Search results for: interfirm networks
551 Modelling Insider Attacks in Public Cloud
Authors: Roman Kulikov, Svetlana Kolesnikova
Abstract:
Last decade Cloud Computing technologies have been rapidly becoming ubiquitous. Each year more and more organizations, corporations, internet services and social networks trust their business sensitive information to Public Cloud. The data storage in Public Cloud is protected by security mechanisms such as firewalls, cryptography algorithms, backups, etc.. In this way, however, only outsider attacks can be prevented, whereas virtualization tools can be easily compromised by insider. The protection of Public Cloud’s critical elements from internal intruder remains extremely challenging. A hypervisor, also called a virtual machine manager, is a program that allows multiple operating systems (OS) to share a single hardware processor in Cloud Computing. One of the hypervisor's functions is to enforce access control policies. Furthermore, it prevents guest OS from disrupting each other and from accessing each other's memory or disk space. Hypervisor is the one of the most critical and vulnerable elements in Cloud Computing infrastructure. Nevertheless, it has been poorly protected from being compromised by insider. By exploiting certain vulnerabilities, privilege escalation can be easily achieved in insider attacks on hypervisor. In this way, an internal intruder, who has compromised one process, is able to gain control of the entire virtual machine. Thereafter, the consequences of insider attacks in Public Cloud might be more catastrophic and significant to virtual tools and sensitive data than of outsider attacks. So far, almost no preventive security countermeasures have been developed. There has been little attention paid for developing models to assist risks mitigation strategies. In this paper formal model of insider attacks on hypervisor is designed. Our analysis identifies critical hypervisor`s vulnerabilities that can be easily compromised by internal intruder. Consequently, possible conditions for successful attacks implementation are uncovered. Hence, development of preventive security countermeasures can be improved on the basis of the proposed model.Keywords: insider attack, public cloud, cloud computing, hypervisor
Procedia PDF Downloads 361550 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine
Procedia PDF Downloads 176549 National Scope Study on Resilience of Nursing Teams During the COVID-19 Pandemic: Brazilian Experience
Authors: Elucir Gir, Laelson Rochelle Milanês Sousa, Pedro Henrique Tertuliano Leoni, Carla Aparecida Arena Ventura, Ana Cristina de Oliveira e Silva, Renata Karina Reis
Abstract:
Context and significance: Resilience is a protective agent for the physical and mental well-being of nursing professionals. Team members are constantly subjected to high levels of work stress that can negatively impact care performance and users of health services. Stress levels have been exacerbated with the COVID-19 pandemic. Objective: The aim of this study was to analyze the resilience of nursing professionals in Brazil during the COVID-19 pandemic. Method: Cross-sectional study with a quantitative approach carried out with professionals from nursing teams from all regions of Brazil. Data collection took place in the first year of the pandemic between October and December 2020. Data were obtained through an online questionnaire posted on social networks. The information collected included the sociodemographic characterization of the nursing professionals and the Brief Resilient Coping Scale was applied. Student's t-test for independent samples and analysis of variance (ANOVA) were used to compare resilience scores with sociodemographic variables. Results: 8,792 nursing professionals participated in the study, 5,767 (65.6%) were nurses, 7,437 (84.6%) were female and 2,643 (30.1%) were from the Northeast region of Brazil, 5,124 (58.8% ) had low levels of resilience. The results showed a statistically significant difference between the resilience score and the variables: professional category (p<0.001); sex (p = 0.003); age range (p<0.001); region of Brazil (p<0.001); marital status (p=0.029) and providing assistance in a field hospital (p<0.001). Conclusion: Participants in this study had, in general, low levels of resilience. There is an urgent need for actions aimed at promoting the psychological health of nursing professionals inserted in pandemic contexts. Descriptors: Psychological Resilience; Nursing professionals; COVID-19; SARSCoV-2.Keywords: psychological resilience, nursing professionals, COVID-19, SARS-CoV-2
Procedia PDF Downloads 87548 Adaptive Certificate-Based Mutual Authentication Protocol for Mobile Grid Infrastructure
Authors: H. Parveen Begam, M. A. Maluk Mohamed
Abstract:
Mobile Grid Computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using different types of electronic portable devices. In a grid environment the security issues are like authentication, authorization, message protection and delegation handled by GSI (Grid Security Infrastructure). Proving better security between mobile devices and grid infrastructure is a major issue, because of the open nature of wireless networks, heterogeneous and distributed environments. In a mobile grid environment, the individual computing devices may be resource-limited in isolation, as an aggregated sum, they have the potential to play a vital role within the mobile grid environment. Some adaptive methodology or solution is needed to solve the issues like authentication of a base station, security of information flowing between a mobile user and a base station, prevention of attacks within a base station, hand-over of authentication information, communication cost of establishing a session key between mobile user and base station, computing complexity of achieving authenticity and security. The sharing of resources of the devices can be achieved only through the trusted relationships between the mobile hosts (MHs). Before accessing the grid service, the mobile devices should be proven authentic. This paper proposes the dynamic certificate based mutual authentication protocol between two mobile hosts in a mobile grid environment. The certificate generation process is done by CA (Certificate Authority) for all the authenticated MHs. Security (because of validity period of the certificate) and dynamicity (transmission time) can be achieved through the secure service certificates. Authentication protocol is built on communication services to provide cryptographically secured mechanisms for verifying the identity of users and resources.Keywords: mobile grid computing, certificate authority (CA), SSL/TLS protocol, secured service certificates
