Search results for: dynamic friction
2369 Optimizing Pick and Place Operations in a Simulated Work Cell for Deformable 3D Objects
Authors: Troels Bo Jørgensen, Preben Hagh Strunge Holm, Henrik Gordon Petersen, Norbert Kruger
Abstract:
This paper presents a simulation framework for using machine learning techniques to determine robust robotic motions for handling deformable objects. The main focus is on applications in the meat sector, which mainly handle three-dimensional objects. In order to optimize the robotic handling, the robot motions have been parameterized in terms of grasp points, robot trajectory and robot speed. The motions are evaluated based on a dynamic simulation environment for robotic control of deformable objects. The evaluation indicates certain parameter setups, which produce robust motions in the simulated environment, and based on a visual analysis indicate satisfactory solutions for a real world system.Keywords: deformable objects, robotic manipulation, simulation, real world system
Procedia PDF Downloads 2812368 The Effect of Using Emg-based Luna Neurorobotics for Strengthening of Affected Side in Chronic Stroke Patients - Retrospective Study
Authors: Surbhi Kaura, Sachin Kandhari, Shahiduz Zafar
Abstract:
Chronic stroke, characterized by persistent motor deficits, often necessitates comprehensive rehabilitation interventions to improve functional outcomes and mitigate long-term dependency. Luna neurorobotic devices, integrated with EMG feedback systems, provide an innovative platform for facilitating neuroplasticity and functional improvement in stroke survivors. This retrospective study aims to investigate the impact of EMG-based Luna neurorobotic interventions on the strengthening of the affected side in chronic stroke patients. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. Stroke is a debilitating condition that, when not effectively treated, can result in significant deficits and lifelong dependency. Common issues like neglecting the use of limbs can lead to weakness in chronic stroke cases. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. This study aims to assess how electromyographic triggering (EMG-triggered) robotic treatments affect walking, ankle muscle force after an ischemic stroke, and the coactivation of agonist and antagonist muscles, which contributes to neuroplasticity with the assistance of biofeedback using robotics. Methods: The study utilized robotic techniques based on electromyography (EMG) for daily rehabilitation in long-term stroke patients, offering feedback and monitoring progress. Each patient received one session per day for two weeks, with the intervention group undergoing 45 minutes of robot-assisted training and exercise at the hospital, while the control group performed exercises at home. Eight participants with impaired motor function and gait after stroke were involved in the study. EMG-based biofeedback exercises were administered through the LUNA neuro-robotic machine, progressing from trigger and release mode to trigger and hold, and later transitioning to dynamic mode. Assessments were conducted at baseline and after two weeks, including the Timed Up and Go (TUG) test, a 10-meter walk test (10m), Berg Balance Scale (BBG), and gait parameters like cadence, step length, upper limb strength measured by EMG threshold in microvolts, and force in Newton meters. Results: The study utilized a scale to assess motor strength and balance, illustrating the benefits of EMG-biofeedback following LUNA robotic therapy. In the analysis of the left hemiparetic group, an increase in strength post-rehabilitation was observed. The pre-TUG mean value was 72.4, which decreased to 42.4 ± 0.03880133 seconds post-rehabilitation, with a significant difference indicated by a p-value below 0.05, reflecting a reduced task completion time. Similarly, in the force-based task, the pre-knee dynamic force in Newton meters was 18.2NM, which increased to 31.26NM during knee extension post-rehabilitation. The post-student t-test showed a p-value of 0.026, signifying a significant difference. This indicated an increase in the strength of knee extensor muscles after LUNA robotic rehabilitation. Lastly, at baseline, the EMG value for ankle dorsiflexion was 5.11 (µV), which increased to 43.4 ± 0.06 µV post-rehabilitation, signifying an increase in the threshold and the patient's ability to generate more motor units during left ankle dorsiflexion. Conclusion: This study aimed to evaluate the impact of EMG and dynamic force-based rehabilitation devices on walking and strength of the affected side in chronic stroke patients without nominal data comparisons among stroke patients. Additionally, it provides insights into the inclusion of EMG-triggered neurorehabilitation robots in the daily rehabilitation of patients.Keywords: neurorehabilitation, robotic therapy, stroke, strength, paralysis
Procedia PDF Downloads 632367 Dynamic EEG Desynchronization in Response to Vicarious Pain
Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy
Abstract:
The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition
