Search results for: virtual training
2850 The Active Role of Teacher's in Managing Effective Classroom Environment for High School Students from the Viewpoint of the Teachers
Authors: Majda Ibrahim Aljaroudi, Jwaher Alburake
Abstract:
The study aimed to identify the active role of the teacher in the management of the effective classroom environment for high school students from the viewpoint of the teachers, and to identify whether there were statistically significant differences between the averages of the respondents regarding the active role of the high school teachers in managing effective classroom environment in Riyadh, and also the total score depending on the variables of the study (qualifications, years of experience, training and development programs). This study used the descriptive survey approach where a questionnaire has been built and consisted of (35) items about five areas as a tool to measure the teacher's role in the management of effective classroom environment for high school students. The study population consisted of (1313) high school teachers in the government schools in south of Riyadh. It consisted of (70) teachers who were selected randomly. It used the appropriate statistical methods to analyze data by using statistical packages (SPSS). The study found the following results: • Most of the study sample members agreed on their role in the effective classroom environment management for high school students in government schools in Riyadh with an average (3.91 out of 5), which falls in the fifth category of Quintet scale (from 3.41 to 4.20) that refers to the option "often". • There are statistically significant differences between the mean responses of the study sample about the active role of the teacher in the effective classroom environment management for high school students regarding the concept of order in the classroom depending on the variable of years of experience for the benefit of teachers who have over 10 years of experience. There are statistically significant differences between the mean responses of the study sample about the teacher's active role in the effective classroom environment management for high school students regarding the educational process for maintaining the order in the classroom depending on the variable of training and development programs for the benefit of the teachers who have more than (5) courses. Due to the results of the study the researcher recommended a number of recommendations to improve the teacher's role in the effective classroom environment management for high school students.Keywords: effective management, active learning, educational sciences, pedagogical sciences
Procedia PDF Downloads 4462849 Using Structural Equation Modeling to Measure the Impact of Young Adult-Dog Personality Characteristics on Dog Walking Behaviours during the COVID-19 Pandemic
Authors: Renata Roma, Christine Tardif-Williams
Abstract:
Engaging in daily walks with a dog (f.e. Canis lupus familiaris) during the COVID-19 pandemic may be linked to feelings of greater social-connectedness and global self-worth, and lower stress after controlling for mental health issues, lack of physical contact with others, and other stressors associated with the current pandemic. Therefore, maintaining a routine of dog walking might mitigate the effects of stressors experienced during the pandemic and promote well-being. However, many dog owners do not walk their dogs for many reasons, which are related to the owner’s and the dog’s personalities. Note that the consistency of certain personality characteristics among dogs demonstrates that it is possible to accurately measure different dimensions of personality in both dogs and their human counterparts. In addition, behavioural ratings (e.g., the dog personality questionnaire - DPQ) are reliable tools to assess the dog’s personality. Clarifying the relevance of personality factors in the context of young adult-dog relationships can shed light on interactional aspects that can potentially foster protective behaviours and promote well-being among young adults during the pandemic. This study examines if and how nine combinations of dog- and young adult-related personality characteristics (e.g., neuroticism-fearfulness) can amplify the influence of personality factors in the context of dog walking during the COVID-19 pandemic. Responses to an online large-scale survey among 440 (389 females; 47 males; 4 nonbinaries, Mage=20.7, SD= 2.13 range=17-25) young adults living with a dog in Canada were analyzed using structural equation modeling (SEM). As extraversion, conscientiousness, and neuroticism, measured through the five-factor model (FFM) inventory, are related to maintaining a routine of physical activities, these dimensions were selected for this analysis. Following an approach successfully adopted in the field of dog-human interactions, the FFM was used as the organizing framework to measure and compare the human’s and the dog’s personality in the context of dog walking. The dog-related personality dimensions activity/excitability, responsiveness to training, and fearful were correlated dimensions captured through DPQ and were added to the analysis. Two questions were used to