Search results for: online and distance learning
8503 Evaluating the Effectiveness of the Use of Scharmer’s Theory-U Model in Action-Learning-Based Leadership Development Program
Authors: Donald C. Lantu, Henndy Ginting, M. Yorga Permana, Dany M. A. Ramdlany
Abstract:
We constructed a training program for top-talents of a Bank with Scharmer Theory-U as the model. In this training program, we implemented the action learning perspective, as it is claimed to be the most effective one currently available. In the process, participants were encouraged to be more involved, especially compared to traditional lecturing. The goal of this study is to assess the effectiveness of this particular training. The program consists of six days non-residential workshop within two months. Between each workshop, the participants were involved in the works of action learning group. They were challenged by dealing with the real problem related to their tasks at work. The participants of the program were 30 best talents who were chosen according to their yearly performance. Using paired difference statistical test in the behavioral assessment, we found that the training was not effective to increase participants’ leadership competencies. For the future development program, we suggested to modify the goals of the program toward the next stage of development.Keywords: action learning, behavior, leadership development, Theory-U
Procedia PDF Downloads 1958502 Motivation and Attitudes toward Learning English and German as Foreign Languages among Sudanese University Students
Authors: A. Ishag, E. Witruk, C. Altmayer
Abstract:
Motivation and attitudes are considered as hypothetical psychological constructs in explaining the process of second language learning. Gardner (1985) – who first systematically investigated the motivational factors in second language acquisition – found that L2 achievement is related not only to the individual learner’s linguistic aptitude or general intelligence but also to the learner’s motivation and interest in learning the target language. Traditionally language learning motivation can be divided into two types: integrative motivation – the desire to integrate oneself with the target culture; and instrumental motivation – the desire to learn a language in order to meet a specific language requirement such as for employment. One of the Gardner’s main ideas is that the integrative motivation plays an important role in second language acquisition. It is directly and positively related to second language achievement more than instrumental motivation. However, the significance of integrative motivation reflects a rather controversial set of findings. On the other hand, Students’ attitudes towards the target language, its speakers and the learning context may all play some part in explaining their success in learning a language. Accordingly, the present study aims at exploring the significance of motivational and attitudinal factors in learning foreign languages, namely English and German among Sudanese undergraduate students from a psycholinguistic and interdisciplinary perspective. The sample composed of 221 students from the English and German language departments respectively at the University of Khartoum in Sudan. The results indicate that English language’s learners are instrumentally motivated and that German language’s learners have positive attitudes towards the German language community and culture. Furthermore, there are statistical significant differences in the attitudes toward the two languages due to gender; where female students have more positive attitudes than their male counterparts. However, there are no differences along the variables of academic grade and study level. Finally, the reasons of studying the English or German language have also been indicated.Keywords: motivation and attitudes, foreign language learning, english language, german language
Procedia PDF Downloads 6838501 Virtual Reality Learning Environment in Embryology Education
Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani
Abstract:
Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.Keywords: virtual reality, student assessment, medical education, 3D, embryology
Procedia PDF Downloads 1918500 Software-Defined Radio Based Channel Measurement System of Wideband HF Communication System in Low-Latitude Region
Authors: P. H. Mukti, I. Kurniawati, F. Oktaviansyah, A. D. Adhitya, N. Rachmadani, R. Corputty, G. Hendrantoro, T. Fukusako
Abstract:
HF Communication system is one of the attractive fields among many researchers since it can be reached long-distance areas with low-cost. This long-distance communication can be achieved by exploiting the ionosphere as a transmission medium for the HF radio wave. However, due to the dynamic nature of ionosphere, the channel characteristic of HF communication has to be investigated in order to gives better performances. Many techniques to characterize HF channel are available in the literature. However, none of those techniques describe the HF channel characteristic in low-latitude regions, especially equatorial areas. Since the ionosphere around equatorial region has an ESF phenomenon, it becomes an important investigation to characterize the wideband HF Channel in low-latitude region. On the other sides, the appearance of software-defined radio attracts the interest of many researchers. Accordingly, in this paper a SDR-based channel measurement system is proposed to be used for characterizing the HF channel in low-latitude region.Keywords: channel characteristic, HF communication system, LabVIEW, software-defined radio, universal software radio peripheral
Procedia PDF Downloads 4888499 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms
Authors: Sagri Sharma
Abstract:
Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine
Procedia PDF Downloads 4298498 Visual Improvement with Low Vision Aids in Children with Stargardt’s Disease
Authors: Anum Akhter, Sumaira Altaf
Abstract:
Purpose: To study the effect of low vision devices i.e. telescope and magnifying glasses on distance visual acuity and near visual acuity of children with Stargardt’s disease. Setting: Low vision department, Alshifa Trust Eye Hospital, Rawalpindi, Pakistan. Methods: 52 children having Stargardt’s disease were included in the study. All children were diagnosed by pediatrics ophthalmologists. Comprehensive low vision assessment was done by me in Low vision clinic. Visual acuity was measured using ETDRS chart. Refraction and other supplementary tests were performed. Children with Stargardt’s disease were provided with different telescopes and magnifying glasses for improving far vision and near vision. Results: Out of 52 children, 17 children were males and 35 children were females. Distance visual acuity and near visual acuity improved significantly with low vision aid trial. All children showed visual acuity better than 6/19 with a telescope of higher magnification. Improvement in near visual acuity was also significant with magnifying glasses trial. Conclusions: Low vision aids are useful for improvement in visual acuity in children. Children with Stargardt’s disease who are having a problem in education and daily life activities can get help from low vision aids.Keywords: Stargardt, s disease, low vision aids, telescope, magnifiers
Procedia PDF Downloads 5398497 Non Immersive Virtual Laboratory Applied to Robotics Arms
Authors: Luis F. Recalde, Daniela A. Bastidas, Dayana E. Gallegos, Patricia N. Constante, Victor H. Andaluz
Abstract:
This article presents a non-immersive virtual lab-oratory to emulate the behavior of the Mitsubishi Melfa RV 2SDB robotic arm, allowing students and users to acquire skills and experience related to real robots, augmenting the access and learning of robotics in Universidad de las Fuerzas Armadas (ESPE). It was developed using the mathematical model of the robotic arm, thus defining the parameters for virtual recreation. The environment, interaction, and behavior of the robotic arm were developed in a graphic engine (Unity3D) to emulate learning tasks such as in a robotics laboratory. In the virtual system, four inputs were developed for the movement of the robot arm; further, to program the robot, a user interface was created where the user selects the trajectory such as point to point, line, arc, or circle. Finally, the hypothesis of the industrial robotic learning process is validated through the level of knowledge acquired after using the system.Keywords: virtual learning, robot arm, non-immersive reality, mathematical model
Procedia PDF Downloads 998496 A Geo DataBase to Investigate the Maximum Distance Error in Quality of Life Studies
Authors: Paolino Di Felice
Abstract:
The background and significance of this study come from papers already appeared in the literature which measured the impact of public services (e.g., hospitals, schools, ...) on the citizens’ needs satisfaction (one of the dimensions of QOL studies) by calculating the distance between the place where they live and the location on the territory of the services. Those studies assume that the citizens' dwelling coincides with the centroid of the polygon that expresses the boundary of the administrative district, within the city, they belong to. Such an assumption “introduces a maximum measurement error equal to the greatest distance between the centroid and the border of the administrative district.”