Search results for: web based instruction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28579

Search results for: web based instruction

26329 Composite Approach to Extremism and Terrorism Web Content Classification

Authors: Kolade Olawande Owoeye, George Weir

Abstract:

Terrorism and extremism activities on the internet are becoming the most significant threats to national security because of their potential dangers. In response to this challenge, law enforcement and security authorities are actively implementing comprehensive measures by countering the use of the internet for terrorism. To achieve the measures, there is need for intelligence gathering via the internet. This includes real-time monitoring of potential websites that are used for recruitment and information dissemination among other operations by extremist groups. However, with billions of active webpages, real-time monitoring of all webpages become almost impossible. To narrow down the search domain, there is a need for efficient webpage classification techniques. This research proposed a new approach tagged: SentiPosit-based method. SentiPosit-based method combines features of the Posit-based method and the Sentistrenght-based method for classification of terrorism and extremism webpages. The experiment was carried out on 7500 webpages obtained through TENE-webcrawler by International Cyber Crime Research Centre (ICCRC). The webpages were manually grouped into three classes which include the ‘pro-extremist’, ‘anti-extremist’ and ‘neutral’ with 2500 webpages in each category. A supervised learning algorithm is then applied on the classified dataset in order to build the model. Results obtained was compared with existing classification method using the prediction accuracy and runtime. It was observed that our proposed hybrid approach produced a better classification accuracy compared to existing approaches within a reasonable runtime.

Keywords: sentiposit, classification, extremism, terrorism

Procedia PDF Downloads 278
26328 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 168
26327 Mobile Games Applications Android-Based Physics Education to Improve Student Motivation and Interest in Learning Physics

Authors: Rizky Dwi A, Mikha Herlina Pi

Abstract:

Physics lessons for high school students, especially in Indonesia is less desirable because many people believe that physics is very difficult, especially the development of increasingly sophisticated era make online gaming more attractive many people especially school children with a variety of increasingly sophisticated gadgets. Therefore, if those two things combined to attract students in physics, the physics-based educational game android can motivate students' interest and understanding of the physics because while playing, they can also learn physics.

Keywords: education, game physics, interest, student's motivation

Procedia PDF Downloads 281
26326 The Contribution of Buddhist-Based Mindfulness Practices on Ethical Leadership: A Qualitative Study of Organizational Leaders in Thailand

Authors: Kunkanit Sutamchai, Kate E. Rowlands

Abstract:

Recent public ethical scandals in many organizations around the world have raised concern about organizational ethics, which have, in turn, made ethical behaviors and conducts on the part of leaders become more critical topics in organizational studies. However, current research on the benefits of mindfulness within the workplace contexts has predominantly focused on stress reduction and work performance enhancement, while the aspects of ethical behavior development have been far less investigated in mindfulness research in the organizational and management fields. Only recently has there been an emerging call for organizational researchers and practitioners to study mindfulness concepts and practices from the original Buddhist perspectives given that ethics is regarded as a foundation for Buddhist mindfulness. Yet little, if any, empirical research on the contributions of mindfulness practices to ethical leadership has been done in Eastern Buddhist contexts. Therefore, this study aims to explore the extent to which and how Buddhist-based mindfulness practices can influence organizational leaders’ ethical values and practices. On this basis, Thailand was selected as a context of study due to a predominantly Buddhist society and culture. Qualitative data were gathered through in-depth semi-structured interviews with twenty executive leaders from various private organizations in Thailand, who practice Buddhist-based mindfulness meditation regularly. The findings from this study shed light on the role Buddhist-based mindfulness practices can play in promoting ethical behavior among executive leaders in Thailand. The results also suggest that ethical values and practices influenced by Buddhist-based mindfulness practices are well aligned with the elements appeared in the inter-disciplinary and cross-cultural ethical leadership framework, namely: humane, justice, sustainability and responsibility, and moderation. This study concludes that the integration of ethical dimensions to mindfulness practices may provide promising opportunities for ethical leadership development, particularly in the context of Thailand. This could contribute significantly to the future development of both organizations and society at large. The study also suggests that mindfulness interventions in organizational contexts should place more explicit emphasis on ethics. This may be done by relating the ethical principles underlying Buddhist-based mindfulness to other ethical systems in different contexts and cultures where they can be aligned.

