key generation. In terms of the security method, the proposed scheme applies cryptographic techniques with a hybrid cryptosystem mechanism. Proofing the proposed scheme, a client to client SMS encryption application was developed using Java platform with AES-256 as encryption algorithm, RSA-768 as public and private key generator and SHA-256 for message hashing function. The result of this study is a secure automatic key SMS encryption scheme using hybrid cryptosystem which can guarantee the security of every transmitted message, so as to become a reliable solution in sending confidential messages through SMS although it still has weaknesses in terms of processing time.Keywords: encryption scheme, hybrid cryptosystem, one time password, SMS security
Procedia PDF Downloads 1281103 Diversifying from Petroleum Products to Arable Farming as Source of Revenue Generation in Nigeria: A Case Study of Ondo West Local Government
Authors: A. S. Akinbani
Abstract:
Overdependence on petroleum is causing set back in Nigeria economy. Field survey was carried out to assess the profitability and production of selected arable crops in six selected towns and villages of Ondo southwestern. Data were collected from 240 arable crop farmers with the aid of both primary and secondary data. Data were collected with the use of oral interview and structured questionnaires. Data collected were analyzed using both descriptive and inferential statistics. Forty farmers were randomly selected to give a total number of 240 respondents. 84 farmers interviewed had no formal education, 72 had primary education, 50 farmers attained secondary education while 38 attained beyond secondary education. The majority of the farmers hold less than 10 acres of land. The data collected from the field showed that 192 farmers practiced mixed cropping which includes mixtures of yam, cowpea, cocoyam, vegetable, cassava and maize while only 48 farmers practiced monocropping. Among the sampled farmers, 93% agreed that arable production is profitable while 7% disagreed. The findings show that managerial practices that conserve the soil fertility and reduce labor cost such as planting of leguminous crops and herbicide application instead of using hand held hoe for weeding should be encouraged. All the respondents agreed that yam, cowpea, cocoyam, sweet potato, rice, maize and vegetable production will solve the problem of hunger and increase standard of living compared with petroleum product that Nigeria relied on as means of livelihood.Keywords: farmers, arable crop, cocoyam, respondents, maize
Procedia PDF Downloads 2511102 Creation of a Realistic Railway Simulator Developed on a 3D Graphic Game Engine Using a Numerical Computing Programming Environment
Authors: Kshitij Ansingkar, Yohei Hoshino, Liangliang Yang
Abstract:
Advances in algorithms related to autonomous systems have made it possible to research on improving the accuracy of a train’s location. This has the capability of increasing the throughput of a railway network without the need for the creation of additional infrastructure. To develop such a system, the railway industry requires data to test sensor fusion theories or implement simultaneous localization and mapping (SLAM) algorithms. Though such simulation data and ground truth datasets are available for testing automation algorithms of vehicles, however, due to regulations and economic considerations, there is a dearth of such datasets in the railway industry. Thus, there is a need for the creation of a simulation environment that can generate realistic synthetic datasets. This paper proposes (1) to leverage the capabilities of open-source 3D graphic rendering software to create a visualization of the environment. (2) to utilize open-source 3D geospatial data for accurate visualization and (3) to integrate the graphic rendering software with a programming language and numerical computing platform. To develop such an integrated platform, this paper utilizes the computing platform’s advanced sensor models like LIDAR, camera, IMU or GPS and merges it with the 3D rendering of the game engine to generate high-quality synthetic data. Further, these datasets can be used to train Railway models and improve the accuracy of a train’s location.Keywords: 3D game engine, 3D geospatial data, dataset generation, railway simulator, sensor fusion, SLAM
Procedia PDF Downloads 51101 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method
Authors: Felix Platzer, Eric Fimbinger
Abstract:
In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.Keywords: bonded particle model, DEM, filter cake, particle breakage
Procedia PDF Downloads 2101100 16s rRNA Based Metagenomic Analysis of Palm Sap Samples From Bangladesh
Authors: Ágota Ábrahám, Md Nurul Islam, Karimane Zeghbib, Gábor Kemenesi, Sazeda Akter
Abstract:
Collecting palm sap as a food source is an everyday practice in some parts of the world. However, the consumption of palm juice has been associated with regular infections and epidemics in parts of Bangladesh. This is attributed to fruit-eating bats and other vertebrates or invertebrates native to the area, contaminating the food with their body secretions during the collection process. The frequent intake of palm juice, whether as a processed food product or in its unprocessed form, is a common phenomenon in large areas. The range of pathogens suitable for human infection resulting from this practice is not yet fully understood. Additionally, the high sugar content of the liquid makes it an ideal culture medium for certain bacteria, which can easily propagate and potentially harm consumers. Rapid diagnostics, especially in remote locations, could mitigate health risks associated with palm juice consumption. The primary objective of this research is the rapid genomic detection and risk assessment of bacteria that may cause infections in humans through the consumption of palm juice. Utilizing state-of-the-art third-generation Nanopore metagenomic sequencing technology based on 16S rRNA, and identified bacteria primarily involved in fermenting processes. The swift metagenomic analysis, coupled with the widespread availability and portability of Nanopore products (including real-time analysis options), proves advantageous for detecting harmful pathogens in food sources without relying on extensive industry resources and testing.Keywords: raw date palm sap, NGS, metabarcoding, food safety