assess dog walking. The actor-partner interdependence model (APIM) was used to check if the young adult’s responses about the dog were biased; no significant bias was observed. Activity/excitability and responsiveness to training in dogs were greatly associated with dog walking. For young adults, high scores in conscientiousness and extraversion predicted more walks with the dog. Conversely, higher scores in neuroticism predicted less engagement in dog walking. For participants high in conscientiousness, the dog’s responsiveness to training (standardized=0.14, p=0.02) and the dog’s activity/excitability (standardized=0.15, p=0.00) levels moderated dog walking behaviours by promoting more daily walks. These results suggest that some combinations in young adult and dog personality characteristics are associated with greater synergy in the young adult-dog dyad that might amplify the impact of personality factors on young adults’ dog-walking routines. These results can inform programs designed to promote the mental and physical health of young adults during the Covid-19 pandemic by highlighting the impact of synergy and reciprocity in personality characteristics between young adults and dogs.Keywords: Covid-19 pandemic, dog walking, personality, structural equation modeling, well-being
Procedia PDF Downloads 1202848 Microarrays: Wide Clinical Utilities and Advances in Healthcare
Authors: Salma M. Wakil
Abstract:
Advances in the field of genetics overwhelmed detecting large number of inherited disorders at the molecular level and directed to the development of innovative technologies. These innovations have led to gene sequencing, prenatal mutation detection, pre-implantation genetic diagnosis; population based carrier screening and genome wide analyses using microarrays. Microarrays are widely used in establishing clinical and diagnostic setup for genetic anomalies at a massive level, with the advent of cytoscan molecular karyotyping as a clinical utility card for detecting chromosomal aberrations with high coverage across the entire human genome. Unlike a regular karyotype that relies on the microscopic inspection of chromosomes, molecular karyotyping with cytoscan constructs virtual chromosomes based on the copy number analysis of DNA which improves its resolution by 100-fold. We have been investigating a large number of patients with Developmental Delay and Intellectual disability with this platform for establishing micro syndrome deletions and have detected number of novel CNV’s in the Arabian population with the clinical relevance.Keywords: microarrays, molecular karyotyping, developmental delay, genetics
Procedia PDF Downloads 4582847 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management
Authors: A. Giannakopoulos, S. B. Buckley
Abstract:
Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.Keywords: critical thinking, knowledge management, mathematics, problem solving
Procedia PDF Downloads 6012846 Assessment, Diagnosis and Treatment, Simulation for the Nurse Practitioner Student
Authors: Helen Coronel, Will Brewer, Peggy Bergeron, Clarissa Hall, Victoria Casson
Abstract:
Simulation-based training provides the nurse practitioner (NP) student with a safe and controlled environment in which they can practice a real-life scenario. This type of learning fosters critical thinking skills essential to practice. The expectation of this study was that students would have an increase in their competency and confidence after performing the simulation. Approximately 8.4% of Americans suffer from depression. The state of Alabama is ranked 47th out of 50 for access to mental health care. As a result of this significant shortage of mental health providers, primary care providers are frequently put in the position of screening for and treating mental health conditions, such as depression. Family nurse practitioners are often utilized as primary care providers, making their ability to assess, diagnose and treat these disorders a necessary skill. The expected outcome of this simulation is an increase in confidence, competency and the empowerment of the nurse practitioner student’s ability to assess, diagnose and treat a common mood disorder they may encounter in practice. The Kirkpatrick Module was applied for this study. A non-experimental design using descriptive statistical analysis was utilized. The simulation was based on a common psychiatric mood disorder frequently observed in primary care and mental health clinics. Students were asked to watch a voiceover power point presentation prior to their on-campus simulation. The presentation included training on the assessment, diagnosis, and treatment of a patient with depression. Prior to the simulation, the students completed a pre-test, then participated in the simulation, and completed a post-test when done. Apple iPads were utilized to access a simulated health record. Major findings of the study support an increase in students’ competency and confidence when assessing, diagnosing, and treating an adult patient with depression.Keywords: advanced practice, nurse practitioner, simulation, primary care, depression
Procedia PDF Downloads 1012845 Readiness of Iran’s Insurance Industry Salesforce to Accept Changing to Become Islamic Personal Financial Planners