Keywords: Buddhism, ethical leadership, leadership development, mindfulness, Thailand, training

Procedia PDF Downloads 171
26325 Community Structure Detection in Networks Based on Bee Colony

Authors: Bilal Saoud

Abstract:

In this paper, we propose a new method to find the community structure in networks. Our method is based on bee colony and the maximization of modularity to find the community structure. We use a bee colony algorithm to find the first community structure that has a good value of modularity. To improve the community structure, that was found, we merge communities until we get a community structure that has a high value of modularity. We provide a general framework for implementing our approach. We tested our method on computer-generated and real-world networks with a comparison to very known community detection methods. The obtained results show the effectiveness of our proposition.

Keywords: bee colony, networks, modularity, normalized mutual information

Procedia PDF Downloads 406
26324 Decentralised Edge Authentication in the Industrial Enterprise IoT Space

Authors: C. P. Autry, A.W. Roscoe

Abstract:

Authentication protocols based on public key infrastructure (PKI) and trusted third party (TTP) are no longer adequate for industrial scale IoT networks thanks to issues such as low compute and power availability, the use of widely distributed and commercial off-the-shelf (COTS) systems, and the increasingly sophisticated attackers and attacks we now have to counter. For example, there is increasing concern about nation-state-based interference and future quantum computing capability. We have examined this space from first principles and have developed several approaches to group and point-to-point authentication for IoT that do not depend on the use of a centralised client-server model. We emphasise the use of quantum resistant primitives such as strong cryptographic hashing and the use multi-factor authentication.

Keywords: authentication, enterprise IoT cybersecurity, PKI/TTP, IoT space

Procedia PDF Downloads 169
26323 A Strategic Partner Evaluation Model for the Project Based Enterprises

Authors: Woosik Jang, Seung H. Han

Abstract:

The optimal partner selection is one of the most important factors to pursue the project’s success. However, in practice, there is a gaps in perception of success depending on the role of the enterprises for the projects. This frequently makes a relations between the partner evaluation results and the project’s final performances, insufficiently. To meet this challenges, this study proposes a strategic partner evaluation model considering the perception gaps between enterprises. A total 3 times of survey was performed; factor selection, perception gap analysis, and case application. After then total 8 factors are extracted from independent sample t-test and Borich model to set-up the evaluation model. Finally, through the case applications, only 16 enterprises are re-evaluated to “Good” grade among the 22 “Good” grade from existing model. On the contrary, 12 enterprises are re-evaluated to “Good” grade among the 19 “Bad” grade from existing model. Consequently, the perception gaps based evaluation model is expected to improve the decision making quality and also enhance the probability of project’s success.

Keywords: partner evaluation model, project based enterprise, decision making, perception gap, project performance

Procedia PDF Downloads 157
26322 A Secure Digital Signature Scheme with Fault Tolerance Based on the Improved RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Fault tolerance and data security are two important issues in modern communication systems. In this paper, we propose a secure and efficient digital signature scheme with fault tolerance based on the improved RSA system. The proposed scheme for the RSA cryptosystem contains three prime numbers and overcome several attacks possible on RSA. By using the Chinese Reminder Theorem (CRT) the proposed scheme has a speed improvement on the RSA decryption side and it provides high security also.

Keywords: digital signature, fault tolerance, RSA, security analysis

Procedia PDF Downloads 476
26321 Voice Liveness Detection Using Kolmogorov Arnold Networks

Authors: Arth J. Shah, Madhu R. Kamble

Abstract:

Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.

Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection

Procedia PDF Downloads 39
26320 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing

Authors: T. Bensana, S. Mekhilef

Abstract:

The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.

Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising

Procedia PDF Downloads 379
26319 An Analysis of Discourse Markers Awareness in Writing Undergraduate Thesis of English Education Student in Sebelas Maret University

Authors: Oktanika Wahyu Nurjanah, Anggun Fitriana Dewi

Abstract:

An undergraduate thesis is one of the academic writings which should fulfill some characteristics, one of them is coherency. Moreover, a coherence of a text depends on the usage of discourse markers. In other word, discourse markers take an essential role in writing. Therefore, the researchers aim to know the awareness of the discourse markers usage in writing the under-graduate thesis of an English Education student at Sebelas Maret University. This research uses a qualitative case study in order to obtain a deep analysis. The sample of this research is an under-graduate thesis of English Education student in Sebelas Maret University which chosen based on some criteria. Additionally, the researchers were guided by some literature attempted to group the discourse markers based on their functions. Afterward, the analysis was held based on it. From the analysis, it found that the awareness of discourse markers usage is moderate. The last point, the researcher suggest undergraduate students to familiarize themselves with discourse markers, especially for those who want to write thesis.

Keywords: discourse markers, English education, thesis writing, undergraduate student

Procedia PDF Downloads 357
26318 Market Acceptance of a Murabaha-Based Finance Structure within a Social Network of Non-Islamic Small and Medium Enterprise Owners in African Procurement

Authors: Craig M. Allen

Abstract:

Twenty two African entrepreneurs with Small and Medium Enterprises (SMEs) in a single social network centered around a non-Muslim population in a smaller African country, selected an Islamic financing structure, a form of Murabaha, based solely on market rationale. These entrepreneurs had all won procurement contracts from major purchasers of goods within their country and faced difficulty arranging traditional bank financing to support their supply-chain needs. The Murabaha-based structure satisfied their market-driven demand and provided an attractive alternative to the traditional bank-offered lending products. The Murabaha-styled trade-financing structure was not promoted with any religious implications, but solely as a market solution to the existing problems associated with bank-related financing. This indicates the strong market forces that draw SMEs to financing structures that are traditionally considered within the framework of Islamic finance.

Keywords: Africa, entrepreneurs, Islamic finance, market acceptance, Murabaha, SMEs

Procedia PDF Downloads 181
26317 Factors Associated with Injuries and Trauma Among the Survivors of Gender-Based Violence in Afghanistan

Authors: Mohammad Akbar Paiman, Yasmin Nadeem Parpio, Naureen Akbarali, Khwaja Mir Islam Saeed, Murad Moosa Khan

Abstract:

Background: Gender-based violence (GBV) is widely considered a significant public health problem that is associated with acute morbidity and mortality. GBV is commonly understood as a physical, sexual, and mental assault from intimate partners, sexual violence by non-partners, sexual assault of girls, and acts like trafficking women for sex. Objective: This study aimed to determine the factors associated with injuries and trauma among victims of GBV in Afghanistan. Method: We conducted a record-based analysis of the data collected by the Gender Department of the Family Protection Centre nationally between November 2013 and October 2019. Cross-tabulation between different variables such as age, sex, marital status, and type of violence and associations between different types of violence, age, gender, and geographical location was determined using the logistic regression model. Results: During the study period, there were a total of 58,160 GBV in Afghanistan. Most of the victims were women 98% with over three-quarters being adults 78%. Most of the victims were married 76%, followed by single 14%, widowed 5%, and engaged 5%. Over three-quarters of the violence, 73% was observed in the victim’s house while nearly one-quarter of the violence 24 % occurred in the perpetrator’s house. Conclusions: GBV is a significant public health problem in Afghanistan that needs to be addressed at multiple levels including policy, state, and community as well as by raising public awareness and education and a strong code of conduct against GBV by all stakeholders.

Keywords: gender-based violence, physical and psychological violence, injuries, Afghanistan

Procedia PDF Downloads 54
26316 Creating Emotional Brand Attachment through Immersive Worlds in Brick-and-Mortar Stores

Authors: Sanne Dollerup

Abstract:

This paper is an analysis of the store Tarina Tarantino through an exploration of different perspectives of play. It is based on Yelp reviews where customers disclose a very positive emotional reaction toward the store. The paper proposes some general principles for designing immersive stores based on ‘possible world’ theory. The aim is to disclose essential condition for customer engagement is an overall cohesiveness in all elements in a store. The most significant contribution in this paper is that products become props for role-playing in a store, hence making them central for maintaining that role outside the store.

