Search results for: digital transformation artificial intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6702

Search results for: digital transformation artificial intelligence

4422 Challenges for Adopting Circular Economy Toward Business Innovation and Supply Chain

Authors: Kapil Khanna, Swee Kuik, Joowon Ban

Abstract:

The current linear economic system is unsustainable due to its dependence on the uncontrolled exploitation of diminishing natural resources. The integration of business innovation and supply chain management has brought about the redesign of business processes through the implementation of a closed-loop approach. The circular economy (CE) offers a sustainable solution to improve business opportunities in the near future by following the principles of rejuvenation and reuse inspired by nature. Those business owners start to rethink and consider using waste as raw material to make new products for consumers. The implementation of CE helps organisations to incorporate new strategic plans for decreasing the use of virgin materials and nature resources. Supply chain partners that are geographically dispersed rely heavily on innovative approaches to support supply chain management. Presently, numerous studies have attempted to establish the concept of supply chain management (SCM) by integrating CE principles, which are commonly denoted as circular SCM. While many scholars have recognised the challenges of transitioning to CE, there is still a lack of consensus on business best practices that can facilitate companies in embracing CE across the supply chain. Hence, this paper strives to scrutinize the SCM practices utilised for CE, identify the obstacles, and recommend best practices that can enhance a company's ability to incorporate CE principles toward business innovation and supply chain performance. Further, the paper proposes future research in the field of using specific technologies such as artificial intelligence, Internet of Things, and blockchain as business innovation tools for supply chain management and CE adoption.

Keywords: business innovation, challenges, circular supply chain, supply chain management, technology

Procedia PDF Downloads 108
4421 Elucidation of Leaders' Intrapersonal Competencies in the Workplace

Authors: Prakash Singh

Abstract:

Employees who are satisfied at their place of work rate their leaders’ intrapersonal competencies as being high. They also believe that a leader’s intrapersonal competencies influence their sense of job satisfaction. Employees who indicate that they are unhappy at their place of work rate their leaders’ intrapersonal competencies as being low. They also believe that a leader’s intrapersonal intelligence influence their feeling of job satisfaction. The leader’s appropriate intrapersonal competencies are crucial to the creation of a motivated and satisfied employee team. In this study, the quantitative research method was used to determine the employees’ perceptions of their leaders’ intrapersonal competencies and their influence on their job satisfaction; the six competencies being self-awareness, self-confidence, self-expression, self-control, adaptability, and optimism. All the competencies of leaders identified in this quantitative study can therefore be described as intervening variables that influence an employee’s sense of job satisfaction. The number of responses that indicate that each of the intrapersonal competencies of a leader that will have an influence on an employee’s sense of job satisfaction, ranges from 93% (a leader’s sense of self-awareness) to 99% (a leader’s ability to be adaptable). As the responses are significantly similar, it can be stated that the respondents indicate that all the intrapersonal competencies of a leader can influence an employee’s sense of job satisfaction. The findings of this study strongly suggest that in order to be satisfied at work, employees prefer to be led by leaders who are confident in their leadership roles; who send out clear, unambiguous messages; who maintain self-control; who are adaptable and flexible;, who face the future with optimism and who support the establishment of a collegial working environment. Evidently, the findings corroborate the hypothesis that employees believe that the intrapersonal competencies of leaders have a positive influence on the employees’ sense of job satisfaction. This study’s findings, therefore, confirm that the key to the leaders’ self-knowledge is access to their own feelings and the ability to discriminate among them and draw upon them to guide behaviour in their organisations. This exploratory study makes a contribution to the emerging research being accomplished on leaders’ intrapersonal intelligence with more research still needing to be attempted to determine to what extent these competencies of leaders can reshape the organizational climate and culture.

Keywords: emotional intelligence, employees’ job satisfaction, leaders’ intrapersonal competencies, leaders’ self-knowledge

Procedia PDF Downloads 267
4420 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments

Authors: Rachel Baruch

Abstract:

This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.