Procedia PDF Downloads 551099 Optimizing Campaign Effectiveness: Identifying Target Customers via Recommender Engine
Authors: Nikita Katyal, Shubham Jain
Abstract:
In today’s competitive business environment, the success of campaigns relies not only on their creation but also on effectively reaching the right customers. Campaigns often feature products that customers may not have considered or are unaware of, including popular items. This research aims to enhance retailer sales by leveraging an efficient recommender system that reminds targeted customers to purchase their preferred products and suggests additional items they hadn’t initially considered during a campaign. Our focus is on utilizing the recommender system to identify potential customers for a curated set of products selected by the marketing team for a specific campaign. Communicating with all customers can be time-consuming and costly, and irrelevant messages may harm customer loyalty. Therefore, the primary objective is to strategically select the right customers for a campaign, increasing sales and reducing communication costs. This paper provides valuable insights into connecting with the right customer segments to optimize revenue generation for businesses. The analysis shows that high-value customers (those generating the highest revenue) contributed to increases in average basket size, while win-back customers (with low engagement) and about to churn customers (those at risk of attrition) improved the effectiveness of marketing contacts by increasing engagement and reducing churn. Targeted communication, focused on revenue, also enhanced the quality of the relationship between the customer and the firm, helping to lower churn rates by engaging customers with suitable campaigns. This research provides empirical evidence supporting the theoretical benefits of targeting the right customers for a campaign.Keywords: recommendation, ALS, marketing campaigns, target customers, churn
Procedia PDF Downloads 61098 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants
Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey
Abstract:
The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model
Procedia PDF Downloads 1431097 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100
Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono
Abstract:
Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength
Procedia PDF Downloads 3101096 Harmonic Distortion Analysis in Low Voltage Grid with Grid-Connected Photovoltaic
Authors: Hedi Dghim, Ahmed El-Naggar, Istvan Erlich
Abstract:
Power electronic converters are being introduced in low voltage (LV) grids at an increasingly rapid rate due to the growing adoption of power electronic-based home appliances in residential grid. Photovoltaic (PV) systems are considered one of the potential installed renewable energy sources in distribution power systems. This trend has led to high distortion in the supply voltage which consequently produces harmonic currents in the network and causes an inherent voltage unbalance. In order to investigate the effect of harmonic distortions, a case study of a typical LV grid configuration with high penetration of 3-phase and 1-phase rooftop mounted PV from southern Germany was first considered. Electromagnetic transient (EMT) simulations were then carried out under the MATLAB/Simulink environment which contain detailed models for power electronic-based loads, ohmic-based loads as well as 1- and 3-phase PV. Note that, the switching patterns of the power electronic circuits were considered in this study. Measurements were eventually performed to analyze the distortion levels when PV operating under different solar irradiance. The characteristics of the load-side harmonic impedances were analyzed, and their harmonic contributions were evaluated for different distortion levels. The effect of the high penetration of PV on the harmonic distortion of both positive and negative sequences was also investigated. The simulation results are presented based on case studies. The current distortion levels are in agreement with relevant standards, otherwise the Total Harmonic Distortion (THD) increases under low PV power generation due to its inverse relation with the fundamental current.Keywords: harmonic distortion analysis, power quality, PV systems, residential distribution system
Procedia PDF Downloads 2681095 Development of Sports Nation on the Way of Health Management
Authors: Beatrix Faragó, Zsolt Szakály, Ágnes Kovácsné Tóth, Csaba Konczos, Norbert Kovács, Zsófia Pápai, Tamás Kertész
Abstract:
The future of the nation is the embodiment of a healthy society. A key segment of government policy is the development of health and a health-oriented environment. As a result, sport as an activator of health is an important area for development. In Hungary, sport is a strategic sector with the aim of developing a sports nation. The function of sport in the global society is multifaceted, which is manifested in both social and economic terms. The economic importance of sport is gaining ground in the world, with implications for Central and Eastern Europe. Smaller states, such as Hungary, cannot ignore the economic effects of exploiting the effects of sport. The relationship between physical activity and health is driven by the health economy towards the nation's economic factor. In our research, we analyzed sport as a national strategy sector and its impact on age groups. By presenting the current state of health behavior, we get an idea of the directions where development opportunities require even more intervention. The foundation of the health of a nation is the young age group, whose shaping of health will shape the future generation. Our research was attended by university students from the Faculty of Health and Sports Sciences who will be experts in the field of health in the future. The other group is the elderly, who are a growing social group due to demographic change and are a key segment of the labor market and consumer society. Our study presents the health behavior of the two age groups, their differences, and similarities. The survey also identifies gaps in the development of a health management strategy that national strategies should take into account.Keywords: competitiveness, health behavior, health economy, health management, sports nation
Procedia PDF Downloads 1561094 Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering
Authors: Yusser Olguín, Diego Benavente, Fernando Dorta, Nicole Orellana, Cristian Acevedo
Abstract:
One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli.Keywords: microfluidics, nerve tissue engineering, microbioreactor, electrical stimuli
Procedia PDF Downloads 851093 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 1271092 The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by miR-375 and Anti-miR-9
Authors: Arefeh Jafarian, Mohammad Taghikani, Saied Abroun, Amir Allahverdi, Masoud Soleimani
Abstract:
Introduction: The miRNAs have key roles in control of pancreatic islet development and insulin secretion. In this regards, current study investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. Findings: After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose as well as extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. In derived IPCs by miR-375 alone are capable to express insulin and other endocrine specific transcription factors, the cells lack the machinery to respond to glucose. The differentiated hMSCs by miR-375 and anti-miR-9 lentiviruses could secrete insulin and c-peptide in a glucose-regulated manner. Conclusion: It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.Keywords: diabetes, differentiation, MSCs, insulin producing cells, miR-375, miR-9
Procedia PDF Downloads 3171091 The Effect of Artificial Intelligence on Food and Beverages
Authors: Remon Karam Zakry Kelada
Abstract:
This survey research ambitions to examine the usual of carrier quality of meals and beverage provider staffs in lodge business by way of studying the carrier fashionable of 3 pattern inns, Siam Kempinski lodge Bangkok, four Seasons lodge Chiang Mai, and Banyan Tree Phuket. as a way to locate the international provider general of food and beverage provider, triangular research, i.e. quantitative, qualitative, and survey were hired. on this research, questionnaires and in-depth interview have been used for getting the statistics on the sequences and method of services. There had been three components of modified questionnaires to degree carrier pleasant and visitor’s satisfaction inclusive of carrier facilities, attentiveness, obligation, reliability, and circumspection. This observe used pattern random sampling to derive topics with the go back fee of the questionnaires changed into 70% or 280. information have been analyzed via SPSS to find mathematics mean, SD, percent, and comparison by using t-take a look at and One-manner ANOVA. The outcomes revealed that the service first-rate of the three lodges have been in the worldwide stage that could create excessive pride to the international clients. hints for studies implementations have been to hold the area of precise carrier satisfactory, and to enhance some dimensions of service fine together with reliability. training in service fashionable, product expertise, and new generation for employees must be provided. furthermore, for you to develop the provider pleasant of the enterprise, training collaboration among inn corporation and academic institutions in food and beverage carrier should be considered.Keywords: food and beverage staff, food poisoning, food production, hygiene knowledge BPA, health, regulations, toxicity service standard, food and beverage department, sequence of service, service method
Procedia PDF Downloads 351090 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot
Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev
Abstract:
The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.Keywords: control, limits cycle, robot, stability
Procedia PDF Downloads 3311089 Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation
Authors: Francesca Risplendi, Li-Chiang Lin, Jeffrey C. Grossman, Giancarlo Cicero
Abstract:
Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration.Keywords: boron filtration, desalination, graphene membrane, reduced graphene oxide membrane
Procedia PDF Downloads 2991088 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend
Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar
Abstract:
Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend
Procedia PDF Downloads 2041087 Biomass and Lipid Enhancement by Response Surface Methodology in High Lipid Accumulating Indigenous Strain Rhodococcus opacus and Biodiesel Study