Keywords: experience design, emotional brand attachment, retail design, case study

Procedia PDF Downloads 161
26315 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition

Authors: Umair Rashid

Abstract:

Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.

Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter

Procedia PDF Downloads 101
26314 Improvement of the Reliability and the Availability of a Production System

Authors: Lakhoua Najeh

Abstract:

Aims of the work: The aim of this paper is to improve the reliability and the availability of a Packer production line of cigarettes based on two methods: The SADT method (Structured Analysis Design Technique) and the FMECA approach (Failure Mode Effects and Critically Analysis). The first method enables us to describe the functionality of the Packer production line of cigarettes and the second method enables us to establish an FMECA analysis. Methods: The methodology adopted in order to contribute to the improvement of the reliability and the availability of a Packer production line of cigarettes has been proposed in this paper, and it is based on the use of Structured Analysis Design Technique (SADT) and Failure mode, effects, and criticality analysis (FMECA) methods. This methodology consists of using a diagnosis of the existing of all of the equipment of a production line of a factory in order to determine the most critical machine. In fact, we use, on the one hand, a functional analysis based on the SADT method of the production line and on the other hand, a diagnosis and classification of mechanical and electrical failures of the line production by their criticality analysis based on the FMECA approach. Results: Based on the methodology adopted in this paper, the results are the creation and the launch of a preventive maintenance plan. They contain the different elements of a Packer production line of cigarettes; the list of the intervention preventive activities and their period of realization. Conclusion: The diagnosis of the existing state helped us to found that the machine of cigarettes used in the Packer production line of cigarettes is the most critical machine in the factory. Then this enables us in the one hand, to describe the functionality of the production line of cigarettes by SADT method and on the other hand, to study the FMECA machine in order to improve the availability and the performance of this machine.

Keywords: production system, diagnosis, SADT method, FMECA method

Procedia PDF Downloads 143
26313 Effect of SPS Parameters on the Densification of ZrB2-Based Composites

Authors: Z. Balak, M. Zakeri, M.R.Rahimipur, M. Azizieh

Abstract:

Spark Plasma Sintering is a new technique which was used for ultra high temperature ceramics such as ZrB2-based composites in recent years. Taguchi design was applied to explore effective parameters for achieving the highest hardness. Nine factors including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure in four levels were considered through the Taguchi technique. In this study, only the effect of SPS conditions on densification and hardness were investigated. ZrB2-based composites were prepared by SPS in different temperatures (1600°C,1700°C, 1800°C, 1900°C), times (4min, 8 min, 12 min, 16min) and pressures (10MPa, 20MPa, 30MPa and 40MPa). The effect of SPS parameters on the densification and hardness were investigated. It was found, by increasing the temperature and time, from level 1 to 4, densification improved continuously. Also, the results shows hardness increases continuously by increasing temperature and time. Finally, it is concluded that temperature and time have more significant effect on densification and harness rather than pressure.

Keywords: spark plasma sintering (SPS), ultra high temperature ceramics (UHTCs), densification, hardness

Procedia PDF Downloads 406
26312 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis

Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan

Abstract:

This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.

Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis

Procedia PDF Downloads 227
26311 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 148
26310 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab

Authors: Zenab Naseem, Sadia Imran

Abstract:

One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.

Keywords: alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development

Procedia PDF Downloads 255
26309 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve

Procedia PDF Downloads 334
26308 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Authors: Pogula Rakesh, T. Kishore Kumar

Abstract:

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss

Procedia PDF Downloads 481
26307 Structural Reliability of Existing Structures: A Case Study

Authors: Z. Sakka, I. Assakkaf, T. Al-Yaqoub, J. Parol

Abstract:

A reliability-based methodology for the analysis assessment and evaluation of reinforced concrete structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for structural elements are verified by the results obtained from the deterministic methods. The analysis outcomes of reliability-based analysis are compared against the safety limits of the required reliability index β according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) related to the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the reinforced concrete elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member.