. The case study, this abstract reports about, investigates the implications descending from the adoption of such an approach but at geographical scales greater than the urban one, namely at the three levels of nesting of the Italian administrative units: the (20) regions, the (110) provinces, and the 8,094 municipalities. To carry out this study, it needs to be decided: a) how to store the huge amount of (spatial and descriptive) input data and b) how to process them. The latter aspect involves: b.1) the design of algorithms to investigate the geometry of the boundary of the Italian administrative units; b.2) their coding in a programming language; b.3) their execution and, eventually, b.4) archiving the results in a permanent support. The IT solution we implemented is centered around a (PostgreSQL/PostGIS) Geo DataBase structured in terms of three tables that fit well to the hierarchy of nesting of the Italian administrative units: municipality(id, name, provinceId, istatCode, regionId, geometry) province(id, name, regionId, geometry) region(id, name, geometry). The adoption of the DBMS technology allows us to implement the steps "a)" and "b)" easily. In particular, step "b)" is simplified dramatically by calling spatial operators and spatial built-in User Defined Functions within SQL queries against the Geo DB. The major findings coming from our experiments can be summarized as follows. The approximation that, on the average, descends from assimilating the residence of the citizens with the centroid of the administrative unit of reference is of few kilometers (4.9) at the municipalities level, while it becomes conspicuous at the other two levels (28.9 and 36.1, respectively). Therefore, studies such as those mentioned above can be extended up to the municipal level without affecting the correctness of the interpretation of the results, but not further. The IT framework implemented to carry out the experiments can be replicated for studies referring to the territory of other countries all over the world.Keywords: quality of life, distance measurement error, Italian administrative units, spatial database
Procedia PDF Downloads 3718495 Large-scale Foraging Behaviour of Free-ranging Goats: Influence of Herd Size, Landscape Quality and Season
Authors: Manqhai Kraai, Adrian M. Shrader, Peter F. Scogings
Abstract:
For animals living in herds, competition between group members increases as herd size increases. The intensity of this competition is likely greater across poor quality landscapes and during the dry season. In contrast to wild herbivores, herd size in domestic livestock is determined by their owners. This then raises the question, how do domestic livestock, like goats, reduce competition for food within these defined herds? To explore this question, large-scale foraging behaviour of both small (12 to 28 individuals) and large (42 to 83 individuals) herds of free-ranging goats were recorded in Tugela Ferry, KwaZulu-Natal, South Africa. The study was conducted on three different landscapes that varied in both food quality and availability, during the wet and dry seasons of 2013-2014. The goats were housed in kraals overnight and let out in the mornings to forage unattended. Thus, foraging decisions were made by the goats and not by herders. The large-scale foraging behaviours focussed on included, (i) total distance travelled by goats while foraging, (ii) distance travelled before starting to feed, (iii) travel speed, and (iv) feeding duration. This was done using Garmin Foretrex 401 GPS devices harnessed to two goats per herd. Irrespective of season, there was no difference in the total distance travelled by the different sized herds across the different quality landscapes. However, both small and large herds started feeding farther from the kraal in the dry compared to the wet season. Despite this, there was no significant seasonal difference in total amount of time the herds spent feeding across the different landscapes. Finally, both small and large herds increased their travel speed across all the landscapes in the dry season, but large herds travelled faster than small herds. This increase was likely to maximise the time that large herds could spend feeding in good areas. Ultimately, these results indicate that both small and large herds were affected by declines in food quality and quantity during the dry season. However, as large herds made greater behavioural adjustments compared to smaller herds (i.e., feeding farther away from the kraal and travelling faster), it appeared that they were more affected by the seasonal increases in intra-herd competition.Keywords: distance, feeding duration, food availability, food quality, travel speed
Procedia PDF Downloads 1258494 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia
Authors: Nathenal Thomas Lambamo
Abstract:
Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.Keywords: septoria, leaf rust, deep learning, CNN
Procedia PDF Downloads 768493 Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip
Authors: M. Meftahi, M. Hoseinzadeh, S. A. Naeini
Abstract:
Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies.Keywords: adjacent foundation, bearing capacity, reinforcements, settlement, numerical analysis
