Search results for: Deep learning based segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33236

Search results for: Deep learning based segmentation

30956 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 73
30955 The Design Method of Artificial Intelligence Learning Picture: A Case Study of DCAI's New Teaching

Authors: Weichen Chang

Abstract:

To create a guided teaching method for AI generative drawing design, this paper develops a set of teaching models for AI generative drawing (DCAI), which combines learning modes such as problem-solving, thematic inquiry, phenomenon-based, task-oriented, and DFC . Through the information security AI picture book learning guided programs and content, the application of participatory action research (PAR) and interview methods to explore the dual knowledge of Context and ChatGPT (DCAI) for AI to guide the development of students' AI learning skills. In the interviews, the students highlighted five main learning outcomes (self-study, critical thinking, knowledge generation, cognitive development, and presentation of work) as well as the challenges of implementing the model. Through the use of DCAI, students will enhance their consensus awareness of generative mapping analysis and group cooperation, and they will have knowledge that can enhance AI capabilities in DCAI inquiry and future life. From this paper, it is found that the conclusions are (1) The good use of DCAI can assist students in exploring the value of their knowledge through the power of stories and finding the meaning of knowledge communication; (2) Analyze the transformation power of the integrity and coherence of the story through the context so as to achieve the tension of ‘starting and ending’; (3) Use ChatGPT to extract inspiration, arrange story compositions, and make prompts that can communicate with people and convey emotions. Therefore, new knowledge construction methods will be one of the effective methods for AI learning in the face of artificial intelligence, providing new thinking and new expressions for interdisciplinary design and design education practice.

Keywords: artificial intelligence, task-oriented, contextualization, design education

Procedia PDF Downloads 34
30954 A Systematic Review Investigating the Use of EEG Measures in Neuromarketing

Authors: A. M. Byrne, E. Bonfiglio, C. Rigby, N. Edelstyn

Abstract:

Introduction: Neuromarketing employs numerous methodologies when investigating products and advertisement effectiveness. Electroencephalography (EEG), a non-invasive measure of electrical activity from the brain, is commonly used in neuromarketing. EEG data can be considered using time-frequency (TF) analysis, where changes in the frequency of brainwaves are calculated to infer participant’s mental states, or event-related potential (ERP) analysis, where changes in amplitude are observed in direct response to a stimulus. This presentation discusses the findings of a systematic review of EEG measures in neuromarketing. A systematic review summarises evidence on a research question, using explicit measures to identify, select, and critically appraise relevant research papers. Thissystematic review identifies which EEG measures are the most robust predictor of customer preference and purchase intention. Methods: Search terms identified174 papers that used EEG in combination with marketing-related stimuli. Publications were excluded if they were written in a language other than English or were not published as journal articles (e.g., book chapters). The review investigated which TF effect (e.g., theta-band power) and ERP component (e.g., N400) most consistently reflected preference and purchase intention. Machine-learning prediction was also investigated, along with the use of EEG combined with physiological measures such as eye-tracking. Results: Frontal alpha asymmetry was the most reliable TF signal, where an increase in activity over the left side of the frontal lobe indexed a positive response to marketing stimuli, while an increase in activity over the right side indexed a negative response. The late positive potential, a positive amplitude increase around 600 ms after stimulus presentation, was the most reliable ERP component, reflecting the conscious emotional evaluation of marketing stimuli. However, each measure showed mixed results when related to preference and purchase behaviour. Predictive accuracy was greatly improved through machine-learning algorithms such as deep neural networks, especially when combined with eye-tracking or facial expression analyses. Discussion: This systematic review provides a novel catalogue of the most effective use of each EEG measure commonly used in neuromarketing. Exciting findings to emerge are the identification of the frontal alpha asymmetry and late positive potential as markers of preferential responses to marketing stimuli. Predictive accuracy using machine-learning algorithms achieved predictive accuracies as high as 97%, and future research should therefore focus on machine-learning prediction when using EEG measures in neuromarketing.