Keywords: ICT tools, e-learning, pre-service teachers, new model

Procedia PDF Downloads 468
4419 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 103
4418 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 92
4417 Parallel Self Organizing Neural Network Based Estimation of Archie’s Parameters and Water Saturation in Sandstone Reservoir

Authors: G. M. Hamada, A. A. Al-Gathe, A. M. Al-Khudafi

Abstract:

Determination of water saturation in sandstone is a vital question to determine the initial oil or gas in place in reservoir rocks. Water saturation determination using electrical measurements is mainly on Archie’s formula. Consequently accuracy of Archie’s formula parameters affects water saturation values rigorously. Determination of Archie’s parameters a, m, and n is proceeded by three conventional techniques, Core Archie-Parameter Estimation (CAPE) and 3-D. This work introduces the hybrid system of parallel self-organizing neural network (PSONN) targeting accepted values of Archie’s parameters and, consequently, reliable water saturation values. This work focuses on Archie’s parameters determination techniques; conventional technique, CAPE technique, and 3-D technique, and then the calculation of water saturation using current. Using the same data, a hybrid parallel self-organizing neural network (PSONN) algorithm is used to estimate Archie’s parameters and predict water saturation. Results have shown that estimated Arche’s parameters m, a, and n are highly accepted with statistical analysis, indicating that the PSONN model has a lower statistical error and higher correlation coefficient. This study was conducted using a high number of measurement points for 144 core plugs from a sandstone reservoir. PSONN algorithm can provide reliable water saturation values, and it can supplement or even replace the conventional techniques to determine Archie’s parameters and thereby calculate water saturation profiles.

Keywords: water saturation, Archie’s parameters, artificial intelligence, PSONN, sandstone reservoir

Procedia PDF Downloads 133
4416 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data

Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho

Abstract:

Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.

Keywords: smartcard data, ANN, bus, ridership

Procedia PDF Downloads 170
4415 Immersive and Interactive Storytelling: Exploring Narratives and Online Multisensory Experience for Cultural Memory and Collective Awareness through Graphic Novel

Authors: Cristina Greco

Abstract:

The spread of the digital and we-based technologies has led to a transformation process, which has coincided with an increase in the number of cases who are beyond the mainstream storytelling and its codes on the interaction with the user. On the base of a previous research on i-docs and virtual museums, this study analyses interactive and immersive online Graphic Novel – one-page, animated, illustrated, and hybrid – to reflect on the transformational implications of this expressive form on the user perception, remembrance, and awareness. The way in which the user experiences a certain level of interaction with the story and immersion in the semantic and figurative universe would bring user’s attention, activating introspection and self-reflection processes, perception, imagination, and creativity. This would have to do with the involvement of different senses – visual, proprioceptive, tactile, auditory, and vestibular – and the activation of a phenomenon of synaesthesia (involuntary cross-modal sensory association) – where, for example, the aural reconnect the user to another sense, providing a multisensory experience. The case studies show specific forms of interactive and immersive graphic novel and reflect on application that has sought to engage innovative ways to communicate different messages and stimulate cultural memory and collective awareness. The visual semiotic and narrative analysis of the distinctive traits of such a complex textuality, along with a study of the user’s experience through observation in naturalistic settings and interviews, allows us to question the functioning of these configurations, with regard to the relationships between the figurative dimension, the perceptive activity, and their impact on the user’s engagement.

Keywords: collective awareness, cultural memory, graphic novel, interactive and immersive storytelling

Procedia PDF Downloads 153
4414 Rapid Proliferation of Tissue Culture Using of Olive (Olea Europea L.) cv.Zard

Authors: Majid Gharaipour Abbasabad

Abstract:

This research is studying the effects that various densities of Zeatin, and BA hormones may have on the scale of transformation of plant nodes to new shoots, among seedlings produced by seed germination, and also surveys the amount of produced shoots and their lengths, inside the specific Olive seed lab medium (OM). It is also concerned with the effects that various densities of IBA hormone, and inoculating the shoots with Agrobacterium Rhizogenez A4 can have on shoots' root production. This is a totally random research, and each attendance group has had three occurrences, and ten samples per a hectare. The average amounts have been compared using Duncan's test method, which was done in 5% level. The results indicated that the highest rate of transformation of micro samples to shoots happened in the seed germination environments, containing Zetain with 5 mg, and also 15 mg per a liter densities. (respectively, 95% and 94%), while the highest rate of plants' stem production ,in micro samples, happened in the lab medium environments with 5mg per a liter Zetain density (4.5). In lab medium environments with 15 mg Zetain per liter, a decrease was observed in the number of produced stems (3.88). According to the produced stems' lenght, the longest stem length was observed in environments with 5 mg and also 15 mg per a liter Zetain, and 25 mg per a liter BA densities (respectively, 8.45 cm, 45.66 cm, 8.53 cm). Meanwhile, the lowest amount of transformation of micro samples to shoots, the lowest number of produced shoots, and the shortest shoots were observed in the environments without any hormones (respectively, 3.32 cm, 1.13, 19.66%). The results of root production in Olive indicated that attendance groups which were exposed to different hormones did not vary, and Agrobacterium Rhizogenez A4 had no effect on them, as well. The lowest root's growth rate (22%) happened in environments without any hormones and also, in environment with Agrobacterium Rhizogenez A4 (19.66%). The largest number of roots was observed in the environments, containing Agrobacterium Rhizogenez A4 plus IBA (10 mg/l) and Agrobacterium Rhizogenez A4 plus IBA (10 mg/l), (respectively, 8.46 and 8.70), which had a significant difference with environments merely containing 10 mg and 20 mg of IBA per a litre (respectively, 3.06 and 3.2). So it can be concluded that even though Agrobacterium Rhizogenez A4 had no impact on root's growth among shoots, it had an impact on the number of produced roots. It should be noted that even when the environment contained merely Agrobacterium Rhizogenez A4 without any hormones, only (1.16) roots were produced, which is significantly different from the attendance group with hormones (1.06).

Keywords: olive-effect of hormones-germination of seed, densities of zeatin, BA hormones, agriculture

Procedia PDF Downloads 297
4413 From the Classroom to Digital Learning Environments: An Action Research on Pedagogical Practices in Higher Education

Authors: Marie Alexandre, Jean Bernatchez

Abstract:

This paper focuses on the complexity of the face-to-face-to-distance learning transition process. Our research action aims to support the process of transition from classroom to distance learning for teachers in higher education with regard to pedagogical practices that can meet the various needs of students using digital learning environments. In Quebec and elsewhere in the world, the advent of digital education is helping to transform teaching, which is significantly changing the role of teachers. While distance education implies a dissociation of teaching and learning to a variable degree in space and time, distance education (DE) is becoming more and increasingly becoming a preferred option for maintaining the delivery of certain programs and providing access to programs and to provide access to quality activities throughout Quebec. Given the impact of teaching practices on educational success, this paper reports on the results of three research objectives: 1) To document teachers' knowledge of teaching in distance education through the design, experimentation and production of a repertoire of the determinants of pedagogical practices in response to students' needs. 2) Explain, according to a gendered logic, the adequacy between the pedagogical practices implemented in distance learning and the response to the profiles and needs expressed by students using digital learning environments; 3) Produce a model of a support approach during the process of transition from classroom to distance learning at the college level. A mixed methodology, i.e., a quantitative component (questionnaire survey) and a qualitative component (explanatory interviews and living lab) was used in cycles that were part of an ongoing validation process. The intervention includes the establishment of a professional collaboration group, webinars training webinars for the participating teachers on the didactic issue of knowledge-teaching in FAD, the didactic use of technologies, and the differentiated socialization models of educational success in college education. All of the tools developed will be used by partners in the target environment as well as by all teacher educators, students in initial teacher training, practicing teachers, and the general public. The results show that access to training leading to qualifications and commitment to educational success reflects the existing links between the people in the educational community. The relational stakes of being present in distance education take on multiple configurations and different dimensions of learning testify to needs and realities that are sometimes distinct depending on the life cycle. This project will be of interest to partners in the targeted field as well as to all teacher trainers, students in initial teacher training, practicing college teachers, and to university professors. The entire educational community will benefit from digital resources in education. The scientific knowledge resulting from this action research will benefit researchers in the fields of pedagogy, didactics, teacher training and pedagogy in higher education in a digital context.