Procedia PDF Downloads 2842366 A Dynamic Panel Model to Evaluate the Impact of Debt Relief on Poverty
Authors: Loujaina Abdelwahed
Abstract:
Debt relief granted to low-and middle-income countries effectively provides additional funds for governments that can be used to increase public investment on poverty-reducing services to alleviate poverty and boost economic growth. However, little is known about the extent to which the poor benefit from the increased public investment. This study aims to assess the impact of debt relief granted through multiple initiatives during the 1990s on poverty reduction. In particular, it assesses the impact on the level, depth and severity of poverty in 76 low-and middle income countries over the period 1990-2011. Debt relief is found to have a significant impact on reducing the level, the depth and the severity of poverty. Analysis of the different types of debt relief reveals that debt service relief reduces poverty, whereas debt principle relief does not have a significant impact.Keywords: debt relief, developing countries, HIPC, poverty, system GMM estimator
Procedia PDF Downloads 4002365 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.Keywords: NARX (Nonlinear Autoregressive Exogenous Model), prediction, stock market, time series
Procedia PDF Downloads 2442364 Distribution Network Optimization by Optimal Placement of Photovoltaic-Based Distributed Generation: A Case Study of the Nigerian Power System
Authors: Edafe Lucky Okotie, Emmanuel Osawaru Omosigho
Abstract:
This paper examines the impacts of the introduction of distributed energy generation (DEG) technology into the Nigerian power system as an alternative means of energy generation at distribution ends using Otovwodo 15 MVA, 33/11kV injection substation as a case study. The overall idea is to increase the generated energy in the system, improve the voltage profile and reduce system losses. A photovoltaic-based distributed energy generator (PV-DEG) was considered and was optimally placed in the network using Genetic Algorithm (GA) in Mat. Lab/Simulink environment. The results of simulation obtained shows that the dynamic performance of the network was optimized with DEG-grid integration.Keywords: distributed energy generation (DEG), genetic algorithm (GA), power quality, total load demand, voltage profile
Procedia PDF Downloads 862363 Comparison of Various Response Spectrum of Nuclear Power Plant at Chashma Site
Authors: J. Iqbal, A. Shah, M. Zeeshan
Abstract:
UBC-97, USNRC, chines origin code GB50011-2011 and site response spectrum was used to make comparison between them for Chashma site and most conservative one was selected and the USNRC was the most conservative one. The dynamic analysis of CHASNUPP-2 containment building was performed using SAP-2000 for dead load, live load (crane), pre stressed loads, wind load, temperature load, accidental pressure during LOCA, earthquake loads and the conservative response spectrum. After applying selected response spectrum on model, detail comparison was made against area of steal calculated from the analysis and the actually provided. Then prepared curve of area of steal vs. g value which shows that if the particular site was design on that spectrum that much steel needed for structural integrity.Keywords: response spectrum, USNRC, LOCA, area of steel, structure integrity
Procedia PDF Downloads 6812362 Effect of the Poisson’s Ratio on the Behavior of Epoxy Microbeam
Authors: Mohammad Tahmasebipour, Hosein Salarpour
Abstract:
Researchers suggest that variations in Poisson’s ratio affect the behavior of Timoshenko micro beam. Therefore, in this study, two epoxy Timoshenko micro beams with different dimensions were modeled using the finite element method considering all boundary conditions and initial conditions that govern the problem. The effect of Poisson’s ratio on the resonant frequency, maximum deflection, and maximum rotation of the micro beams was examined. The analyses suggest that an increased Poisson’s ratio reduces the maximum rotation and the maximum rotation and increases the resonant frequency. Results were consistent with those obtained using the couple stress, classical, and strain gradient elasticity theories.Keywords: microbeam, microsensor, epoxy, poisson’s ratio, dynamic behavior, static behavior, finite element method
Procedia PDF Downloads 4622361 Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test
Authors: Gee-Cheol Kim, Joo-Won Kang
Abstract:
Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column.Keywords: arch structure, seismic response, shaking table, spatial structure
Procedia PDF Downloads 3672360 Getting Back Out There Looking like That: A Visual Critique of Rebecca Welton’s Costuming in Reference to Female Representation in Television
Authors: Abigail R. Gardner
Abstract:
With the rise of big budget television comes a demand for more nuanced characters. However, female characters are often underdeveloped, especially those who do not fit neatly into societal norms. This study examines how Ted Lasso’s Rebecca Welton challenges this idea by using her on-screen fashion to mirror her motivations and character development. Through detailed analysis, this research explores how Rebecca’s wardrobe adds depth to her character, contrasting traditional strategies of costuming female characters in mainstream movies and television. While women, especially older women, are getting more screen time, very few have been given a wardrobe to reflect their dynamic characters. Rebecca’s costumes represent a form of visual storytelling typically reserved for film, but with the rise of single-camera television, there is an opportunity to redefine the relationship between women and fashion on screen.Keywords: costume design, gender and media, visual storytelling, women in television
Procedia PDF Downloads 212359 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems
Authors: N. Kaewpraek, W. Assawinchaichote
Abstract:
This paper considers an H∞ TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an H∞ TS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H∞ performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.Keywords: h-infinity fuzzy control, an LMI approach, Takagi-Sugano (TS) fuzzy system, the photovoltaic systems
Procedia PDF Downloads 3862358 Multi-Level Priority Based Task Scheduling Algorithm for Workflows in Cloud Environment
Authors: Anju Bala, Inderveer Chana
Abstract:
Task scheduling is the key concern for the execution of performance-driven workflow applications. As efficient scheduling can have major impact on the performance of the system, task scheduling is often chosen for assigning the request to resources in an efficient way based on cloud resource characteristics. In this paper, priority based task scheduling algorithm has been proposed that prioritizes the tasks based on the length of the instructions. The proposed scheduling approach prioritize the tasks of Cloud applications according to the limits set by six sigma control charts based on dynamic threshold values. Further, the proposed algorithm has been validated through the CloudSim toolkit. The experimental results demonstrate that the proposed algorithm is effective for handling multiple task lists from workflows and in considerably reducing Makespan and Execution time.Keywords: cloud computing, priority based scheduling, task scheduling, VM allocation
Procedia PDF Downloads 5192357 Evolution of Classroom Languaging over the Years: Prospects for Teaching Mathematics Differently
Authors: Jabulani Sibanda, Clemence Chikiwa
Abstract:
This paper traces diverse language practices representative of equally diverse conceptions of language. To be dynamic with languaging practices, one needs to appreciate nuanced languaging practices, their challenges, prospects, and opportunities. The paper presents what we envision as three major conceptions of language that give impetus to diverse language practices. It examines theoretical models of the bilingual mental lexicon and how they inform language practices. The paper explores classroom languaging practices that have been promulgated and experimented with. The paper advocates the deployment of multisensory semiotic systems to complement linguistic classroom communication and the acknowledgement of learners’ linguistic and semiotic resources as valid in the learning enterprise. It recommends the enactment of specific clauses on language in education policies and curriculum documents that empower classroom interactants to exercise discretion in languaging practices.Keywords: languaging, monolingual, multilingual, semiotic and linguistic repertoire
Procedia PDF Downloads 752356 Behaviour of Reinforced Concrete Infilled Frames under Seismic Loads
Authors: W. Badla
Abstract:
A significant portion of the buildings constructed in Algeria is structural frames with infill panels which are usually considered as non structural components and are neglected in the analysis. However, these masonry panels tend to influence the structural response. Thus, these structures can be regarded as seismic risk buildings, although in the Algerian seismic code there is little guidance on the seismic evaluation of infilled frame buildings. In this study, three RC frames with 2, 4, and 8 story and subjected to three recorded Algerian accelerograms are studied. The diagonal strut approach is adopted for modeling the infill panels and a fiber model is used to model RC members. This paper reports on the seismic evaluation of RC frames with brick infill panels. The results obtained show that the masonry panels enhance the load lateral capacity of the buildings and the infill panel configuration influences the response of the structures.Keywords: seismic design, RC frames, infill panels, non linear dynamic analysis
Procedia PDF Downloads 5472355 Seismic Analysis of Structurally Hybrid Wind Mill Tower
Authors: Atul K. Desai, Hemal J. Shah
Abstract:
The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.Keywords: dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history
Procedia PDF Downloads 1512354 New Desiccant Solar Unit for Air Conditioning and Desalination: Study of the Compartments of Desalination and Water Condensation