Keywords: EEG, ERP, neuromarketing, machine-learning, systematic review, time-frequency

Procedia PDF Downloads 114
30953 The Impact of Simulation-based Learning on the Clinical Self-efficacy and Adherence to Infection Control Practices of Nursing Students

Authors: Raeed Alanazi

Abstract:

Introduction: Nursing students have a crucial role to play in the inhibition of infectious diseases and, therefore, must be trained in infection control and prevention modules prior to entering clinical settings. Simulations have been found to have a positive impact on infection control skills and the use of standard precautions. Aim: The purpose of this study was to use the four sources of self-efficacy in explaining the level of clinical self-efficacy and adherence to infection control practices in Saudi nursing students during simulation practice. Method: A cross-sectional design with convenience sampling was used. This study was conducted in all Saudi nursing schools, with a total number of 197 students participated in this study. Three scales were used simulation self- efficacy Scale (SSES), the four sources of self-efficacy scale (SSES), and Compliance with Standard Precautions Scale (CSPS). Multiple linear regression was used to test the use of the four sources of self-efficacy (SSES) in explaining level of clinical self-efficacy and adherence to infection control in nursing students. Results: The vicarious experience subscale (p =.044) was statistically significant. The regression model indicated that for every one unit increase in vicarious experience (observation and reflection in simulation), the participants’ adherence to infection control increased by .13 units (β =.22, t = 2.03, p =.044). In addition, the regression model indicated that for every one unit increase in education level, the participants’ adherence to infection control increased by 1.82 units (beta=.34= 3.64, p <.001). Also, the mastery experience subscale (p <.001) and vicarious experience subscale (p = .020) were shared significant associations with clinical self-efficacy. Conclusion: The findings of this research support the idea that simulation-based learning can be a valuable teaching-learning method to help nursing students develop clinical competence, which is essential in providing quality and safe nursing care.

Keywords: simulation-based learning, clinical self-efficacy, infection control, nursing students

Procedia PDF Downloads 72
30952 Measuring Self-Regulation and Self-Direction in Flipped Classroom Learning

Authors: S. A. N. Danushka, T. A. Weerasinghe

Abstract:

The diverse necessities of instruction could be addressed effectively with the support of new dimensions of ICT integrated learning such as blended learning –which is a combination of face-to-face and online instruction which ensures greater flexibility in student learning and congruity of course delivery. As blended learning has been the ‘new normality' in education, many experimental and quasi-experimental research studies provide ample of evidence on its successful implementation in many fields of studies, but it is hard to justify whether blended learning could work similarly in the delivery of technology-teacher development programmes (TTDPs). The present study is bound with the particular research uncertainty, and having considered existing research approaches, the study methodology was set to decide the efficient instructional strategies for flipped classroom learning in TTDPs. In a quasi-experimental pre-test and post-test design with a mix-method research approach, the major study objective was tested with two heterogeneous samples (N=135) identified in a virtual learning environment in a Sri Lankan university. Non-randomized informal ‘before-and-after without control group’ design was employed, and two data collection methods, identical pre-test and post-test and Likert-scale questionnaires were used in the study. Selected two instructional strategies, self-directed learning (SDL) and self-regulated learning (SRL), were tested in an appropriate instructional framework with two heterogeneous samples (pre-service and in-service teachers). Data were statistically analyzed, and an efficient instructional strategy was decided via t-test, ANOVA, ANCOVA. The effectiveness of the two instructional strategy implementation models was decided via multiple linear regression analysis. ANOVA (p < 0.05) shows that age, prior-educational qualifications, gender, and work-experiences do not impact on learning achievements of the two diverse groups of learners through the instructional strategy is changed. ANCOVA (p < 0.05) analysis shows that SDL is efficient for two diverse groups of technology-teachers than SRL. Multiple linear regression (p < 0.05) analysis shows that the staged self-directed learning (SSDL) model and four-phased model of motivated self-regulated learning (COPES Model) are efficient in the delivery of course content in flipped classroom learning.