Procedia PDF Downloads 1698492 Quality Teaching Evaluation Instrument: A Student Learning-centred Approach
Authors: Thuy T. T. Tran, Hamish Coates, Sophie Arkoudis
Abstract:
Evaluation instruments of teaching are abundant; however, these do not prompt any enhancement in the quality of teaching, not least because these instruments are framed only by teacher-centered conceptions of teaching. There is a need for more sophisticated teaching evaluation measures that focus on student learning and multi-stakeholder involvement. This study aims to develop such an evaluation instrument for Vietnamese higher education. The study uses several kinds of methods. The instrument was initially drafted through in-depth review of research, paying close attention to Vietnamese higher education. Draft evaluation instruments were produced and reviewed by 34 experts. The outcomes of this qualitative and quantitative data reveal an instrument that highlights the value of a multisource student-centered approach, and the rich integration of contextual and cultural traits where Confucian values are emphasized. The validation affirms that evaluating teaching in such way will facilitate the continuous learning growth of all stakeholders involved.Keywords: multi stakeholders, quality teaching, student learning, teaching evaluation
Procedia PDF Downloads 3108491 School-Outreach Projects to Children: Lessons for Engineering Education from Questioning Young Minds
Authors: Niall J. English
Abstract:
Under- and post-graduate training can benefit from a more active learning style, and most particularly so in engineering. Despite this, outreach to young children in primary and secondary schools is less-developed in terms of its documented effectiveness, especially given new emphasis placed within the third level and advanced research program’s on Education and Public Engagement (EPE). Bearing this in mind, outreach and school visits form the basis to ascertain how active learning, careers stimulus and EPE initiatives for young children can inform the university sector, helping to improve future engineering-teaching standards, and enhancing both quality and practicalities of the teaching-and-learning experience. Indeed, engineering-education EPE/outreach work has been demonstrated to lead to several tangible benefits and improved outcomes, such as greater engagement and interest with science/engineering for school-children, careers awareness, enabling teachers with strong contributions to technical knowledge of engineering subjects, and providing development of general professional skills for engineering, e.g., communication and teamwork. This intervention involved active learning in ‘buzz’ groups for young children of concepts in gas engineering, observing their peer interactions to develop university-level lessons on activity learning. In addition, at the secondary level, careers-outreach efforts have led to statistical determinations of motivations towards engineering education and training, which aids in the redesign of engineering curricula for more active learning.Keywords: outreach, education and public engagement, careers, peer interactions
Procedia PDF Downloads 1208490 Solution Approaches for Some Scheduling Problems with Learning Effect and Job Dependent Delivery Times
Authors: M. Duran Toksari, Berrin Ucarkus
Abstract:
In this paper, we propose two algorithms to optimally solve makespan and total completion time scheduling problems with learning effect and job dependent delivery times in a single machine environment. The delivery time is the extra time to eliminate adverse effect between the main processing and delivery to the customer. In this paper, we introduce the job dependent delivery times for some single machine scheduling problems with position dependent learning effect, which are makespan are total completion. The results with respect to two algorithms proposed for solving of the each problem are compared with LINGO solutions for 50-jobs, 100-jobs and 150-jobs problems. The proposed algorithms can find the same results in shorter time.Keywords: delivery Times, learning effect, makespan, scheduling, total completion time
Procedia PDF Downloads 4698489 Evaluating Imitation Behavior of Children with Autism Spectrum Disorder Using Humanoid Robot NAO
Authors: Masud Karim, Md. Solaiman Mia, Saifuddin Md. Tareeq, Md. Hasanuzzaman
Abstract:
Autism Spectrum Disorder (ASD) is a neurodevelopment disorder. Such disorder is found in childhood life. Children with ASD have less capabilities in communication and social skills. Therapies are used to develop communication and social skills. Recently researchers have been trying to use robots in such therapies. In this paper, we have presented social skill learning test cases for children with ASD. Autism conditions are measured in 30 children in a special school. Among them, twelve children are selected who have equal ASD conditions. Then six children participated in training with humans, and another six children participated in training with robots. The learning session continued for one week and three hours each day. We have taken an assessment test before the learning sessions. After completing the learning sessions, we have taken another assessment test. We have found better performances from children who have participated in robotic sessions rather than the children who have participated in human sessions.Keywords: children with ASD, NAO robot, human-robot interaction, social skills
Procedia PDF Downloads 888488 Cyber Violence Behaviors Among Social Media Users in Ghana: An Application of Self-Control Theory and Social Learning Theory
Authors: Aisha Iddrisu
Abstract:
The proliferation of cyberviolence in the wave of increased social media consumption calls for immediate attention both at the local and global levels. With over 4.70 billion social media users worldwide and 8.8 social media users in Ghana, various forms of violence have become the order of the day in most countries and communities. Cyber violence is defined as producing, retrieving, and sharing of hurtful or dangerous online content to cause emotional, psychological, or physical harm. The urgency and severity of cyber violence have led to the enactment of laws in various countries though lots still need to be done, especially in Ghana. In Ghana, studies on cyber violence have not been extensively dealt with. Existing studies concentrate only on one form or the other form of cyber violence, thus cybercrime and cyber bullying. Also, most studies in Africa have not explored cyber violence forms using empirical theories and the few that existed were qualitatively researched, whereas others examine the effect of cyber violence rather than examining why those who involve in it behave the way they behave. It is against this backdrop that this study aims to examine various cyber violence behaviour among social media users in Ghana by applying the theory of Self-control and Social control theory. This study is important for the following reasons. The outcome of this research will help at both national and international level of policymaking by adding to the knowledge of understanding cyberviolence and why people engage in various forms of cyberviolence. It will also help expose other ways by which such behaviours are enforced thereby serving as a guide in the enactment of the rightful rules and laws to curb such behaviours. It will add to literature on consequences of new media. This study seeks to confirm or reject to the following research hypotheses. H1 Social media usage has direct significant effect of cyberviolence behaviours. H2 Ineffective parental management has direct significant positive relation to Low self-control. H3 Low self-control has direct significant positive effect on cyber violence behaviours among social, H4 Differential association has significant positive effect on cyberviolence behaviour among social media users in Ghana. H5 Definitions have a significant positive effect on cyberviolence behaviour among social media users in Ghana. H6 Imitation has a significant positive effect on cyberviolence behaviour among social media users in Ghana. H7 Differential reinforcement has a significant positive effect on cyberviolence behaviour among social media users in Ghana. H8 Differential association has a significant positive effect on definitions. H9 Differential association has a significant positive effect on imitation. H10 Differential association has a significant positive effect on differential reinforcement. H11 Differential association has significant indirect positive effects on cyberviolence through the learning process.Keywords: cyberviolence, social media users, self-control theory, social learning theory
Procedia PDF Downloads 868487 The Role of Video in Teaching and Learning Pronunciation: A Case Study
Authors: Kafi Razzaq Ahmed
Abstract:
Speaking fluently in a second language requires vocabulary, grammar, and pronunciation skills. Teaching the English language entails teaching pronunciation. In professional literature, there have been a lot of attempts to integrate technology into improving the pronunciation of learners. The technique is also neglected in Kurdish contexts, Salahaddin University – Erbil included. Thus, the main aim of the research is to point out the efficiency of using video materials for both language teachers and learners within and beyond classroom learning and teaching environments to enhance student's pronunciation. To collect practical data, a research project has been designed. In subsequent research, a posttest will be administered after each lesson to 100 first-year students at Salahaddin University-Erbil English departments. All students will be taught the same material using different methods, one based on video materials and the other based on the traditional approach to teaching pronunciation. Finally, the results of both tests will be analyzed (also knowing the attitudes of both the teachers and the students about both lessons) to indicate the impact of using video in the process of teaching and learning pronunciation.Keywords: video, pronunciation, teaching, learning