Procedia PDF Downloads 305547 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 120546 Selection of New Business in Brazilian Companies Incubators through Hierarchical Methodology
Authors: Izabel Cristina Zattar, Gilberto Passos Lima, Guilherme Schünemann de Oliveira
Abstract:
In Brazil, there are several institutions committed to the development of new businesses based on product innovation. Among them are business incubators, universities and science institutes. Business incubators can be defined as nurseries for new companies, which may be in the technology segment, discussed in this article. Business incubators provide services related to infrastructure, such as physical space and meeting rooms. Besides these services, incubators also offer assistance in the form of information and communication, access to finance, relationship networks and business monitoring and mentoring processes. Business incubators support not all technology companies. One of the business incubators tasks is to assess the nature and feasibility of new business proposals. To assist this goal, this paper proposes a methodology for evaluating new business using the Analytic Hierarchy Process (AHP). This paper presents the concepts used in the assessing methodology application for new business, concepts that have been tested with positive results in practice. This study counts on three main steps: first, a hierarchy was built, based on new business manuals used by the business incubators. These books and manuals relate business selection requirements, such as the innovation status and other technological aspects. Then, a questionnaire was generated, in order to guide incubator experts in the parity comparisons at all hierarchy levels. The weights of each requirement are calculated from information obtained from the questionnaire responses. Finally, the proposed method was applied to evaluate five new business proposals, which were applying to be part of a company incubator. The main result is the classification of these new businesses, which helped the incubator experts to decide what companies were more eligible to work with. This classification may also be helpful to the decision-making process of business incubators in future selection processes.Keywords: Analytic Hierarchy Process (AHP), Brazilian companies incubators, technology companies, incubator
Procedia PDF Downloads 373545 Tamukkana, Ancient Achaemenids City near the Persian Gulf
Authors: Ghulamhossein Nezami
Abstract:
Civilizations based in Iran, especially in the south, have always realized the all-around importance of the Persian Sea and for various reasons, have paid full attention to it. The first of these was the pre-Aryan government, Ilam in the coastal province of Sharihum and the city of Lian (now the port of Bushehr) in terms of trade, defense and religion. With the establishment of the Achaemenids on the entire plateau of Iran to the center of Persia, they created several communication routes from Parseh to the shores of the Persian Gulf, which ended in the present Bushehr province. This coastal area was extended by a road in the coastal plain to the more southern parts of the ports of Ausinze - according to Ptolemy the port of Siraf before the Sassanids - and Epstane and Hormozia in the present-day Strait of Hormuz. Meanwhile, the ancient city of Temukknana, whose new historical documents testify to its extraordinary importance in the Achaemenid period, especially Darius I of the Achaemenids, from a strategic position with the coastal areas, the coasts and on the other hand with the gamers, the political center. - Achaemenid administration, had. New archeological evidence, research, and excavations show that both the famous Achaemenid kings and courtiers paid special attention to Tamukknana. The discovery of a tomb and three Achaemenid palaces from before the reign of Cyrus to Xerxes in this region showed the importance of the strategic, security-defense and commercial position of this region, extraordinary for the Achaemenids. Therefore, the city of Temukkana in the Dashtestan region of present-day Bushehr province became an important Achaemenid center on the Persian Gulf coast and became the political-economic center of gravity of the Achaemenids and the regulator of communication networks on the Persian Gulf coast. This event showed that the Achaemenids attached importance to their economic goals and oversight of their vast territory by the Persian Gulf. Methods: Book resources and field study.Keywords: Achaemenids, Bushehr, Persian Gulf, Tamukkana
Procedia PDF Downloads 192544 The Effects of Street Network Layout on Walking to School
Authors: Ayse Ozbil, Gorsev Argin, Demet Yesiltepe
Abstract:
Data for this cross-sectional study were drawn from questionnaires conducted in 10 elementary schools (1000 students, ages 12-14) located in Istanbul, Turkey. School environments (1600 meter buffers around the school) were evaluated through GIS-based land-use data (parcel level land use density) and street-level topography. Street networks within the same buffers were evaluated by using angular segment analysis (Integration and Choice) implemented in Depthmap as well as two segment-based connectivity measures, namely Metric and Directional Reach implemented in GIS. Segment Angular Integration measures how accessible each space from all the others within the radius using the least angle measure of distance. Segment Angular Choice which measures how many times a space is selected on journeys between all pairs of origins and destinations. Metric Reach captures the density of streets and street connections accessible from each individual road segment. Directional Reach measures the extent to which the entire street network is accessible with few direction changes. In addition, socio-economic characteristics (annual income, car ownership, education-level) of parents, obtained from parental questionnaires, were also included in the analysis. It is shown that surrounding street network configuration is strongly associated with both walk-mode shares and average walking distances to/from schools when controlling for parental socio-demographic attributes as well as land-use compositions and topographic features in school environments. More specifically, findings suggest that the scale at which urban form has an impact on pedestrian travel is considerably larger than a few blocks around the school.Keywords: Istanbul, street network layout, urban form, walking to/from school
Procedia PDF Downloads 408543 Framework for Incorporating Environmental Performance in Network-Level Pavement Maintenance Program
Authors: Jessica Achebe, Susan Tighe
Abstract:
The reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to an optimal allocation of resources and reduced road user cost. This is the essence of incorporating environmental sustainability into pavement management. The functionality of performance measurement approach has made it one of the most valuable tool to Pavement Management Systems (PMSs) to account for different criteria in the decision-making process. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this paper present the first step, the intention is to review the previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for network-level sustainable maintenance and rehabilitation programming.Keywords: pavement management, environment sustainability, network-level evaluation, performance measures
Procedia PDF Downloads 306542 Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid
Authors: Ahmed Ismail, Mustafa Baysal
Abstract:
Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.Keywords: active and reactive power sharing, distributed generation, droop control, microgrid
Procedia PDF Downloads 592541 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm
Authors: Annalakshmi G., Sakthivel Murugan S.
Abstract:
This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization
Procedia PDF Downloads 163540 Factors Affecting M-Government Deployment and Adoption
Authors: Saif Obaid Alkaabi, Nabil Ayad
Abstract:
Governments constantly seek to offer faster, more secure, efficient and effective services for their citizens. Recent changes and developments to communication services and technologies, mainly due the Internet, have led to immense improvements in the way governments of advanced countries carry out their interior operations Therefore, advances in e-government services have been broadly adopted and used in various developed countries, as well as being adapted to developing countries. The implementation of advances depends on the utilization of the most innovative structures of data techniques, mainly in web dependent applications, to enhance the main functions of governments. These functions, in turn, have spread to mobile and wireless techniques, generating a new advanced direction called m-government. This paper discusses a selection of available m-government applications and several business modules and frameworks in various fields. Practically, the m-government models, techniques and methods have become the improved version of e-government. M-government offers the potential for applications which will work better, providing citizens with services utilizing mobile communication and data models incorporating several government entities. Developing countries can benefit greatly from this innovation due to the fact that a large percentage of their population is young and can adapt to new technology and to the fact that mobile computing devices are more affordable. The use of models of mobile transactions encourages effective participation through the use of mobile portals by businesses, various organizations, and individual citizens. Although the application of m-government has great potential, it does have major limitations. The limitations include: the implementation of wireless networks and relative communications, the encouragement of mobile diffusion, the administration of complicated tasks concerning the protection of security (including the ability to offer privacy for information), and the management of the legal issues concerning mobile applications and the utilization of services.Keywords: e-government, m-government, system dependability, system security, trust
Procedia PDF Downloads 381539 A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems
Authors: Muhammad Safi, Abdul Manan
Abstract:
In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircraft have been a hot topic in the modern aircraft world. Electric aircraft have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies.Keywords: AI, avionics systems, communication, electric aircrafts, infra-red, integrated avionics, modular avionics, phased array, reconfigurable antenna, UAVs
Procedia PDF Downloads 81538 Business Feasibility of Online Marketing of Food and Beverages Products in India
Authors: Dimpy Shah
Abstract:
The global economy has substantially changed in last three decades. Now almost all markets are transparent and visible for global customers. The corporates are now no more reliant on local markets for trade. The information technology revolution has changed business dynamics and marketing practices of corporate. The markets are divided into two different formats: traditional and virtual. In very short span of time, many e-commerce portals have captured global market. This strategy is well supported by global delivery system of multinational logistic companies. Now the markets are dealing with global supply chain networks, which are more demand driven and customer oriented. The corporate have realized importance of supply chain integration and marketing in this competitive environment. The Indian markets are also significantly affected with all these changes. In terms of population, India is in second place after China. In terms of demography, almost half of the population is of youth. It has been observed that the Indian youth are more inclined towards e-commerce and prefer to buy goods from web portal. Initially, this trend was observed in Indian service sector, textile and electronic goods and now further extended in other product categories. The FMCG companies have also recognized this change and started integration of their supply chain with e-commerce platform. This paper attempts to understand contemporary marketing practices of corporate in e-commerce business in Indian food and beverages segment and also tries to identify innovative marketing practices for proper execution of their strategies. The findings are mainly focused on supply chain re-integration and brand building strategies with proper utilization of social media.Keywords: FMCG (Fast Moving Consumer Goods), ISCM (Integrated supply chain management), RFID (Radio Frequency Identification), traditional and virtual formats
Procedia PDF Downloads 275537 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 93536 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant
Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani
Abstract:
Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning
Procedia PDF Downloads 38535 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer
Procedia PDF Downloads 136534 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 157533 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite
Authors: Nadir Atayev, Mehman Hasanov
Abstract:
Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.Keywords: cubesat, free space optics, nano satellite, optical laser communication.
Procedia PDF Downloads 88532 Using Hierarchical Methodology to Assist the Selection of New Business in Brazilian Companies Incubators
Authors: Izabel Cristina Zattar, Gilberto Passos Lima, Guilherme Schünemann de Oliveira
Abstract:
In Brazil, there are several institutions committed to the development of new businesses based on product innovation. Among them are business incubators, universities and science institutes. Business incubators can be defined as nurseries for new companies, which may be in the technology segment, discussed in this article. Business incubators provide services related to infrastructure, such as physical space and meeting rooms. Besides these services, incubators also offer assistance in the form of information and communication, access to finance, relationship networks and business monitoring and mentoring processes. Business incubators support not all technology companies. One of the business incubators tasks is to assess the nature and feasibility of new business proposals. To assist in this goal, this paper proposes a methodology for evaluating new business using the Analytic Hierarchy Process (AHP). This paper presents the concepts used in the assessing methodology application for new business, concepts that have been tested with positive results in practice. This study counts on three main steps: first, a hierarchy was built, based on new business manuals used by the business incubators. These books and manuals relate business selection requirements, such as the innovation status and other technological aspects. Then, a questionnaire was generated, in order to guide incubator experts in the parity comparisons at all hierarchy levels. The weights of each requirement are calculated from information obtained from the questionnaire responses. Finally, the proposed method was applied to evaluate five new business proposals, which were applying to be part of a company incubator. The main result is the classification of these new businesses, which helped the incubator experts to decide what companies were more eligible to work with. This classification may also be helpful to the decision-making process of business incubators in future selection processes.Keywords: Analytic Hierarchy Process (AHP), Brazilian companies incubators, technology companies, incubator
Procedia PDF Downloads 400531 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis
Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin
Abstract:
Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis
Procedia PDF Downloads 202530 Teaching English for Specific Purposes to Business Students through Social Media
Authors: Candela Contero Urgal
Abstract:
Using realia to teach English for Specific Purposes (ESP) is a must, as it is thought to be designed to meet the students’ real needs in their professional life. Teachers are then expected to offer authentic materials and set students in authentic contexts where their learning outcomes can be highly meaningful. One way of engaging students is using social networks as a way to bridge the gap between their everyday life and their ESP learning outcomes. It is in ESP, particularly in Business English teaching, that our study focuses, as the ongoing process of digitalization is leading firms to use social media to communicate with potential clients. The present paper is aimed at carrying out a case study in which different digital tools are employed as a way to offer a collection of formats businesses are currently using so as to internationalize and advertise their products and services. A secondary objective of our study will then be to progress on the development of multidisciplinary competencies students are to acquire during their degree. A two-phased study will be presented. The first phase will cover the analysis of course tasks accomplished by undergraduate students at the University of Cadiz (Spain) in their third year of the Degree in Business Management and Administration by comparing the results obtained during the years 2019 to 2021. The second part of our study will present a survey conducted to these students in 2021 and 2022 so as to verify their interest in learning new ways to digitalize as well as internationalize their future businesses. Findings will confirm students’ interest in working with updated realia in their Business English lessons, as a consequence of their strong belief in the necessity to have authentic contexts and didactic resources. Despite the limitations social media can have as a means to teach business English, students will still find it highly beneficial since it will foster their familiarisation with the digital tools they will need to use when they get to the labour market.Keywords: English for specific purposes, business English, internationalization of higher education, foreign language teaching
Procedia PDF Downloads 115529 A User Interface for Easiest Way Image Encryption with Chaos
Authors: D. López-Mancilla, J. M. Roblero-Villa
Abstract:
Since 1990, the research on chaotic dynamics has received considerable attention, particularly in light of potential applications of this phenomenon in secure communications. Data encryption using chaotic systems was reported in the 90's as a new approach for signal encoding that differs from the conventional methods that use numerical algorithms as the encryption key. The algorithms for image encryption have received a lot of attention because of the need to find security on image transmission in real time over the internet and wireless networks. Known algorithms for image encryption, like the standard of data encryption (DES), have the drawback of low level of efficiency when the image is large. The encrypting based on chaos proposes a new and efficient way to get a fast and highly secure image encryption. In this work, a user interface for image encryption and a novel and easiest way to encrypt images using chaos are presented. The main idea is to reshape any image into a n-dimensional vector and combine it with vector extracted from a chaotic system, in such a way that the vector image can be hidden within the chaotic vector. Once this is done, an array is formed with the original dimensions of the image and turns again. An analysis of the security of encryption from the images using statistical analysis is made and is used a stage of optimization for image encryption security and, at the same time, the image can be accurately recovered. The user interface uses the algorithms designed for the encryption of images, allowing you to read an image from the hard drive or another external device. The user interface, encrypt the image allowing three modes of encryption. These modes are given by three different chaotic systems that the user can choose. Once encrypted image, is possible to observe the safety analysis and save it on the hard disk. The main results of this study show that this simple method of encryption, using the optimization stage, allows an encryption security, competitive with complicated encryption methods used in other works. In addition, the user interface allows encrypting image with chaos, and to submit it through any public communication channel, including internet.Keywords: image encryption, chaos, secure communications, user interface
Procedia PDF Downloads 489528 Working in Multidisciplinary Care Teams: Perspectives from Health Care and Social Service Providers
Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant
Abstract:
Holistic and patient-centred palliative care and support require an integrated system of care that includes health and social service providers working together to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the benefits and challenges of mobilizing multidisciplinary care teams for health care professionals and social service providers. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed, and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers posed by multidisciplinary care teams. Three main findings emerged: First, the data highlighted the benefits of multidisciplinary care teams for both patient outcomes and quality of life and provider mental health; second, the data showed that the lack of a system-wide integrated communication system reduces the quality of patient care and increases provider stress while working in multidisciplinary care teams; finally, the data demonstrated the existence of implicit hierarchies between disciplines, this coupled with different disciplinary perspectives of palliative care provision can lead to friction and challenges within care teams. These findings will have important implications for the future of palliative care as they will help to facilitate and build stronger person-centred/relationship-centred palliative care practices by naming the challenges faced by multidisciplinary palliative care teams and providing examples of best practices.Keywords: public health palliative care, palliative care nursing, care networks, integrated health care, palliative care approach, public health, multidisciplinary work, care teams
Procedia PDF Downloads 82527 System Analysis of Quality Assurance in Online Education
Authors: Keh-Wen Carin Chuang, Kuan-Chou Chen
Abstract:
Our society is in a constant state of change. Technology advancements continue to affect our daily lives. How we work, communicate and entertain ourselves has changed dramatically in the past decades. As our society learns to accept and adapt to the many different technological advances that seem to inundate every part of our lives, the education institutions must migrate from traditional methods of instruction to online education in order to take full advantage of the opportunities provided by these technology advancements. There are many benefits that can be gained for university and society from offering online programs by utilizing advanced technologies. But the programs must not be implemented carelessly. The key to providing a quality online program is the issue of perceived quality, which takes into account the viewpoint of all stakeholders involved. To truly ensure the institutional quality, however, a systemic view of all factors contributing to the quality must be analyzed and linked to one another — allowing education administrators to understand how each factor contributes to the perceived quality of online education. The perceived quality of an online program will be positively reinforced only through an organizational-wide effort that focuses on managed administration, augmenting online program branding, skilled faculty, supportive alumni, student satisfaction, and effective delivery systems — each of which is vital to a quality online program. This study focuses on the concept of quality assurance in the start-up, implementation, and sustainability of online education. A case of online MBA program will be analyzed to explore the quality assurance. The difficulties in promoting online education quality is the fact that universities are complex networks of disciplinary, social, economic, and political fiefdoms, both internal and external factors to the institutions. As such, the system analysis, a systems-thinking approach, on the issue of perceived quality is ideal to investigate the factors and how each factor contributes to the perceived quality in the online education domain.Keywords: systems thinking, quality assurance, online education, MBA program
Procedia PDF Downloads 237526 Development of Automated Quality Management System for the Management of Heat Networks
Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov
Abstract:
Any business needs a stable operation and continuous improvement, therefore it is necessary to constantly interact with the environment, to analyze the work of the enterprise in terms of employees, executives and consumers, as well as to correct any inconsistencies of certain types of processes and their aggregate. In the case of heat supply organizations, in addition to suppliers, local legislation must be considered which often is the main regulator of pricing of services. In this case, the process approach used to build a functional organizational structure in these types of businesses in Kazakhstan is a challenge not only in the implementation, but also in ways of analyzing the employee's salary. To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC according to the method of Kaplan and Norton, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system.Keywords: balanced scorecard, heat supply, quality management system, the theory of fuzzy sets
Procedia PDF Downloads 367525 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS
Authors: David A. Harness
Abstract:
Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks
Procedia PDF Downloads 179524 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 75523 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor
Authors: Tayyaba Azim, Bibi Amina
Abstract:
The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec
Procedia PDF Downloads 148522 Synergistic Behavior of Polymer Mixtures in Designing Hydrogels for Biomedical Applications
Authors: Maria Bercea, Monica Diana Olteanu
Abstract:
Investigation of polymer systems able to change inside of the body into networks represent an attractive approach, especially when there is a minimally invasive and patient friendly administration. Pharmaceutical formulations based on Pluronic F127 [poly (oxyethylene) (PEO) blocks (70%) and poly(oxypropylene) (PPO) blocks (30%)] present an excellent potential as drug delivery systems. The use of Pluronic F127 alone as gel-forming solution is limited by some characteristics, such as poor mechanical properties, short residence time, high permeability, etc. Investigation of the interactions between the natural and synthetic polymers and surfactants in solution is a subject of great interest from both scientific and practical point of view. As for example, formulations based on Pluronics and chitosan could be used to obtain dual phase transition hydrogels responsive to temperature and pH changes. In this study, different materials were prepared by using poly(vinyl alcohol), chitosan solutions mixed with aqueous solutions of Pluronic F127. The rheological properties of different formulations were investigated in temperature sweep experiments as well as at a constant temperature of 37oC for exploring in-situ gel formation in the human body conditions. In addition, some viscometric investigations were carried out in order to understand the interactions which determine the complex behaviour of these systems. Correlation between the thermodynamic and rheological parameters and phase separation phenomena observed for the investigated systems allowed the dissemination the constitutive response of polymeric materials at different external stimuli, such as temperature and pH. The rheological investigation demonstrated that the viscoelastic moduli of the hydrogels can be tuned depending on concentration of different components as well as pH and temperature conditions and cumulative contributions can be obtained.Keywords: hydrogel, polymer mixture, stimuli responsive, biomedical applications
Procedia PDF Downloads 349