Keywords: action research, didactics, digital learning environment, distance learning, higher education, pedagogy technological, pedagogical content knowledge

Procedia PDF Downloads 91
4412 The Impact of Artificial Intelligence on Human Rights Legislations and Evolution

Authors: Nawal Yacoub Halim Abdelmasih

Abstract:

The intersection between development and human rights has been the factor of scholarly debate for a long term. therefore, some of standards, which enlarge from the proper to development to the human rights-based totally method to development, had been adopted to apprehend the dynamics among the two standards. no matter these attempts, the exact relationship among improvement and human rights has not been completely determined but. however, the inevitable interdependence between the two notions and the idea that improvement efforts ought to be undertaken with the aid of giving due regard to human rights ensures has won momentum in recent years. then again, the emergence of sustainable development as a extensively common technique in development dreams and policies makes this unsettled convergence even extra complicated. The vicinity of sustainable improvement in human rights regulation discourse and the function of the latter in making sure the sustainability of development applications name for a scientific observe. as a result, this newsletter seeks to discover the relationship among development and human rights, particularly focusing at the location given to sustainable development principles in international human proper regulation. it'll similarly quest whether or not there is a proper to sustainable improvement diagnosed therein. as a result, the item asserts that the ideas of sustainable improvement are immediately or circuitously diagnosed in diverse human rights contraptions, which affords an affirmative response to the question raised hereinabove. This paintings, therefore, will make expeditions via international and regional human rights devices in addition to case legal guidelines and interpretative hints of human rights bodies to show this speculation.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 37
4411 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 196
4410 Towards Addressing the Cultural Snapshot Phenomenon in Cultural Mapping Libraries

Authors: Mousouris Spiridon, Kavakli Evangelia

Abstract:

This paper focuses on Digital Libraries (DLs) that contain and geovisualise cultural data, highlighting the need to define them as a separate category termed Cultural Mapping Libraries, based on their inherent connection of culture with geographic location and their design requirements in support of visual representation of cultural data on the map. An exploratory analysis of DLs that conform to the above definition brought forward the observation that existing Cultural Mapping Libraries fail to geovisualise the entirety of cultural data per point of interest thus resulting in a Cultural Snapshot phenomenon. The existence of this phenomenon was reinforced by the results of a systematic bibliographic research. In order to address the Cultural Snapshot, this paper proposes the use of the Semantic Web principles to efficiently interconnect spatial cultural data through time, per geographic location. In this way points of interest are transformed into scenery where culture evolves over time. This evolution is expressed as occurrences taking place chronologically, in an event oriented approach, a conceptualization also endorsed by the CIDOC Conceptual Reference Model (CIDOC CRM). In particular, we posit the use of CIDOC CRM as the baseline for defining the logic of Cultural Mapping Libraries as part of the Culture Domain in accordance with the Digital Library Reference Model, in order to define the rules of cultural data management by the system. Our future goal is to transform this conceptual definition in to inferencing rules that resolve the Cultural Snapshot and lead to a more complete geovisualisation of cultural data.

Keywords: digital libraries, semantic web, geovisualization, CIDOC-CRM

Procedia PDF Downloads 113
4409 Analytics Capabilities and Employee Role Stressors: Implications for Organizational Performance

Authors: Divine Agozie, Muesser Nat, Eric Afful-Dadzie

Abstract:

This examination attempts an analysis of the effect of business intelligence and analytics (BI&A) capabilities on organizational role stressors and the implications of such an effect on performance. Two hundred twenty-eight responses gathered from seventy-six firms across Ghana were analyzed using the Partial Least Squares Structural Equation Modelling (PLS-SEM) approach to validate the hypothesized relationships identified in the research model. Findings suggest both endogenous and exogenous dependencies of the sensing capability on the multiple role requirements of personnel. Further, transforming capability increases role conflict, whereas driving capability of BI&A systems impacts role conflict and role ambiguity. This study poses many practical insights to firms seeking to acquire analytics capabilities to drive performance and data-driven decision-making. It is important for firms to consider balancing role changes and task requirements before implementing and post-implementation stages of BI&A innovations.

Keywords: business intelligence and analytics, dynamic capabilities view, organizational stressors, structural equation modelling

Procedia PDF Downloads 115
4408 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 239
4407 Component Lifecycle and Concurrency Model in Usage Control (UCON) System

Authors: P. Ghann, J. Shiguang, C. Zhou

Abstract:

Access control is one of the most challenging issues facing information security. Access control is defined as, the ability to permit or deny access to a particular computational resource or digital information by an unauthorized user or subject. The concept of usage control (UCON) has been introduced as a unified approach to capture a number of extensions for access control models and systems. In UCON, an access decision is determined by three factors: Authorizations, obligations and conditions. Attribute mutability and decision continuity are two distinct characteristics introduced by UCON for the first time. An observation of UCON components indicates that, the components are predefined and static. In this paper, we propose a new and flexible model of usage control for the creation and elimination of some of these components; for example new objects, subjects, attributes and integrate these with the original UCON model. We also propose a model for concurrent usage scenarios in UCON.