Procedia PDF Downloads 1088486 Optimizing Availability of Marine Knowledge Repository with Cloud-Based Framework
Authors: Ahmad S. Mohd Noor, Emma A. Sirajudin, Nur F. Mat Zain
Abstract:
Reliability is an important property for knowledge repository system. National Marine Bioinformatics System or NABTICS is a marine knowledge repository portal aimed to provide a baseline for marine biodiversity and a tool for researchers and developers. It is intended to be a large and growing online database and also a metadata system for inputs of research analysis. The trends of present large distributed systems such as Cloud computing are the delivery of computing as a service rather than a product. The goal of this research is to make NABTICS a system of greater availability by integrating it with Cloud based Neighbor Replication and Failure Recovery (NRFR). This can be achieved by implementation of NABTICS into distributed environment. As a result, the user can experience minimum downtime while using the system should the server is having a failure. Consequently the online database application is said to be highly available.Keywords: cloud, availability, distributed system, marine repository, database replication
Procedia PDF Downloads 4718485 Anxiety Factors in the Saudi EFL Learners
Authors: Fariha Asif
Abstract:
The Saudi EFL learners face a number of problems in EFL learning, anxiety is the most potent one among those. It means that its resolution can lead to better language skills in Saudi students. That’s why, the study is carried out and is considered to be of interest to the Saudi language learners, educators and the policy makers because of the potentially negative impact that anxiety has on English language learning. The purpose of the study is to explore the factors that cause language anxiety in the Saudi EFL learners while learning speaking skills and the influence it casts on communication in the target language. The investigation of the anxiety-producing factors that arise while learning to communicate in the target language will hopefully broaden the insight into the issue of language anxiety and will help language teachers in making the classroom environment less stressful. The study seeks to answer the questions such as what are the psycholinguistic factors that cause language anxiety among ESL/EFL learners in learning and speaking English Language, especially in the context of the Saudi students. What are the socio-cultural factors that cause language anxiety among Saudi EFL learners in learning and speaking English Language? How is anxiety manifested in the language learning of the Saudi EFL learners? And which strategies can be used to successfully cope with language anxiety? The scope of the study is limited to the college and university English Teachers and subject specialists (males and females) in public sectors colleges and universities in Saudi Arabia. Some of the key findings of the study are:, Anxiety plays an important role in English as foreign language learning for the Saudi EFL learners. Some teachers believe that anxiety bears negatives effects for the learners, while some others think that anxiety serves a positive outcome for the learners by giving them an extra bit of motivation to do their best in English language learning. Language teachers seem to have consensus that L1 interference is one of the major factors that cause anxiety among the Saudi EFL learners. Most of the Saudi EFL learners are found to have fear of making mistakes. They don’t take initiative and opt to keep quiet and don’t respond fearing that they would make mistakes and this would ruin their image in front of their peers. Discouraging classroom environment is also counted as one of the major anxiety causing factors. The teachers, who don’t encourage learners positively, make them anxious and they start avoiding class participation. It is also found that English language teachers have their important role to minimize the negative effects of anxiety in the classes. The teachers’ positive encouragement can do wonders in this regard. A positive, motivating and encouraging class environment is essential to produce desired results in English language learning for the Saudi EFL learners.Keywords: factors, psychology, speaking, EFL
Procedia PDF Downloads 4658484 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks
Authors: Muneeb Ullah, Daishihan, Xiadong Young
Abstract:
Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.Keywords: classification, deep learning, medical images, CXR, GAN.