Keywords: COPES model, flipped classroom learning, self-directed learning, self-regulated learning, SSDL model

Procedia PDF Downloads 200
30951 Interrogating Student-Teachers’ Transformative Learning Role, Resources and Journey Considering Pedagogical Reform in Teacher Education Continuums

Authors: Nji Clement Bang, Rosemary Shafack M., Kum Henry Asei, Yaro Loveline Y

Abstract:

Scholars perceive learner-centered teaching-learning reform as roles and resources in teacher education (TE) and professional outcome with transformative learning (TL) continuum dimensions. But, teaching-learning reform is fast proliferating amidst debilitating stakeholder systemic dichotomies, resources, commitment, resistance and poor quality outcome that necessitate stronger TE and professional continuums. Scholars keep seeking greater understanding of themes in teaching-learning reform, TE and professional outcome as continuums and how policymakers, student-teachers, teacher trainers and local communities concerned with initial TE can promote continuous holistic quality performance. To sustain the debate continuum and answer the overarching question, we use mixed-methods research-design with diverse literature and 409 sample-data. Onset text, interview and questionnaire analyses reveal debilitating teaching-learning reform in TE continuums that need TL revival. Follow-up focus group discussion and teaching considering TL insights reinforce holistic teaching-learning in TE. Therefore, significant increase in diverse prior-experience articulation1; critical reflection-discourse engagement2; teaching-practice interaction3; complex-activity constrain control4 and formative outcome- reintegration5 reinforce teaching-learning in learning-to-teach role-resource pathways and outcomes. Themes reiterate complex teaching-learning in TE programs that suits TL journeys and student-teachers and students cum teachers, workers/citizens become akin, transformative-learners who evolve personal and collective roles-resources towards holistic-lifelong-learning outcomes. The article could assist debate about quality teaching-learning reform through TL dimensions as TE and professional role-resource continuums.

Keywords: transformative learning perspectives, teacher education, initial teacher education, learner-centered pedagogical reform, life-long learning

Procedia PDF Downloads 76
30950 Online Delivery Approaches of Post Secondary Virtual Inclusive Media Education

Authors: Margot Whitfield, Andrea Ducent, Marie Catherine Rombaut, Katia Iassinovskaia, Deborah Fels

Abstract:

Learning how to create inclusive media, such as closed captioning (CC) and audio description (AD), in North America is restricted to the private sector, proprietary company-based training. We are delivering (through synchronous and asynchronous online learning) the first Canadian post-secondary, practice-based continuing education course package in inclusive media for broadcast production and processes. Despite the prevalence of CC and AD taught within the field of translation studies in Europe, North America has no comparable field of study. This novel approach to audio visual translation (AVT) education develops evidence-based methodology innovations, stemming from user study research with blind/low vision and Deaf/hard of hearing audiences for television and theatre, undertaken at Ryerson University. Knowledge outcomes from the courses include a) Understanding how CC/AD fit within disability/regulatory frameworks in Canada. b) Knowledge of how CC/AD could be employed in the initial stages of production development within broadcasting. c) Writing and/or speaking techniques designed for media. d) Hands-on practice in captioning re-speaking techniques and open source technologies, or in AD techniques. e) Understanding of audio production technologies and editing techniques. The case study of the curriculum development and deployment, involving first-time online course delivery from academic and practitioner-based instructors in introductory Captioning and Audio Description courses (CDIM 101 and 102), will compare two different instructors' approaches to learning design, including the ratio of synchronous and asynchronous classroom time and technological engagement tools on meeting software platform such as breakout rooms and polling. Student reception of these two different approaches will be analysed using qualitative thematic and quantitative survey analysis. Thus far, anecdotal conversations with students suggests that they prefer synchronous compared with asynchronous learning within our hands-on online course delivery method.

Keywords: inclusive media theory, broadcasting practices, AVT post secondary education, respeaking, audio description, learning design, virtual education

Procedia PDF Downloads 184
30949 The Use of Modern Technology to Enhance English Language Teaching and Learning: An Analysis

Authors: Fazilet Alachaher (Benzerdjeb)

Abstract:

From the chalkboard to the abacus and beyond, technology has always played an important role in education. Educational technology refers to any teaching tool that helps supports learning, and given the rapid advancements in Information Technology and multimedia applications, the potential to support the teaching of foreign languages in our universities is ever greater. In language teaching and learning, we have a lot of to choose from the world of technology: TV, CDs, DVDs, Computers, the Internet, Email, and Blogs. The use of modern technologies can enrich the experience of learning a foreign language because they provide features that are not present in traditional technology. They can offer a wide range of multimedia resources, opportunities for intensive one-to-one learning in language labs and resources for authentic materials, which can be motivating to both students and teachers. The advent of Information and Communication Technology (ICT) and online interaction can also open up new range of self-access and distance learning opportunities The two last decades have witnessed a revolution due to the onset of technology, and has changed the dynamics of various industries, and has also influenced the way people live and work in society. That is why using the multimedia to create a certain context to teach English has its unique advantages. This paper tries then to analyse the necessity of multimedia technology to language teaching and brings out the problems faced by using these technologies. It also aims at making English teachers aware of the strategies to use it in an effective manner.