Keywords: structural reliability, concrete structures, FORM, Monte Carlo simulation

Procedia PDF Downloads 518
26306 Impact of Natural Language Processing in Educational Setting: An Effective Approach towards Improved Learning

Authors: Khaled M. Alhawiti

Abstract:

Natural Language Processing (NLP) is an effective approach for bringing improvement in educational setting. This involves initiating the process of learning through the natural acquisition in the educational systems. It is based on following effective approaches for providing the solution for various problems and issues in education. Natural Language Processing provides solution in a variety of different fields associated with the social and cultural context of language learning. It is based on involving various tools and techniques such as grammar, syntax, and structure of text. It is effective approach for teachers, students, authors, and educators for providing assistance for writing, analysis, and assessment procedure. Natural Language Processing is widely integrated in the large number of educational contexts such as research, science, linguistics, e-learning, evaluations system, and various other educational settings such as schools, higher education system, and universities. Natural Language Processing is based on applying scientific approach in the educational settings. In the educational settings, NLP is an effective approach to ensure that students can learn easily in the same way as they acquired language in the natural settings.

Keywords: natural language processing, education, application, e-learning, scientific studies, educational system

Procedia PDF Downloads 503
26305 Rapid Detection of Melamine in Milk Products Based on Modified Gold Electrode

Authors: Rovina Kobun, Shafiquzzaman Siddiquee

Abstract:

A novel and simple electrochemical sensor for the determination of melamine was developed based on modified gold electrode (AuE) with chitosan (CHIT) nanocomposite membrane, zinc oxide nanoparticles (ZnONPs) and ionic liquids ([EMIM][Otf]) to enhance the potential current response of melamine. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behaviour between melamine and modified AuE in the presence of methylene blue as a redox indicator. The experimental results indicated that the interaction of melamine with CHIT/ZnONPs/([EMIM][Otf])/AuE were based on the strong interaction of hydrogen bonds. The morphological characterization of modified AuE was observed under scanning electron microscope. Under optimal conditions, the current signal was directly proportional to the melamine concentration ranging from 9.6 x 10-5 to 9.6 x 10-11 M, with a correlation coefficient of 0.9656. The detection limit was 9.6 x 10-12 M. Finally, the proposed method was successfully applied and displayed an excellent sensitivity in the determination of melamine in milk samples.

Keywords: melamine, gold electrode, zinc oxide nanoparticles, cyclic voltammetries, differential pulse voltammetries

Procedia PDF Downloads 418
26304 Virtual Routing Function Allocation Method for Minimizing Total Network Power Consumption

Authors: Kenichiro Hida, Shin-Ichi Kuribayashi

Abstract:

In a conventional network, most network devices, such as routers, are dedicated devices that do not have much variation in capacity. In recent years, a new concept of network functions virtualisation (NFV) has come into use. The intention is to implement a variety of network functions with software on general-purpose servers and this allows the network operator to select their capacities and locations without any constraints. This paper focuses on the allocation of NFV-based routing functions which are one of critical network functions, and presents the virtual routing function allocation algorithm that minimizes the total power consumption. In addition, this study presents the useful allocation policy of virtual routing functions, based on an evaluation with a ladder-shaped network model. This policy takes the ratio of the power consumption of a routing function to that of a circuit and traffic distribution between areas into consideration. Furthermore, the present paper shows that there are cases where the use of NFV-based routing functions makes it possible to reduce the total power consumption dramatically, in comparison to a conventional network, in which it is not economically viable to distribute small-capacity routing functions.

Keywords: NFV, resource allocation, virtual routing function, minimum power consumption

Procedia PDF Downloads 341
26303 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 138
26302 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens

Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang

Abstract:

The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.

Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen

Procedia PDF Downloads 69
26301 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement

Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes

Abstract:

Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.

Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology

Procedia PDF Downloads 80
26300 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali

Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan

Abstract:

Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.

Keywords: land use/cover, urban, Bali, ASTER

Procedia PDF Downloads 541