Authors: Kulvinder Bajwa, Narsi R. Bishnoi
Abstract:
Finding a sustainable alternative for today’s petrochemical industry is a major challenge facing by researchers, scientists, chemical engineers, and society at the global level. Microorganisms are considered to be sustainable feedstock for 3rd generation biofuel production. In this study, we have investigated the potential of a native bacterial strain isolated from a petrol contaminated site for the production of biodiesel. The bacterium was identified to be Rhodococcus opacus by biochemical test and 16S rRNA. Compositional analysis of bacterial biomass has been carried out by Fourier transform infrared spectroscopy (FTIR) in order to confirm lipid profile. Lipid and biomass were optimized by combination with Box Behnken design (BBD) of response surface methodology. The factors selected for the optimization of growth condition were glucose, yeast extract, and ammonium nitrate concentration. The experimental model developed through RSM in terms of effective operational factors (BBD) was found to be suitable to describe the lipid and biomass production, which indicated higher lipid and biomass with a minimum concentration of ammonium nitrate, yeast extract, and quite higher dose of glucose supplementation. Optimum results of the experiments were found to be 2.88 gL⁻¹ biomass and lipid content 38.75% at glucose 20 gL⁻¹, ammonium nitrate 0.5 gL⁻¹ and yeast extract 1.25 gL⁻¹. Furthermore, GCMS study revealed that Rhodococcus opacus has favorable fatty acid profile for biodiesel production.Keywords: biofuel, Oleaginious bacteria, Rhodococcus opacus, FTIR, BBD, free fatty acids
Procedia PDF Downloads 1361086 Preliminary Studies of Transient Stability for the 380 kV Connection West-Central of Saudi Electricity Company
Authors: S. Raja Mohamed, M. H Shwehdi, D. Devaraj
Abstract:
This paper is to present and discuss the new planned 380 kV transmission line performance under steady and transient states. Dynamic modeling and analysis of such inter-tie, which is, proposed to transfer energy from west to south and vice versa will be demonstrated and discussed. The west-central-south inter-tie links Al-Aula-Zaba-Tabuk-Tubajal-Jawf-Hail. It is essential to investigate the transient over-voltage to assure steady and stable transmission over such inter-tie. Saudi Electricity Company (SEC) has been improving its grid to make the whole country as an interconnected system. Already east, central and west were interconnected, yet mostly each is fed with its local generation. The SEC is planning to establish many inter-ties to strengthen the transient stability of its grid. The paper studies one of the important links of 380 kV, 220 km between Tabouk and Tubarjal, which is a step towards connecting the West with the South region. Modeling and analysis using some softwares will be utilized under different scenarios. Adoption of methods to stabilize and increase its power transmission are also discussed. Improvement of power system transients has been controlled by FACTS elements such the Static Var Compensators (SVC) receiving a wide interest since many technical studies have proven their effects on damping system oscillations and stability enhancement. Illustrations of the transient at each main generating or load bus will be checked in all inter-tie links. A brief review of possible means to solve the transient over-voltage problem using different FACTS element modeling will be discussed.Keywords: transient stability, static var compensator, central-west interconnected system, damping controller, Saudi Electricity Company
Procedia PDF Downloads 6091085 Improving Our Understanding of the in vivo Modelling of Psychotic Disorders
Authors: Zsanett Bahor, Cristina Nunes-Fonseca, Gillian L. Currie, Emily S. Sena, Lindsay D.G. Thomson, Malcolm R. Macleod
Abstract:
Psychosis is ranked as the third most disabling medical condition in the world by the World Health Organization. Despite a substantial amount of research in recent years, available treatments are not universally effective and have a wide range of adverse side effects. Since many clinical drug candidates are identified through in vivo modelling, a deeper understanding of these models, and their strengths and limitations, might help us understand reasons for difficulties in psychosis drug development. To provide an unbiased summary of the preclinical psychosis literature we performed a systematic electronic search of PubMed for publications modelling a psychotic disorder in vivo, identifying 14,721 relevant studies. Double screening of 11,000 publications from this dataset so far established 2403 animal studies of psychosis, with the most common model being schizophrenia (95%). 61% of these models are induced using pharmacological agents. For all the models only 56% of publications test a therapeutic treatment. We propose a systematic review of these studies to assess the prevalence of reporting of measures to reduce risk of bias, and a meta-analysis to assess the internal and external validity of these animal models. Our findings are likely to be relevant to future preclinical studies of psychosis as this generation of strong empirical evidence has the potential to identify weaknesses, areas for improvement and make suggestions on refinement of experimental design. Such a detailed understanding of the data which inform what we think we know will help improve the current attrition rate between bench and bedside in psychosis research.Keywords: animal models, psychosis, systematic review, schizophrenia
Procedia PDF Downloads 2901084 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 461