Keywords: strategies English teaching, multimedia technology, advantages, disadvantages, English learning

Procedia PDF Downloads 464
30948 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 319
30947 Francophone University Students' Attitudes Towards English Accents in Cameroon

Authors: Eric Agrie Ambele

Abstract:

The norms and models for learning pronunciation in relation to the teaching and learning of English pronunciation are key issues nowadays in English Language Teaching in ESL contexts. This paper discusses these issues based on a study on the attitudes of some Francophone university students in Cameroon towards three English accents spoken in Cameroon: Cameroon Francophone English (CamFE), Cameroon English (CamE), and Hyperlectal Cameroon English (near standard British English). With the desire to know more about the treatment that these English accents receive among these students, an aspect that had hitherto received little attention in the literature, a language attitude questionnaire, and the matched-guise technique was used to investigate this phenomenon. Two methods of data analysis were employed: (1) the percentage count procedure, and (2) the semantic differential scale. The findings reveal that the participants’ attitudes towards the selected accents vary in degree. Though Hyperlectal CamE emerged first, CamE second and CamFE third, no accent, on average, received a negative evaluation. It can be deduced from this findings that, first, CamE is gaining more and more recognition and can stand as an autonomous accent; second, that the participants all rated Hyperlectal CamE higher than CamE implies that they would be less motivated in a context where CamE is the learning model. By implication, in the teaching of English pronunciation to francophone learners learning English in Cameroon, Hyperlectal Cameroon English should be the model.

Keywords: teaching pronunciation, English accents, Francophone learners, attitudes

Procedia PDF Downloads 199
30946 Water-Controlled Fracturing with Fuzzy-Ball Fluid in Tight Gas Reservoirs of Deep Coal Measures in Sulige

Authors: Xiangchun Wang, Lihui Zheng, Maozong Gan, Peng Zhang, Tong Wu, An Chang

Abstract:

The deep coal measure tight gas reservoir in Sulige is usually reformed by fracturing, because the reservoir thickness is small, the water layers can be easily communicated during fracturing, which will lead to water production of gas wells and lower production of gas wells. Therefore, it is necessary to control water during fracturing in deep coal measure tight gas reservoir. Using fuzzy-ball fluid to control water fracturing can not only increase the output but also reduce the water output. The fuzzy-ball fluid was prepared indoors to carry out evaluation experiments. The fuzzy ball fluid was mixed in equal volume with the pre-fluid and formation water to test its compatibility. The core displacement device was used to test the gas and water breaking through the matrix and fractured cores blocked by fuzzy-ball fluid. The breakthrough pressure of the plunger tests its water blocking performance. The experimental results show that there is no precipitation after the fuzzy-ball fluid is mixed with the pad fluid and the formation water, respectively. The breakthrough pressure gradients of gas and water after the fuzzy-ball fluid plugged the cracks were 0.02MPa/cm and 0.04MPa/cm, respectively, and the breakthrough pressure gradients of gas and water after the matrix was plugged were 0.03MPa/cm and 0.2MPa/cm, respectively, which meet the requirements of field operation. Two wells A and B in the Sulige Gas Field were used on site to implement water control fracturing. After the pre-fluid was injected into the two wells, 50m3 of fuzzy-ball fluid was pumped to plug the water. The construction went smoothly. After water control and fracturing, the average daily output in 161 days was increased by 13.71% and 6.99% compared with that of adjacent wells in the same layer. The adjacent wells were bubbled for 3 times and 63 times respectively, while there was no effusion in A and B construction wells. The results show that fuzzy-ball fluid is a water plugging material suitable for water control fracturing in tight gas wells, and its water control mechanism can also provide a new idea for the development of water control fracturing materials.