Authors: Zied Guidara, Alexander Morgenstern, Aref Maalej
Abstract:
In this paper, a new desiccant solar unit for air conditioning and desalination is presented first. Secondly, a dynamic modelling study of the desiccant wheel is developed. After that, a simulation study and an experimental investigation of the behaviour of the desiccant wheel are developed. The experimental investigation is done in the chamber of commerce in Freiburg-Germany. Indeed, the variations of calculated and measured temperatures and specific humidity of dehumidified and rejected air are presented where a good agreement is found when comparing the model predictions with experimental data under the considered range of operating conditions. Finally, the study of the compartments of desalination and water condensation shows that the unit can produce an acceptable quantity of water at the same time of the air conditioning operation.Keywords: air conditioning, desalination, condensation, design, desiccant wheel, modelling, experimental investigation
Procedia PDF Downloads 3862353 Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing
Authors: M. Hossain, A. Abdkader, C. Cherif, A. Berger, M. Sparing, R. Hühne, L. Schultz, K. Nielsch
Abstract:
Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair “International Textile Machinery Association (ITMA) 2015”.Keywords: ring spinning, superconducting magnetic bearing, yarn properties, productivity
Procedia PDF Downloads 2382352 Sliding Mode Control of Autonomous Underwater Vehicles
Authors: Ahmad Forouzantabar, Mohammad Azadi, Alireza Alesaadi
Abstract:
This paper describes a sliding mode controller for autonomous underwater vehicles (AUVs). The dynamic of AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of AUV and improve trajectory tracking. Moreover, the proposed controller can profoundly attenuate the effects of uncertainties and external disturbances in the closed-loop system. Using the Lyapunov theory the boundedness of AUV tracking errors and the stability of the proposed control system are also guaranteed. Numerical simulation studies of an AUV are included to illustrate the effectiveness of the presented approach.Keywords: lyapunov stability, autonomous underwater vehicle, sliding mode controller, electronics engineering
Procedia PDF Downloads 6132351 Effective Medium Approximations for Modeling Ellipsometric Responses from Zinc Dialkyldithiophosphates (ZDDP) Tribofilms Formed on Sliding Surfaces
Authors: Maria Miranda-Medina, Sara Salopek, Andras Vernes, Martin Jech
Abstract:
Sliding lubricated surfaces induce the formation of tribofilms that reduce friction, wear and prevent large-scale damage of contact parts. Engine oils and lubricants use antiwear and antioxidant additives such as zinc dialkyldithiophosphate (ZDDP) from where protective tribofilms are formed by degradation. The ZDDP tribofilms are described as a two-layer structure composed of inorganic polymer material. On the top surface, the long chain polyphosphate is a zinc phosphate and in the bulk, the short chain polyphosphate is a mixed Fe/Zn phosphate with a gradient concentration. The polyphosphate chains are partially adherent to steel surface through a sulfide and work as anti-wear pads. In this contribution, ZDDP tribofilms formed on gray cast iron surfaces are studied. The tribofilms were generated in a reciprocating sliding tribometer with a piston ring-cylinder liner configuration. Fully formulated oil of SAE grade 5W-30 was used as lubricant during two tests at 40Hz and 50Hz. For the estimation of the tribofilm thicknesses, spectroscopic ellipsometry was used due to its high accuracy and non-destructive nature. Ellipsometry works under an optical principle where the change in polarisation of light reflected by the surface, is associated with the refractive index of the surface material or to the thickness of the layer deposited on top. Ellipsometrical responses derived from tribofilms are modelled by effective medium approximation (EMA), which includes the refractive index of involved materials, homogeneity of the film and thickness. The materials composition was obtained from x-ray photoelectron spectroscopic studies, where the presence of ZDDP, O and C was confirmed. From EMA models it was concluded that tribofilms formed at 40 Hz are thicker and more homogeneous than the ones formed at 50 Hz. In addition, the refractive index of each material is mixed to derive an effective refractive index that describes the optical composition of the tribofilm and exhibits a maximum response in the UV range, being a characteristic of glassy semitransparent films.Keywords: effective medium approximation, reciprocating sliding tribometer, spectroscopic ellipsometry, zinc dialkyldithiophosphate
Procedia PDF Downloads 2532350 Dark Tourism and Local Development. Creating a Dark Urban Route
Authors: Christos N. Tsironis, Loanna Mitaftsi
Abstract:
Currently, the various forms of tours and touristic visits to destinations associated with the “dark” facets of the past constitute one of the most dynamic fields of touristic initiatives and economic development. This analysis focuses on the potential development of urban dark routes. It aims a) to shed light to touristic, social, and ethical considerations and to describe some of the trends and links combining heritage and dark tourism in post-pandemic societies and b) to explore the possibilities of developing a new and polymorphic form of dark tourism in Thessaloniki, Greece, a distinctive heritage destination. The analysis concludes with a detailed dark route designed to serve a new, polymorphic and sustainable touristic product that describes a dark past with places, sights, and monuments and narrates stories and events stigmatized by death, disaster, and violence throughout the city’s history.Keywords: dark tourism, dark urban route, local development, polymorphic tourism
Procedia PDF Downloads 2142349 Atomic Force Microscopy Studies of DNA Binding Properties of the Archaeal Mini Chromosome Maintenance Complex
Authors: Amna Abdalla Mohammed Khalid, Pietro Parisse, Silvia Onesti, Loredana Casalis
Abstract:
Basic cellular processes as DNA replication are crucial to cell life. Understanding at the molecular level the mechanisms that govern DNA replication in proliferating cells is fundamental to understand disease connected to genomic instabilities, as a genetic disease and cancer. A key step for DNA replication to take place, is unwinding the DNA double helix and this carried out by proteins called helicases. The archaeal MCM (minichromosome maintenance) complex from Methanothermobacter thermautotrophicus have being studied using Atomic Force Microscopy (AFM), imaging in air and liquid (Physiological environment). The accurate analysis of AFM topographic images allowed to understand the static conformations as well the interaction dynamic of MCM and DNA double helix in the present of ATP.Keywords: DNA, protein-DNA interaction, MCM (mini chromosome manteinance) complex, atomic force microscopy (AFM)
Procedia PDF Downloads 3092348 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters
Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider
Abstract:
In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.Keywords: UPFC, decoupled model, load flow, control parameters
Procedia PDF Downloads 5562347 Effects of Fe Addition and Process Parameters on the Wear and Corrosion Characteristics of Icosahedral Al-Cu-Fe Coatings on Ti-6Al-4V Alloy
Authors: Olawale S. Fatoba, Stephen A. Akinlabi, Esther T. Akinlabi, Rezvan Gharehbaghi
Abstract:
The performance of material surface under wear and corrosion environments cannot be fulfilled by the conventional surface modifications and coatings. Therefore, different industrial sectors need an alternative technique for enhanced surface properties. Titanium and its alloys possess poor tribological properties which limit their use in certain industries. This paper focuses on the effect of hybrid coatings Al-Cu-Fe on a grade five titanium alloy using laser metal deposition (LMD) process. Icosahedral Al-Cu-Fe as quasicrystals is a relatively new class of materials which exhibit unusual atomic structure and useful physical and chemical properties. A 3kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the cladding process was utilized for the fabrication of the coatings. The titanium cladded surfaces were investigated for its hardness, corrosion and tribological behaviour at different laser processing conditions. The samples were cut to corrosion coupons, and immersed into 3.65% NaCl solution at 28oC using Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization (LP) techniques. The cross-sectional view of the samples was analysed. It was found that the geometrical properties of the deposits such as width, height and the Heat Affected Zone (HAZ) of each sample remarkably increased with increasing laser power due to the laser-material interaction. It was observed that there are higher number of aluminum and titanium presented in the formation of the composite. The indentation testing reveals that for both scanning speed of 0.8 m/min and 1m/min, the mean hardness value decreases with increasing laser power. The low coefficient of friction, excellent wear resistance and high microhardness were attributed to the formation of hard intermetallic compounds (TiCu, Ti2Cu, Ti3Al, Al3Ti) produced through the in situ metallurgical reactions during the LMD process. The load-bearing capability of the substrate was improved due to the excellent wear resistance of the coatings. The cladded layer showed a uniform crack free surface due to optimized laser process parameters which led to the refinement of the coatings.Keywords: Al-Cu-Fe coating, corrosion, intermetallics, laser metal deposition, Ti-6Al-4V alloy, wear resistance
Procedia PDF Downloads 1782346 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies
Authors: Paolo Russu
Abstract:
The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification
Procedia PDF Downloads 1722345 An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage
Authors: Sendi Zohra, Belhadjsalah Hedi, Labergere Carl, Saanouni Khemais
Abstract:
The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method.Keywords: damage, dynamic explicit, elastoplasticity, isotropic hardening, meshless
Procedia PDF Downloads 2952344 Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids
Authors: Caroline E. Mendes, Alberto C. Badino
Abstract:
Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa were obtained using the dynamic pressure-step method, while was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids.Keywords: bubble column, internal loop airlift, gas hold-up, kLa
Procedia PDF Downloads 2752343 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation
Authors: Sahil Imtiyaz
Abstract:
One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations
Procedia PDF Downloads 1952342 Mixed Frequency Excitation of an Electrostatically Actuated Resonator
Authors: Abdallah H. Ramini, Alwathiqbellah I. Ibrahim, Mohammad I. Younis
Abstract:
We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler Vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation.Keywords: electrostatically actuated resonator, multi-frequency excitation, nonlinear dynamics, AC harmonic signals
Procedia PDF Downloads 6222341 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7
Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro
Abstract:
The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis
Procedia PDF Downloads 4572340 Linking Information Systems Capabilities for Service Quality: The Role of Customer Connection and Environmental Dynamism
Authors: Teng Teng, Christos Tsinopoulos
Abstract:
The purpose of this research is to explore the link between IS capabilities, customer connection, and quality performance in the service context, with investigation of the impact of firm’s stable and dynamic environments. The application of Information Systems (IS) has become a significant effect on contemporary service operations. Firms invest in IS with the presumption that they will facilitate operations processes so that their performance will improve. Yet, IS resources by themselves are not sufficiently 'unique' and thus, it would be more useful and theoretically relevant to focus on the processes they affect. One such organisational process, which has attracted a lot of research attention by supply chain management scholars, is the integration of customer connection, where IS-enabled customer connection enhances communication and contact processes, and with such customer resources integration comes greater success for the firm in its abilities to develop a good understanding of customer needs and set accurate customer. Nevertheless, prior studies on IS capabilities have focused on either one specific type of technology or operationalised it as a highly aggregated concept. Moreover, although conceptual frameworks have been identified to show customer integration is valuable in service provision, there is much to learn about the practices of integrating customer resources. In this research, IS capabilities have been broken down into three dimensions based on the framework of Wade and Hulland: IT for supply chain activities (ITSCA), flexible IT infrastructure (ITINF), and IT operations shared knowledge (ITOSK); and focus on their impact on operational performance of firms in services. With this background, this paper addresses the following questions: -How do IS capabilities affect the integration of customer connection and service quality? -What is the relationship between environmental dynamism and the relationship of customer connection and service quality? A survey of 156 service establishments was conducted, and the data analysed to determine the role of customer connection in mediating the effects of IS capabilities on firms’ service quality. Confirmatory factor analysis was used to check convergent validity. There is a good model fit for the structural model. Moderating effect of environmental dynamism on the relationship of customer connection and service quality is analysed. Results show that ITSCA, ITINF, and ITOSK have a positive influence on the degree of the integration of customer connection. In addition, customer connection positively related to service quality; this relationship is further emphasised when firms work in a dynamic environment. This research takes a step towards quelling concerns about the business value of IS, contributing to the development and validation of the measurement of IS capabilities in the service operations context. Additionally, it adds to the emerging body of literature linking customer connection to the operational performance of service firms. Managers of service firms should consider the strength of the mediating role of customer connection when investing in IT-related technologies and policies. Particularly, service firms developing IS capabilities should simultaneously implement processes that encourage supply chain integration.Keywords: customer connection, environmental dynamism, information systems capabilities, service quality, service supply chain
Procedia PDF Downloads 140