Authors: Pedram Saadati, Zahra Nazari
Abstract:
Today, the role and importance of financial technology businesses in Iran have increased significantly. Although, in Iran, there is no Islamic or non-Islamic personal financial planning field of study in the universities or educational centers, the profession of personal financial planning is not defined, and there is no software introduced in this regard for advisors or consumers. The largest sales network of financial services in Iran belongs to the insurance industry, and there is an untapped market for international companies in Iran that can contribute to 130 thousand representatives in the insurance industry and 28 million families by providing training and personal financial advisory software. To the best of the author's knowledge, despite the lack of previous internal studies in this field, the present study investigates the level of readiness of the salesforce of the insurance industry to accept this career and its technology. The statistical population of the research is made up of managers, insurance sales representatives, assistants and heads of sales departments of insurance companies. An 18-minute video was prepared that introduced and taught the job of Islamic personal financial planning and explained its difference from its non-Islamic model. This video was provided to the respondents. The data collection tool was a research-made questionnaire. To investigate the factors affecting technology acceptance and job change, independent T descriptive statistics and Pearson correlation were used, and Friedman's test was used to rank the effective factors. The results indicate the mental perception and very positive attitude of the insurance industry activists towards the usefulness of this job and its technology, and the studied sample confirmed the intention of training in this knowledge. Based on research results, the change in the customer's attitude towards the insurance advisor and the possibility of increasing income are considered as the reasons for accepting. However, Restrictions on using investment opportunities due to Islamic financial services laws and the uncertainty of the position of the central insurance in this regard are considered as the most important obstacles.Keywords: fintech, insurance, personal financial planning, wealth management
Procedia PDF Downloads 512844 Operating System Based Virtualization Models in Cloud Computing
Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi
Abstract:
Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization
Procedia PDF Downloads 3322843 Digital Twin Technology: A Solution for Remote Operation and Productivity Improvement During Covid-19 Era and Future
Authors: Muhamad Sahir Bin Ahmad Shatiry, Wan Normeza Wan Zakaria, Mohamad Zaki Hassan
Abstract:
The pandemic Covid19 has significantly impacted the world; the spreading of the Covid19 virus initially from China has dramatically impacted the world's economy. Therefore, the world reacts with establishing the new way or norm in daily life. The rapid rise of the latest technology has been seen by introducing many technologies to ease human life to have a minor contract between humans and avoid spreading the virus Covid19. Digital twin technologies are one of the technologies created before the pandemic Covid19 but slow adoption in the industry. Throughout the Covid19, most of the companies in the world started to explore to use it. The digital twin technology provides the virtual platform to replicate the existing condition or setup for anything such as office, manufacturing line, factories' machine, building, and many more. This study investigates the effect on the economic perspective after the companies use the Digital Twin technology in the industry. To minimize the contact between humans and to have the ability to operate the system digitally remotely. In this study, the explanation of the digital twin technology impacts the world's microeconomic and macroeconomic.Keywords: productivity, artificially intelligence, IoT, digital twin
Procedia PDF Downloads 2092842 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: computational analysis, gendered grammar, misogynistic language, neural networks
Procedia PDF Downloads 1262841 Objectives of the Standardization of Technical Terminology Nowadays in Albanian
Authors: Gani Pllana
Abstract:
In the conditions of the rapid development of technics and technology in recent years, the cooperation of the scientific-technical language with the standard Albanian language is continuing with a higher intensity than before. We notice a vigor of enrichment in the vocabulary of technical terminology, due to the birth and formation of new fields and subfields of technics, technology, as computing, mechatronics, telemetry, a multitude of concepts many of which, on the one hand, are marked with names of the languages they come from, mainly from English, but on the other hand, they meet their needs with the lexical mother tongue composition (by common words being raised to terms) and with the activation of other layers, such as compound word terms. Thus, for example, in the field of computing, we notice in it the inclusion of the ordinary vocabulary for reproductive reasons, like mi, dritare, flamur, adresë, skedar (Engl: mouse, window, flag, address, file), and along with them, the compound word terms, serving to differentiate relevant concepts, like, adresë e hiperlidhjes, adresë e uebit, adresë relative, adresë virtuale (Engl. address hyperlink, web address, relative address, virtual address) etc.Keywords: common words, Albanian language, technical terminology, standardization