Keywords: access control, concurrency, digital container, usage control

Procedia PDF Downloads 322
4406 The Effect of Transparent Oil Wood Stain on the Colour Stability of Spruce Wood during Weathering

Authors: Eliska Oberhofnerova, Milos Panek, Stepan Hysek, Martin Lexa

Abstract:

Nowadays the use of wood, both indoors and outdoors, is constantly increasing. However wood is a natural organic material and in the exterior is subjected to a degradation process caused by abiotic factors (solar radiation, rain, moisture, wind, dust etc.). This process affects only surface layers of wood but neglecting some of the basic rules of wood protection leads to increased possibility of biological agents attack and thereby influences a function of the wood element. The process of wood degradation can be decreased by proper surface treatment, especially in the case of less naturally durable wood species, as spruce. Modern coating systems are subjected to many requirements such as colour stability, hydrophobicity, low volatile organic compound (VOC) content, long service life or easy maintenance. The aim of this study is to evaluate the colour stability of spruce wood (Picea abies), as the basic parameter indicating the coating durability, treated with two layers of transparent natural oil wood stain and exposed to outdoor conditions. The test specimens were exposed for 2 years to natural weathering and 2000 hours to artificial weathering in UV-chamber. The colour parameters were measured before and during exposure to weathering by the spectrophotometer according to CIELab colour space. The comparison between untreated and treated wood and both testing procedures was carried out. The results showed a significant effect of coating on the colour stability of wood, as expected. Nevertheless, increasing colour changes of wood observed during the exposure to weathering differed according to applied testing procedure - natural and artificial.

Keywords: colour stability, natural and artificial weathering, spruce wood, transparent coating

Procedia PDF Downloads 224
4405 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 140
4404 The Influence of C Element on the Phase Transformation in Weldment of Complex Stainless Steels 2507/316/316L

Authors: Lin Dong-Yih, Yang S. M., Huang B. W., Lian J. A.

Abstract:

Super duplex stainless steel has excellent mechanical properties and corrosion resistance. It becomes important structural material as its application has been extended to the fields such as renewable energy and the chemical industry because of its excellent properties. As examples are offshore wind power, solar cell machinery, and pipes in the chemical industry. The mechanical properties and corrosion resistance of super duplex stainless steel can be eliminated by welding due to the precipitation of the hard and brittle σ phase, which is rich of chromium, and molybdenum elements. This paper studies the influence of carbon element on the phase transformation of -ferrite and σ phase in 2507 super duplex stainless steel. The 2507 will be under argon gas protection welded with 316 and 316L extra low carbon stainless steel separately. The microstructural phases of stainless steels before and after welding, in fusion, heat affected zones, and base material will be studied via X-ray, OM, SEM, EPMA i.e. their quantity, size, distribution, and morphology. The influences of diffusion by carbon element will be compared according to the microstructures, hardness, and corrosion tests.

Keywords: complex stainless steel, welding, phase formation, carbon element, sigma phase, delta ferrite

Procedia PDF Downloads 104
4403 Agricultural Technology Adoption: The Role of Socioeconomic and Institutional Factors in Developing Economies

Authors: Faiza Manzoor

Abstract:

The main purpose of this study is to examine the socioeconomic and institutional determinants that affect farmers' probability of agricultural technology adoption. Primary survey data was gathered from 350 small household farmers of developing economies, and the empirical analysis was completed by exploiting a logit and probit model. The outcomes of this research emphasize that socioeconomic factors such as farmers' age, education level, and farm size impact farmers' behavior in adopting digital farming technology. The results show that cooperative membership and institutional characteristics such as access to credit and extension services have also affected small farmers' use and adoption of agricultural technologies. Digitalization also helps farmers by increasing their understanding and improving their decision-making abilities. Some policy implications and future directions are discussed.