Keywords: coal seam, deep layer, fracking, fuzzy-ball fluid, reservoir reconstruction

Procedia PDF Downloads 231
30945 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 73
30944 A Relationship Model That Illustrates the Effect of Humorous Packaging Designs on Brand Awareness and Brand Attitude

Authors: Shu-Yuan Lin, Tung-Chin Chou

Abstract:

As products become increasingly similar in competitive markets, achieving product segmentation and differentiation through packaging design has become the primary task when designing retail product packaging. When the main focus of brand marketing is no longer the product itself, emotional marketing, such as the use of humorous packaging designs, may be employed to successfully promote the brand. Such efforts will capture the hearts of consumers, generate discussions, and allow the brand to leave a deep impression in consumers. In this study, snack packaging was used to develop a relationship model that illustrated the effect of humorous packaging designs on brand awareness and brand attitude. The study was divided into three stages: In the first stage, in-depth interviews and focus group interviews were conducted with experts to construct 24 indicators for assessing humorous packaging designs. In the second stage, survey questionnaires were distributed to a young consumer group; the results showed that the group had a high and low product involvement with chocolate and dried shredded squid, respectively. Humorous packaging designs were subsequently created for two snack types to produce a study sample of 12 different packaging. In the third stage, packaging designs were evaluated by obtaining scores for the consumers’ brand awareness, brand attitude, and perceived effects of the packaging designs. Finally, a relationship model was developed to show the effect of humorous packaging designs on brand awareness and brand attitude, confirming that two perceived effects of humorous packaging designs (i.e., ‘pleasant and emotionally healing’ and ‘connected to people’s daily life’) exhibited a significant and positive effect on ‘perceived brand value,’ where the effect of ‘pleasant and emotionally healing’ was the most significant. In addition, ‘pleasant and emotionally healing’ exerted a significant and positive effect on ‘brand purchase intention.’ Furthermore, packaging designs with humorous elements helped foster brand awareness.

Keywords: brand awareness, brand attitude, humorous design, packaging design

Procedia PDF Downloads 229
30943 Investigation of the Catalytic Role of Surfactants on Carbon Dioxide Hydrate Formation in Sediments

Authors: Ehsan Heidaryan

Abstract:

Gas hydrate sediments are ice like permafrost in deep see and oceans. Methane production in sequestration process and reducing atmospheric carbon dioxide, a main source of greenhouse gas, has been accentuated recently. One focus is capture, separation, and sequestration of industrial carbon dioxide. As a hydrate former, carbon dioxide forms hydrates at moderate temperatures and pressures. This phenomenon could be utilized to capture and separate carbon dioxide from flue gases, and also has the potential to sequester carbon dioxide in the deep seabeds. This research investigated the effect of synthetic surfactants on carbon dioxide hydrate formation, catalysis and consequently, methane production from hydrate permafrosts in sediments. It investigated the sequestration potential of carbon dioxide hydrates in ocean sediments. Also, the catalytic effect of biosurfactants in these processes was investigated.

Keywords: carbon dioxide, hydrate, sequestration, surfactant

Procedia PDF Downloads 437
30942 Graphic Calculator Effectiveness in Biology Teaching and Learning

Authors: Nik Azmah Nik Yusuff, Faridah Hassan Basri, Rosnidar Mansor

Abstract:

The purpose of the study is to find out the effectiveness of using Graphic calculators (GC) with Calculator Based Laboratory 2 (CBL2) in teaching and learning of form four biology for these topics: Nutrition, Respiration and Dynamic Ecosystem. Sixty form four science stream students were the participants of this study. The participants were divided equally into the treatment and control groups. The treatment group used GC with CBL2 during experiments while the control group used the ordinary conventional laboratory apparatus without using GC with CBL2. Instruments in this study were a set of pre-test and post-test and a questionnaire. T-Test was used to compare the student’s biology achievement while a descriptive statistic was used to analyze the outcome of the questionnaire. The findings of this study indicated the use of GC with CBL2 in biology had significant positive effect. The highest mean was 4.43 for item stating the use of GC with CBL2 had saved collecting experiment result’s time. The second highest mean was 4.10 for item stating GC with CBL2 had saved drawing and labelling graphs. The outcome from the questionnaire also showed that GC with CBL2 were easy to use and save time. Thus, teachers should use GC with CBL2 in support of efforts by Malaysia Ministry of Education in encouraging technology-enhanced lessons.