Procedia PDF Downloads 2932840 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 2222839 Performance Analysis of Elliptic Curve Cryptography Using Onion Routing to Enhance the Privacy and Anonymity in Grid Computing
Authors: H. Parveen Begam, M. A. Maluk Mohamed
Abstract:
Grid computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using Virtual Organization (VO). Security is a critical issue due to the open nature of the wireless channels in the grid computing which requires three fundamental services: authentication, authorization, and encryption. The privacy and anonymity are considered as an important factor while communicating over publicly spanned network like web. To ensure a high level of security we explored an extension of onion routing, which has been used with dynamic token exchange along with protection of privacy and anonymity of individual identity. To improve the performance of encrypting the layers, the elliptic curve cryptography is used. Compared to traditional cryptosystems like RSA (Rivest-Shamir-Adelman), ECC (Elliptic Curve Cryptosystem) offers equivalent security with smaller key sizes which result in faster computations, lower power consumption, as well as memory and bandwidth savings. This paper presents the estimation of the performance improvements of onion routing using ECC as well as the comparison graph between performance level of RSA and ECC.Keywords: grid computing, privacy, anonymity, onion routing, ECC, RSA
Procedia PDF Downloads 4012838 Biological Hazards and Laboratory inflicted Infections in Sub-Saharan Africa
Authors: Godfrey Muiya Mukala
Abstract:
This research looks at an array of fields in Sub-Saharan Africa comprising agriculture, food enterprises, medicine, organisms genetically modified, microbiology, and nanotechnology that can be gained from biotechnological research and development. Findings into dangerous organisms, mainly bacterial germs, rickettsia, fungi, parasites, or organisms that are genetically engineered, have immensely posed questions attributed to the biological danger they bring forth to human beings and the environment because of their uncertainties. In addition, the recurrence of previously managed diseases or the inception of new diseases are connected to biosafety challenges, especially in rural set-ups in low and middle-income countries. Notably, biotechnology laboratories are required to adopt biosafety measures to protect their workforce, community, environment, and ecosystem from unforeseen materials and organisms. Sensitization and inclusion of educational frameworks for laboratory workers are essential to acquiring a solid knowledge of harmful biological agents. This is in addition to human pathogenicity, susceptibility, and epidemiology to the biological data used in research and development. This article reviews and analyzes research intending to identify the proper implementation of universally accepted practices in laboratory safety and biological hazards. This research identifies ideal microbiological methods, adequate containment equipment, sufficient resources, safety barriers, specific training, and education of the laboratory workforce to decrease and contain biological hazards. Subsequently, knowledge of standardized microbiological techniques and processes, in addition to the employment of containment facilities, protective barriers, and equipment, is far-reaching in preventing occupational infections. Similarly, reduction of risks and prevention may be attained by training, education, and research on biohazards, pathogenicity, and epidemiology of the relevant microorganisms. In this technique, medical professionals in rural setups may adopt the knowledge acquired from the past to project possible concerns in the future.Keywords: sub-saharan africa, biotechnology, laboratory, infections, health
Procedia PDF Downloads 802837 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 462836 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 3002835 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses
Authors: William Huang
Abstract:
Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization
Procedia PDF Downloads 1572834 MEAL Project–Modifying Eating Attitudes and Actions through Learning
Authors: E. Oliver, A. Cebolla, A. Dominguez, A. Gonzalez-Segura, E. de la Cruz, S. Albertini, L. Ferrini, K. Kronika, T. Nilsen, R. Baños
Abstract:
The main objective of MEAL is to develop a pedagogical tool aimed to help teachers and nutritionists (students and professionals) to acquire, train, promote and deliver to children basic nutritional education and healthy eating behaviours competencies. MEAL is focused on eating behaviours and not only in nutritional literacy, and will use new technologies like Information and Communication Technologies (ICTs) and serious games (SG) platforms to consolidate the nutritional competences and habits.Keywords: nutritional education, pedagogical ICT platform, serious games, training course