Keywords: digital agriculture technologies, socioeconomics, institutional, developing economies

Procedia PDF Downloads 7
4402 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 117
4401 Teacher Trainers’ Motivation in Transformation of Teaching and Learning: The Fun Way Approach

Authors: Malathi Balakrishnan, Gananthan M. Nadarajah, Noraini Abd Rahim, Amy Wong On Mei

Abstract:

The purpose of the study is to investigate the level of intrinsic motivation of trainers after attending a Continuous Professional Development Course (CPD) organized by Institute of Teacher Training Malaysia titled, ‘Transformation of Teaching and Learning the Fun Way’. This study employed a survey whereby 96 teacher trainers were given Situational Intrinsic Motivational Scale (SIMS) Instruments. Confirmatory factor analysis was carried out to get validity of this instrument in local setting. Data were analyzed with SPSS for descriptive statistic. Semi structured interviews were also administrated to collect qualitative data on participants experiences after participating in the two-day fun-filled program. The findings showed that the participants’ level of intrinsic motivation showed higher mean than the amotivation. The results revealed that the intrinsic motivation mean is 19.0 followed by Identified regulation with a mean of 17.4, external regulation 9.7 and amotivation 6.9. The interview data also revealed that the participants were motivated after attending this training program. It can be concluded that this program, which was organized by Institute of Teacher Training Malaysia, was able to enhance participants’ level of motivation. Self-Determination Theory (SDT) as a multidimensional approach to motivation was utilized. Therefore, teacher trainers may have more success using the ‘The fun way approach’ in conducting training program in future.

Keywords: teaching and learning, motivation, teacher trainer, SDT

Procedia PDF Downloads 465
4400 Leveraging Digital Cyber Technology for Self-Care and Improved Management of DMPA-SC Clients

Authors: Oluwaseun Adeleke, Grace Amarachi Omenife, Jennifer Adebambo, Mopelola Raji, Anthony Nwala, Mogbonjubade Adesulure

Abstract:

Introduction: The incorporation of digital technology in healthcare systems is instrumental in transforming the delivery, management, and overall experience of healthcare and holds the potential to scale up access through over 200 million active mobile phones used in Nigeria. Digital tools enable increased access to care, stronger client engagement, progress in research and data-driven insights, and more effective promotion of self-care and do-it-yourself practices. The Delivering Innovation in Self-Care (DISC) project 2021 has played a pivotal role in granting women greater autonomy over their sexual and reproductive health (SRH) through a variety of approaches, including information and training to self-inject contraception (DMPA-SC). To optimize its outcomes, the project also leverages digital technology platforms like social media: Facebook, Instagram, and Meet Tina (Chatbot) via WhatsApp, Customer Relationship Management (CRM) applications Freshworks, and Viamo. Methodology: The project has been successful at optimizing in-person digital cyberspace interaction to sensitize individuals effectively about self-injection and provide linkages to SI services. This platform employs the Freshworks CRM software application, along with specially trained personnel known as Cyber IPC Agents and DHIS calling centers. Integration of Freshworks CRM software with social media allows a direct connection with clients to address emerging issues, schedule follow-ups, send reminders to improve compliance with self-injection schedules, enhance the overall user experience for self-injection (SI) clients, and generate comprehensive reports and analytics on client interactions. Interaction covers a range of topics, including – How to use SI, learning more about SI, side-effects and its management, accessing services, fertility, ovulation, other family planning methods, inquiries related to Sexual Reproductive Health as well as uses an address log to connect them with nearby facilities or online pharmaceuticals. Results: Between the months of March to September, a total of 5,403 engagements were recorded. Among these, 4,685 were satisfactorily resolved. Since the program's inception, digital advertising has created 233,633,075 impressions, reached 12,715,582 persons, and resulted in 3,394,048 clicks. Conclusion: Leveraging digital technology has proven to be an invaluable tool in client management and improving client experience. The use of Cyber technology has enabled the successful development and maintenance of client relationships, which have been effective at providing support, facilitating delivery and compliance with DMPA-SC self-injection services, and ensuring overall client satisfaction. Concurrently, providing qualitative data, including user experience feedback, has enabled the derivation of crucial insights that inform the decision-making process and guide in normalizing self-care behavior.