Keywords: biology experiments, Calculator-Based Laboratory 2 (CBL2), graphic calculators, Malaysia Secondary School, teaching/learning

Procedia PDF Downloads 403
30941 Professional Learning, Professional Development and Academic Identity of Sessional Teachers: Underpinning Theoretical Frameworks

Authors: Aparna Datey

Abstract:

This paper explores the theoretical frameworks underpinning professional learning, professional development, and academic identity. The focus is on sessional teachers (also called tutors or adjuncts) in architectural design studios, who may be practitioners, masters or doctoral students and academics hired ‘as needed’. Drawing from Schön’s work on reflective practice, learning and developmental theories of Vygotsky (social constructionism and zones of proximal development), informal and workplace learning, this research proposes that sessional teachers not only develop their teaching skills but also shape their identities through their 'everyday' work. Continuing academic staff develop their teaching through a combination of active teaching, self-reflection on teaching, as well as learning to teach from others via formalised programs and informally in the workplace. They are provided professional development and recognised for their teaching efforts through promotion, student citations, and awards for teaching excellence. The teaching experiences of sessional staff, by comparison, may be discontinuous and they generally have fewer opportunities and incentives for teaching development. In the absence of access to formalised programs, sessional teachers develop their teaching informally in workplace settings that may be supportive or unhelpful. Their learning as teachers is embedded in everyday practice applying problem-solving skills in ambiguous and uncertain settings. Depending on their level of expertise, they understand how to teach a subject such that students are stimulated to learn. Adult learning theories posit that adults have different motivations for learning and fall into a matrix of readiness, that an adult’s ability to make sense of their learning is shaped by their values, expectations, beliefs, feelings, attitudes, and judgements, and they are self-directed. The level of expertise of sessional teachers depends on their individual attributes and motivations, as well as on their work environment, the good practices they acquire and enhance through their practice, career training and development, the clarity of their role in the delivery of teaching, and other factors. The architectural design studio is ideal for study due to the historical persistence of the vocational learning or apprenticeship model (learning under the guidance of experts) and a pedagogical format using two key approaches: project-based problem solving and collaborative learning. Hence, investigating the theoretical frameworks underlying academic roles and informal professional learning in the workplace would deepen understanding of their professional development and how they shape their academic identities. This qualitative research is ongoing at a major university in Australia, but the growing trend towards hiring sessional staff to teach core courses in many disciplines is a global one. This research will contribute to including transient sessional teachers in the discourse on institutional quality, effectiveness, and student learning.

Keywords: academic identity, architectural design learning, pedagogy, teaching and learning, sessional teachers

Procedia PDF Downloads 124
30940 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 101
30939 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 304
30938 An Adaptive CFAR Algorithm Based on Automatic Censoring in Heterogeneous Environments

Authors: Naime Boudemagh

Abstract:

In this work, we aim to improve the detection performances of radar systems. To this end, we propose and analyze a novel censoring technique of undesirable samples, of priori unknown positions, that may be present in the environment under investigation. Therefore, we consider heterogeneous backgrounds characterized by the presence of some irregularities such that clutter edge transitions and/or interfering targets. The proposed detector, termed automatic censoring constant false alarm (AC-CFAR), operates exclusively in a Gaussian background. It is built to allow the segmentation of the environment to regions and switch automatically to the appropriate detector; namely, the cell averaging CFAR (CA-CFAR), the censored mean level CFAR (CMLD-CFAR) or the order statistic CFAR (OS-CFAR). Monte Carlo simulations show that the AC-CFAR detector performs like the CA-CFAR in a homogeneous background. Moreover, the proposed processor exhibits considerable robustness in a heterogeneous background.

Keywords: CFAR, automatic censoring, heterogeneous environments, radar systems

Procedia PDF Downloads 602
30937 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system

Procedia PDF Downloads 103
30936 The Impact of E-Learning on Medication Administration of Nursing Students

Authors: Z. Karakus, Z. Ozer

Abstract:

Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement, or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery, and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.