Procedia PDF Downloads 5302833 Improving Productivity in a Glass Production Line through Applying Principles of Total Productive Maintenance (TPM)
Authors: Omar Bataineh
Abstract:
Total productive maintenance (TPM) is a principle-based method that aims to get a high-level production with no breakdowns, no slow running and no defects. Key principles of TPM were applied in this work to improve the performance of the glass production line at United Beverage Company in Kuwait, which is producing bottles of soft drinks. Principles such as 5S as a foundation for TPM implementation, developing a program for equipment management, Cause and Effect Analysis (CEA), quality improvement, training and education of employees were employed. After the completion of TPM implementation, it was possible to increase the Overall Equipment Effectiveness (OEE) from 23% to 40%. Procedia PDF Downloads 3422832 Keypoints Extraction for Markerless Tracking in Augmented Reality Applications: A Case Study in Dar As-Saraya Museum
Authors: Jafar W. Al-Badarneh, Abdalkareem R. Al-Hawary, Abdulmalik M. Morghem, Mostafa Z. Ali, Rami S. Al-Gharaibeh
Abstract:
Archeological heritage is at the heart of each country’s national glory. Moreover, it could develop into a source of national income. Heritage management requires socially-responsible marketing that achieves high visitor satisfaction while maintaining high site conservation. We have developed an Augmented Reality (AR) experience for heritage and cultural reservation at Dar-As-Saraya museum in Jordan. Our application of this notion relied on markerless-based tracking approach. This approach uses keypoints extraction technique where features of the environment are identified and defined into the system as keypoints. A set of these keypoints forms a tracker for an augmented object to be displayed and overlaid with a real scene at Dar As-Saraya museum. We tested and compared several techniques for markerless tracking and then applied the best technique to complete a mosaic artifact with AR content. The successful results from our application open the door for applications in open archeological sites where markerless tracking is mostly needed.Keywords: augmented reality, cultural heritage, keypoints extraction, virtual recreation
Procedia PDF Downloads 3402831 From a Top Sport Event to a Sporting Activity
Authors: Helge Rupprich, Elke Knisel
Abstract:
In a time of mediazation and reduced physical movement, it is important to change passivity (akinesa) into physical activity to improve health. The approach is to encourage children, junior athletes, recreational athletes, and semi-professional athletes to do sports while attending a top sport event. The concept has the slogan: get out off your seat and move! A top sport event of a series of professional beach volleyball tournaments with 330.000 life viewers, 13,70 million cumulative reach viewers and 215,13 million advertising contacts is used as framework for different sports didactic approaches, social integrative approaches and migration valuations. An important aim is to use the big radiant power of the top sport event to extract active participants from the viewers of the top sport event. Even if it is the goal to improve physical activity, it is necessary to differentiate between the didactic approaches. The first approach contains psycho motoric exercises with children (N=158) between two and five years which was used in the project ‘largest sandbox of the city’. The second approach is social integration and promotion of activity of students (N=54) in the form of a student beach volleyball tournament. The third approach is activity in companies. It is based on the idea of health motivation of employees (N=62) in a big beach volleyball tournament. Fourth approach is to improve the sports leisure time activities of recreational athletes (N=292) in different beach volleyball tournaments. Fifthly approach is to build a foreign friendly measure which is implemented in junior athlete training with the French and German junior national team (N=16). Sixthly approach is to give semi professional athletes a tournament to develop their relation to active life. Seventh approach is social integration for disadvantaged people (N=123) in form of training with professional athletes. The top sport beach volleyball tournament had 80 athletes (N=80) and 34.000 viewers. In sum 785 athletes (N=785) did sports in 13 days. Over 34.000 viewers where counted in the first three days of top sport event. The project was evaluated positively by the City of Dresden, Politics of Saxony and the participants and will be continued in Dresden and expanded for the season 2015 in Jena.Keywords: beach volleyball, event, sports didactic, sports project
Procedia PDF Downloads 4992830 Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia
Authors: Theodrose Sisay, Kindie Tesfaye, Mengistu Ketema, Nigussie Dechassa, Mezegebu Getnet
Abstract:
Agriculture is a sector that is very vulnerable to the effects of climate change and contributes to anthropogenic greenhouse gas (GHG) emissions in the atmosphere. By lowering emissions and adjusting to the change, it can also help to reduce climate change. Utilizing Climate-Smart Agriculture (CSA) technology that can sustainably boost productivity, improve resilience, and lower GHG emissions is crucial. This study sought to identify the CSA technologies used by farmers and assess adoption levels and factors that influence them. In order to gather information from 384 smallholder farmers in the Great Rift Valley (GRV) of Ethiopia, a cross-sectional survey was carried out. Data were analysed using percentage, chi-square test, t-test, and multivariate probit model. Results showed that crop diversification, agroforestry, and integrated soil fertility management were the most widely practiced technologies. The results of the Chi-square and t-tests showed that there are differences and significant and positive connections between adopters and non-adopters based on various attributes. The chi-square and t-test results confirmed that households who were older had higher incomes, greater credit access, knowledge of the climate, better training, better education, larger farms, higher incomes, and more frequent interactions with extension specialists had a positive and significant association with CSA technology adopters. The model result showed that age, sex, and education of the head, farmland size, livestock ownership, income, access to credit, climate information, training, and extension contact influenced the selection of CSA technologies. Therefore, effective action must be taken to remove barriers to the adoption of CSA technologies, and taking these adoption factors into account in policy and practice is anticipated to support smallholder farmers in adapting to climate change while lowering emissions.Keywords: climate change, climate-smart agriculture, smallholder farmers, multivariate probit model
Procedia PDF Downloads 1332829 Wetland Community and Their Livelihood Opportunities in the Face of Changing Climatic Condition in Southwest Bangladesh
Authors: Mohsina Aktar, Bishawjit Mallick
Abstract:
Bangladesh faces the multidimensional manifestations of climate change e.g. flood, cyclone, sea level rise, drainage congestion, salinity, etc. This study aimed at to find out the community’s perception of the perceived impact of climate change on their wetland resource based livelihood, to analyze their present livelihood scenario and to find out required institutional setup to strengthen present livelihood scenario. Therefore, this study required both quantitative analysis like quantification of wetland resources, occupation, etc. and also exploratory information like policy and institutional reform. For quantitative information 200 questionnaire survey and in some cases observation survey and for socially shareable qualitative and quantitative issues case study and focus group discussion were conducted. In-Depth interview was conducted for socially non-shareable qualitative issues. The overall findings of this study have been presented maintaining a sequence- perception about climate change effect, livelihood scenario and required institutional support of the wetland community. Flood has been ranked where cyclone effect is comparatively less disastrous in this area. Heavy rainfall comes after the cyclone. Female members responded almost same about the ranking and effects of frequently occurred and devastating effects of climate change. People are much more aware of the impact of climate change. Training of Care in RVCC project helps to increase their knowledge level. If the level of education can be increased, people can fight against calamity and poverty with more confidence. People seem to overcome the problems of water logging and thus besides involving in Hydroponics (33.3%) as prime occupation in monsoon; they are also engaged in other business related activities. January to May is the low-income season for the farmers. But some people don’t want to change their traditional occupation and their age is above 45. The young earning member wants to utilize their lean income period by alternative occupation. People who do not have own land and performing water transportation or other types of occupation are now interested about Hydroponics. People who give their land on rent are now thinking about renting their land in monsoon as through that they can earn a sound amount rather than get nothing. What they require is just seed, training, and capital. Present marketing system faces the problem of communication. So this sector needed to be developed. Involvement of women in income earning activity is very low (5.1%), and 100% women are housewives. They became inferior due to their educational level and dominance of their husband. Only one NGO named BCAS (Bangladesh Center for Advanced Studies) has been found engage training facilities and advocacy for this purpose. Upazilla agricultural extension office like other GO remains inactive to give support the community for extension and improvement of Hydroponics agriculture. If the community gets proper support and inspiration, they can fight against crisis of low-income and climate change, with the Hydroponics cultivation system successfully.Keywords: wetland community, hydroponics, climate change adaptation, livelihood