Keywords: selfcare, DMPA-SC self-injection, digital technology, cyber technology, freshworks CRM software

Procedia PDF Downloads 71
4399 Adding a Degree of Freedom to Opinion Dynamics Models

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 121
4398 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19

Authors: Lan Cheng, Harry Qin, Yang Wang

Abstract:

Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.

Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis

Procedia PDF Downloads 117
4397 Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer

Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod

Abstract:

To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.  

Keywords: inertial confinement fusion, mach-zehnder interferometer, digital holographic microscopy, image reconstruction, holovision

Procedia PDF Downloads 307
4396 Analyze Long-Term Shoreline Change at Yi-Lan Coast, Taiwan Using Multiple Sources

Authors: Geng-Gui Wang, Chia-Hao Chang, Jee-Cheng Wu

Abstract:

A shoreline is a line where a body of water and the shore meet. It provides economic and social security to coastal habitations. However, shorelines face multiple threats due to both natural processes and man-made effects because of disasters, rapid urbanization, industrialization, and sand deposition and erosion, etc. In this study, we analyzed multi-temporal satellite images of the Yilan coast, Taiwan from 1978 to 2016, using the United States Geological Survey (USGS) Digital Shoreline Analysis System (DSAS), weather information (as rainfall records and typhoon routes), and man-made construction project data to explore the causes of shoreline changes. The results showed that the shoreline at Yilan coast is greatly influenced by typhoons and anthropogenic interventions.

Keywords: shoreline change, multi-temporal satellite, digital shoreline analysis system, DSAS, Yi-Lan coast

Procedia PDF Downloads 166
4395 Transforming Construction Companies into Full-Fledged Project-Based Organizations: Case of Ethiopia

Authors: Henok Asfaw Hailu, P. D. Rwelamila

Abstract:

Creating a suitable environment for successful projects needs a rethink of the organisational design of the parent organisations. A Project-based organisation (PBO) is a unique organizational form suitable for implementing and managing business activities around projects. A construction firm is inherently a PBO as it executes most of its activities through projects. PBO design and development require an empirical foundation. This study aimed to fill this gap by developing a conceptual model to help transform Ethiopian construction firms (ECFs) into full-fledged PBOs by assimilating the required PBO characteristics. The study used an exploratory QUAL-quant research design approach. A thematic content analysis was performed to analyse the qualitative (Interviews) research data. Means, standard deviations, frequencies, percentages, one-way ANOVA, and Pearson correlation were used to analyse the quantitative data. A transformational conceptual model was proposed and illustrated that transformation needs to begin by assessing the environment, strategic documents, and PBO characteristics. Assimilating missing PBO characteristics into ECFs is vital to realise organisations’ transformation into full-fledged PBOs.

Keywords: project-based organization, organizational design, dimensions, construction firms

Procedia PDF Downloads 78
4394 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 56
4393 Photocatalytic Hydrogen Production, Effect of Metal Particle Size and Their Electronic/Optical Properties on the Reaction

Authors: Hicham Idriss

Abstract:

Hydrogen production from water is one of the most promising methods to secure renewable sources or vectors of energy for societies in general and for chemical industries in particular. At present over 90% of the total amount of hydrogen produced in the world is made from non-renewable fossil fuels (via methane reforming). There are many methods for producing hydrogen from water and these include reducible oxide materials (solar thermal production), combined PV/electrolysis, artificial photosynthesis and photocatalysis. The most promising of these processes is the one relying on photocatalysis; yet serious challenges are hindering its success so far. In order to make this process viable considerable improvement of the photon conversion is needed. Among the key studies that our group has been conducting in the last few years are those focusing on synergism between the semiconductor phases, photonic band gap materials, pn junctions, plasmonic resonance responses, charge transfer to metal cations, in addition to metal dispersion and band gap engineering. In this work results related to phase transformation of the anatase to rutile in the case of TiO2 (synergism), of Au and Ag dispersion (electron trapping and hydrogen-hydrogen recombination centers) as well as their plasmon resonance response (visible light conversion) are presented and discussed. It is found for example that synergism between the two common phases of TiO2 (anatase and rutile) is sensitive to the initial particle size. It is also found, in agreement with previous results, that the rate is very sensitive to the amount of metals (with similar particle size) on the surface unlike the case of thermal heterogeneous catalysis.

Keywords: photo-catalysis, hydrogen production, water splitting, plasmonic

Procedia PDF Downloads 256