Procedia PDF Downloads 968483 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 768482 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology
Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando
Abstract:
Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry
Procedia PDF Downloads 1518481 “Those Are the Things that We Need to be Talking About”: The Impact of Learning About the History of Racial Oppression during Ghana Study Abroad
Authors: Katarzyna Olcoń, Rose M. Pulliam, Dorie J. Gilbert
Abstract:
This article examines the impact of learning about the history of racial oppression on U.S. university students who participated in a Ghana study abroad which involved visiting the former slave dungeons. Relying on ethnographic observations, individual interviews, and written journals of 27 students (predominantly White and Latino/a and social work majors), we identified four themes: (1) the suffering and resilience of African and African descent people; (2) ‘it’s still happening today’; (3) ‘you don’t learn about that in school’; and (4) remembrance, equity, and healing.Keywords: racial oppression, anti-racism pedagogy, student learning, social work education, study abroad
Procedia PDF Downloads 1198480 Interactive Effects of Organizational Learning and Market Orientation on New Product Performance
Authors: Qura-tul-aain Khair
Abstract:
Purpose- The purpose of this paper is to empirically examining the strength of association of responsive market orientation and proactive market orientation with new product performance and exploring the possible moderating role of organizational learning based on contingency theory. Design/methodology/approach- Data for this study was collected from FMCG manufacturing industry and services industry, where customers are in contact frequently and responses are recorded on continuous basis. Sample was collected through convenience sampling. The data collected from different marketing department and sales personnel were analysed using SPSS 16 version. Findings- The paper finds that responsive market orientation is more strongly associated with new product performance. The moderator, organizational learning, plays it significant role on the relationship between responsive market orientation and new product performance. Research limitations/implications- this paper has taken sample from just FMCG industry and service industry, more work can be done regarding how different-markets require different market orientation behaviours. Originality/value- This paper will be useful for foreign business looking for investing and expanding in Pakistan, they can find opportunity to get sustained competitive advantage through exploring the proactive side of market orientation and importance of organizational learning.Keywords: organizational learning, proactive market orientation, responsive market orientation, new product performance
Procedia PDF Downloads 3828479 Work-Integrated Learning Practices: Comparative Case Studies across Three Countries
Authors: Shairn Hollis-Turner
Abstract:
The changing demands of workplace practice in the field of business information and administration have placed considerable pressure on educators to prepare students for the world of work. In this paper, we argue that appropriate forms of work-integrated learning (WIL) could enhance learning experiences in higher education and support educators to meet industry needs for changing times. The study aims to enhance business information and administration education from a practice perspective. The guiding research question is: How can a systematic understanding of work-integrated learning practices enhance learning experiences in higher education? The research design comprised comparative case studies across three countries and was framed by Activity Theory. Analysis of the findings highlighted the similarities across WIL systems for higher education practices and the differences within the activity systems. The findings showed similarities in program practice, content, placement, and in the struggles of students to find placements. The findings also showed misalignments between WIL preparation, delivery, and future focus of WIL at these institutions. The findings suggest that employment requirements vary across countries and that systems could be improved to meet the demands of workplace practice for changing times for the benefit of students’ learning and employability.Keywords: business administration, business information, knowledge, post graduate diploma
Procedia PDF Downloads 518478 Need for E-Learning: An Effective Method in Educating the Persons with Hearing Impairment Using Sign Language
Authors: S. Vijayakumar, S. B. Rathna Kumar, Navnath D Jagadale
Abstract:
Learning and teaching are the challenges ahead in the education of the students with hearing impairment using sign language (SHISL). Either the students or teachers face difficulties in the process of learning/teaching. Communication is one of the main barriers while teaching SHISL. Further, the courses of study or the subjects are limited to SHISL at least in countries like India. Students with hearing impairment mainly opt for sign language as a communication mode. Subjects like physics, chemistry, advanced mathematics etc. are not available in the curriculum for the SHISL since their content and ideas are complex. In India, exemption for language papers is being given for the students with hearing impairment. It may give opportunity to them to secure secondary/ higher secondary qualifications. It is a known fact that students with hearing impairment are facing difficulty in their future carrier. They secure neither a higher study nor a good employment opportunity. Vocational training in various trades will land them in few jobs with few bucks in pocket. However, not all of them are blessed with higher positions in government or private sectors in competitive fields or where the technical knowledge is required. E learning with sign language instructions can be used for teaching languages and science subjects. Computer Based Instruction (CBI), Computer Based Training (CBT), and Computer Assisted Instruction (CAI) are now part-and-parcel of Modern Education. It will also include signed video clip corresponding to the topic. Learning language subjects will improve the understanding of concepts in different subjects. Learning other science subjects like their hearing counterparts will enable the SHISL to go higher in studies and increase their height to pluck a fruit of the tree of employment.Keywords: students with hearing impairment using sign language, hearing impairment, language subjects, science subjects, e-learning