Procedia PDF Downloads 2762828 Exploring a Cross-Sectional Analysis Defining Social Work Leadership Competencies in Social Work Education and Practice
Authors: Trevor Stephen, Joshua D. Aceves, David Guyer, Jona Jacobson
Abstract:
As a profession, social work has much to offer individuals, groups, and organizations. A multidisciplinary approach to understanding and solving complex challenges and a commitment to developing and training ethical practitioners outlines characteristics of a profession embedded with leadership skills. This presentation will take an overview of the historical context of social work leadership, examine social work as a unique leadership model composed of its qualities and theories that inform effective leadership capability as it relates to our code of ethics. Reflect critically on leadership theories and their foundational comparison. Finally, a look at recommendations and implementation to social work education and practice. Similar to defining leadership, there is no universally accepted definition of social work leadership. However, some distinct traits and characteristics are essential. Recent studies help set the stage for this research proposal because they measure views on effective social work leadership among social work and non-social leaders and followers. However, this research is interested in working backward from that approach and examining social workers' leadership preparedness perspectives based solely on social work training, competencies, values, and ethics. Social workers understand how to change complex structures and challenge resistance to change to improve the well-being of organizations and those they serve. Furthermore, previous studies align with the idea of practitioners assessing their skill and capacity to engage in leadership but not to lead. In addition, this research is significant because it explores aspiring social work leaders' competence to translate social work practice into direct leadership skills. The research question seeks to answer whether social work training and competencies are sufficient to determine whether social workers believe they possess the capacity and skill to engage in leadership practice. Aim 1: Assess whether social workers have the capacity and skills to assume leadership roles. Aim 2: Evaluate how the development of social workers is sufficient in defining leadership. This research intends to reframe the misconception that social workers do not possess the capacity and skills to be effective leaders. On the contrary, social work encompasses a framework dedicated to lifelong development and growth. Social workers must be skilled, competent, ethical, supportive, and empathic. These are all qualities and traits of effective leadership, whereas leaders are in relation with others and embody partnership and collaboration with followers and stakeholders. The proposed study is a cross-sectional quasi-experimental survey design that will include the distribution of a multi-level social work leadership model and assessment tool. The assessment tool aims to help define leadership in social work using a Likert scale model. A cross-sectional research design is appropriate for answering the research questions because the measurement survey will help gather data using a structured tool. Other than the proposed social work leadership measurement tool, there is no other mechanism based on social work theory and designed to measure the capacity and skill of social work leadership.Keywords: leadership competencies, leadership education, multi-level social work leadership model, social work core values, social work leadership, social work leadership education, social work leadership measurement tool
Procedia PDF Downloads 1782827 Effects of Safety Intervention Program towards Behaviors among Rubber Wood Processing Workers Using Theory of Planned Behavior
Authors: Junjira Mahaboon, Anongnard Boonpak, Nattakarn Worrasan, Busma Kama, Mujalin Saikliang, Siripor Dankachatarn
Abstract:
Rubber wood processing is one of the most important industries in southern Thailand. The process has several safety hazards for example unsafe wood cutting machine guarding, wood dust, noise, and heavy lifting. However, workers’ occupational health and safety measures to promote their behaviors are still limited. This quasi-experimental research was to determine factors affecting workers’ safety behaviors using theory of planned behavior after implementing job safety intervention program. The purposes were to (1) determine factors affecting workers’ behaviors and (2) to evaluate effectiveness of the intervention program. The sample of study was 66 workers from a rubber wood processing factory. Factors in the Theory of Planned Behavior model (TPB) were measured before and after the intervention. The factors of TPB included attitude towards behavior, subjective norm, perceived behavioral control, intention, and behavior. Firstly, Job Safety Analysis (JSA) was conducted and Safety Standard Operation Procedures (SSOP) were established. The questionnaire was also used to collect