Keywords: e-learning, medication administration, nursing, nursing students

Procedia PDF Downloads 255
30935 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function

Authors: Giselle Maggie-Fer Castañeda Lozano

Abstract:

The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.

Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks

Procedia PDF Downloads 74
30934 A Flipped Learning Experience in an Introductory Course of Information and Communication Technology in Two Bachelor's Degrees: Combining the Best of Online and Face-to-Face Teaching

Authors: Begona del Pino, Beatriz Prieto, Alberto Prieto

Abstract:

Two opposite approaches to teaching can be considered: in-class learning (teacher-oriented) versus virtual learning (student-oriented). The most known example of the latter is Massive Online Open Courses (MOOCs). Both methodologies have pros and cons. Nowadays there is an increasing trend towards combining both of them. Blending learning is considered a valuable tool for improving learning since it combines student-centred interactive e-learning and face to face instruction. The aim of this contribution is to exchange and share the experience and research results of a blended-learning project that took place in the University of Granada (Spain). The research objective was to prove how combining didactic resources of a MOOC with in-class teaching, interacting directly with students, can substantially improve academic results, as well as student acceptance. The proposed methodology is based on the use of flipped learning technics applied to the subject ‘Fundamentals of Computer Science’ of the first course of two degrees: Telecommunications Engineering, and Industrial Electronics. In this proposal, students acquire the theoretical knowledges at home through a MOOC platform, where they watch video-lectures, do self-evaluation tests, and use other academic multimedia online resources. Afterwards, they have to attend to in-class teaching where they do other activities in order to interact with teachers and the rest of students (discussing of the videos, solving of doubts and practical exercises, etc.), trying to overcome the disadvantages of self-regulated learning. The results are obtained through the grades of the students and their assessment of the blended experience, based on an opinion survey conducted at the end of the course. The major findings of the study are the following: The percentage of students passing the subject has grown from 53% (average from 2011 to 2014 using traditional learning methodology) to 76% (average from 2015 to 2018 using blended methodology). The average grade has improved from 5.20±1.99 to 6.38±1.66. The results of the opinion survey indicate that most students preferred blended methodology to traditional approaches, and positively valued both courses. In fact, 69% of students felt ‘quite’ or ‘very’ satisfied with the classroom activities; 65% of students preferred the flipped classroom methodology to traditional in-class lectures, and finally, 79% said they were ‘quite’ or ‘very’ satisfied with the course in general. The main conclusions of the experience are the improvement in academic results, as well as the highly satisfactory assessments obtained in the opinion surveys. The results confirm the huge potential of combining MOOCs in formal undergraduate studies with on-campus learning activities. Nevertheless, the results in terms of students’ participation and follow-up have a wide margin for improvement. The method is highly demanding for both students and teachers. As a recommendation, students must perform the assigned tasks with perseverance, every week, in order to take advantage of the face-to-face classes. This perseverance is precisely what needs to be promoted among students because it clearly brings about an improvement in learning.

Keywords: blended learning, educational paradigm, flipped classroom, flipped learning technologies, lessons learned, massive online open course, MOOC, teacher roles through technology

Procedia PDF Downloads 181
30933 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study

Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker

Abstract:

In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.

Keywords: admissions, algorithms, cloud computing, differentiation, fog computing, levelling, machine learning

Procedia PDF Downloads 143
30932 Media Literacy: Information and Communication Technology Impact on Teaching and Learning Methods in Albanian Education System

Authors: Loreta Axhami

Abstract:

Media literacy in the digital age emerges not only as a set of skills to generate true knowledge and information but also as a pedagogy methodology, as a kind of educational philosophy. In addition to such innovations as information integration and communication technologies, media infrastructures, and web usage in the educational system, media literacy enables the change in the learning methods, pedagogy, teaching programs, and school curriculum itself. In this framework, this study focuses on ICT's impact on teaching and learning methods and the degree they are reflected in the Albanian education system. The study is based on a combination of quantitative and qualitative methods of scientific research. Referring to the study findings, it results that student’s limited access to the internet in school, focus on the hardcopy textbooks and the role of the teacher as the only or main source of knowledge and information are some of the main factors contributing to the implementation of authoritarian pedagogical methods in the Albanian education system. In these circumstances, the implementation of media literacy is recommended as an apt educational process for the 21st century, which requires a reconceptualization of textbooks as well as the application of modern teaching and learning methods by integrating information and communication technologies.