Procedia PDF Downloads 4058477 Integrative Biology Teaching and Learning Model Based on STEM Education
Authors: Narupot Putwattana
Abstract:
Changes in global situation such as environmental and economic crisis brought the new perspective for science education called integrative biology. STEM has been increasingly mentioned for several educational researches as the approach which combines the concept in Science (S), Technology (T), Engineering (E) and Mathematics (M) to apply in teaching and learning process so as to strengthen the 21st-century skills such as creativity and critical thinking. Recent studies demonstrated STEM as the pedagogy which described the engineering process along with the science classroom activities. So far, pedagogical contents for STEM explaining the content in biology have been scarce. A qualitative literature review was conducted so as to gather the articles based on electronic databases (google scholar). STEM education, engineering design, teaching and learning of biology were used as main keywords to find out researches involving with the application of STEM in biology teaching and learning process. All articles were analyzed to obtain appropriate teaching and learning model that unify the core concept of biology. The synthesized model comprised of engineering design, inquiry-based learning, biological prototype and biologically-inspired design (BID). STEM content and context integration were used as the theoretical framework to create the integrative biology instructional model for STEM education. Several disciplines contents such as biology, engineering, and technology were regarded for inquiry-based learning to build biological prototype. Direct and indirect integrations were used to provide the knowledge into the biology related STEM strategy. Meanwhile, engineering design and BID showed the occupational context for engineer and biologist. Technological and mathematical aspects were required to be inspected in terms of co-teaching method. Lastly, other variables such as critical thinking and problem-solving skills should be more considered in the further researches.Keywords: biomimicry, engineering approach, STEM education, teaching and learning model
Procedia PDF Downloads 2558476 Applying Knowledge Management and Attitude Based on Holistic Approach in Learning Andragogy, as an Effort to Solve Environmental Problems after Mining Activities
Authors: Aloysius Hardoko, Susilo
Abstract:
The root cause of environmental damage post coal mining activities as determined by the province of East Kalimantan as a corridor of economic activity masterplan acceleration of economic development expansion (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest posttest group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post coal mining activity.Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental damage
Procedia PDF Downloads 2428475 Secure Automatic Key SMS Encryption Scheme Using Hybrid Cryptosystem: An Approach for One Time Password Security Enhancement
Authors: Pratama R. Yunia, Firmansyah, I., Ariani, Ulfa R. Maharani, Fikri M. Al
Abstract:
Nowadays, notwithstanding that the role of SMS as a means of communication has been largely replaced by online applications such as WhatsApp, Telegram, and others, the fact that SMS is still used for certain and important communication needs is indisputable. Among them is for sending one time password (OTP) as an authentication media for various online applications ranging from chatting, shopping to online banking applications. However, the usage of SMS does not pretty much guarantee the security of transmitted messages. As a matter of fact, the transmitted messages between BTS is still in the form of plaintext, making it extremely vulnerable to eavesdropping, especially if the message is confidential, for instance, the OTP. One solution to overcome this problem is to use an SMS application which provides security services for each transmitted message. Responding to this problem, in this study, an automatic key SMS encryption scheme was designed as a means to secure SMS communication. The proposed scheme allows SMS sending, which is automatically encrypted with keys that are constantly changing (automatic key update), automatic key exchange, and automatic key generation. In terms of the security method, the proposed scheme applies cryptographic techniques with a hybrid cryptosystem mechanism. Proofing the proposed scheme, a client to client SMS encryption application was developed using Java platform with AES-256 as encryption algorithm, RSA-768 as public and private key generator and SHA-256 for message hashing function. The result of this study is a secure automatic key SMS encryption scheme using hybrid cryptosystem which can guarantee the security of every transmitted message, so as to become a reliable solution in sending confidential messages through SMS although it still has weaknesses in terms of processing time.Keywords: encryption scheme, hybrid cryptosystem, one time password, SMS security
Procedia PDF Downloads 1288474 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 94