Keywords: authoritarian pedagogic model, education system, ICT, media literacy

Procedia PDF Downloads 142
30931 Extent of Constructivist Learning in Science Classes of the College Department of Southville International School and Colleges: Implication to Effective College Teaching

Authors: Mark Edward S. Paulo

Abstract:

This study was conducted to determine the extent of constructivist learning in science classes of the college department of Southville International School and Colleges. This explores the students’ assessment of their learning when professors would give lecture and various activities in the classroom and at the same time their perception on how their professors maintain a constructivist learning environment. In this study, a total of 185 students participated. These students were enrolled in Science courses offered in the first semester of AY 2014 to 2015. Descriptive correlational method was used in this study while simple random sampling technique was utilized in getting the number of target population. The results revealed that student often observed that their professors apply constructivist approach when teaching sciences. A positive correlation was found between students’ level of learning and extent of constructivism.

Keywords: college teaching, constructivism, pedagogy, student-centered approach

Procedia PDF Downloads 253
30930 Visual Thinking Routines: A Mixed Methods Approach Applied to Student Teachers at the American University in Dubai

Authors: Alain Gholam

Abstract:

Visual thinking routines are principles based on several theories, approaches, and strategies. Such routines promote thinking skills, call for collaboration and sharing of ideas, and above all, make thinking and learning visible. Visual thinking routines were implemented in the teaching methodology graduate course at the American University in Dubai. The study used mixed methods. It was guided by the following two research questions: 1). To what extent do visual thinking inspire learning in the classroom, and make time for students’ questions, contributions, and thinking? 2). How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Eight student teachers enrolled in the teaching methodology course at the American University in Dubai (Spring 2017) participated in the following study. First, they completed a survey that measured to what degree they believed visual thinking routines inspired learning in the classroom and made time for students’ questions, contributions, and thinking. In order to build on the results from the quantitative phase, the student teachers were next involved in a qualitative data collection phase, where they had to answer the question: How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Results revealed that the implementation of visual thinking routines in the classroom strongly inspire learning in the classroom and make time for students’ questions, contributions, and thinking. In addition, student teachers explained how visual thinking routines allow for organization, variety, thinking, and documentation. As with all original, new, and unique resources, visual thinking routines are not free of challenges. To make the most of this useful and valued resource, educators, need to comprehend, model and spread an awareness of the effective ways of using such routines in the classroom. It is crucial that such routines become part of the curriculum to allow for and document students’ questions, contributions, and thinking.

Keywords: classroom display, student engagement, thinking classroom, visual thinking routines

Procedia PDF Downloads 230
30929 The Effectiveness of a Courseware in 7th Grade Chemistry Lesson

Authors: Oguz Ak

Abstract:

In this study a courseware for the learning unit of `Properties of matters` in chemistry course is developed. The courseware is applied to 15 7th grade (about age 14) students in real settings. As a result of the study it is found that the students` grade in the learning unit significantly increased when they study the courseware themselves. In addition, the score improvements of the students who found the courseware is usable is not significantly higher than the score improvements of the students who did not found it usable.

Keywords: computer based instruction, effect of courseware and usability of courseware, 7th grade

Procedia PDF Downloads 461
30928 Using Lesson-Based Discussion to Improve Teaching Quality: A Case of Chinese Mathematics Teachers

Authors: Jian Wang

Abstract:

Teachers’ lesson-based discussions presume central to their effective learning to teach. Whether and to what extent such discussions offer opportunities for teachers to learn to teach effectively is worth a careful empirical examination. This study examines this assumption by drawing on lesson-based discussions and relevant curriculum materials from Chinese teachers in three urban schools. Their lesson-based discussions consistently focused on pedagogical content knowledge and offered specific and reasoned suggestions for teachers to refine their teaching practices. The mandated curriculum and their working language-mediated their lesson-based discussions.

Keywords: Chinese teachers, curriculum materials, lesson discussion, mathematics instruction

Procedia PDF Downloads 80
30927 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 60