workers’ characteristics and TPB factors. Then, job safety intervention program to promote workers’ behavior according to SSOP were implemented for a four month period. The program included SSOP training, personal protective equipment use, and safety promotional campaign. After that, the TPB factors were again collected. Paired sample t-test and independent t-test were used to analyze the data. The result revealed that attitude towards behavior and intention increased significantly after the intervention at p<0.05. These factors also significantly determined the workers’ safety behavior according to SSOP at p<0.05. However, subjective norm, and perceived behavioral control were not significantly changed nor related to safety behaviors. In conclusion, attitude towards behavior and workers’ intention should be promoted to encourage workers’ safety behaviors. SSOP intervention program e.g. short meeting, safety training, and promotional campaign should be continuously implemented in a routine basis to improve workers’ behavior.Keywords: job safety analysis, rubber wood processing workers, safety standard operation procedure, theory of planned behavior
Procedia PDF Downloads 1972826 Anthropomorphic Interfaces For User Trust in a Highly Automated Driving
Authors: Clarisse Lawson-Guidigbe, Nicolas Louveton, Kahina Amokrane-Ferka, Jean-Marc Andre
Abstract:
Trust in automated driving systems is receiving growing attention in the research community. Anthropomorphism has been identified by past research as a trust-building factor. In this paper, we consider three anthropomorphic interfaces integrating three versions of a virtual assistant. We attempt to measure the impact of each of these interfaces on trust in the automated driving system. An experiment following a between-subject design was conducted in a driving simulator (N = 36) to evaluate participants’ performance and experience in two handover situations (a simple one and a critical one). Perception of anthropomorphism and trust was measured using scales, while participants’ experience was measured during elicitation interviews. We found no significant difference between the three interfaces regarding the perception of anthropomorphism, trust levels, or experience. However, regarding participants’ performance, we found a significant difference between the three interfaces in the simple handover situations but not the critical one. Learnings from anthropomorphism and trust measurement scales are discussed and suggestions for further research are proposed.Keywords: highly automated driving, trust, anthropomorphic design, mindful anthropomorphism, mindless anthropomorphism
Procedia PDF Downloads 1512825 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamic
Authors: Xiaodong Gao, Pingchuan Dong, Qichao Gao
Abstract:
There has been lots of published work focused on asphaltene deposited on the smooth pipe under steady conditions, while particle deposition on the blockage wellbores under transient conditions has not been well elucidated. This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effect of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.Keywords: asphaltene deposition rate, blockage length, blockage thickness, blockage diameter, transient condition
Procedia PDF Downloads 2132824 Identification of Candidate Congenital Heart Defects Biomarkers by Applying a Random Forest Approach on DNA Methylation Data
Authors: Kan Yu, Khui Hung Lee, Eben Afrifa-Yamoah, Jing Guo, Katrina Harrison, Jack Goldblatt, Nicholas Pachter, Jitian Xiao, Guicheng Brad Zhang
Abstract:
Background and Significance of the Study: Congenital Heart Defects (CHDs) are the most common malformation at birth and one of the leading causes of infant death. Although the exact etiology remains a significant challenge, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of congenital heart defects. At present, no existing DNA methylation biomarkers are used for early detection of CHDs. The existing CHD diagnostic techniques are time-consuming and costly and can only be used to diagnose CHDs after an infant was born. The present study employed a machine learning technique to analyse genome-wide methylation data in children with and without CHDs with the aim to find methylation biomarkers for CHDs. Methods: The Illumina Human Methylation EPIC BeadChip was used to screen the genome‐wide DNA methylation profiles of 24 infants diagnosed with congenital heart defects and 24 healthy infants without congenital heart defects. Primary pre-processing was conducted by using RnBeads and limma packages. The methylation levels of top 600 genes with the lowest p-value were selected and further investigated by using a random forest approach. ROC curves were used to analyse the sensitivity and specificity of each biomarker in both training and test sample sets. The functionalities of selected genes with high sensitivity and specificity were then assessed in molecular processes. Major Findings of the Study: Three genes (MIR663, FGF3, and FAM64A) were identified from both training and validating data by random forests with an average sensitivity and specificity of 85% and 95%. GO analyses for the top 600 genes showed that these putative differentially methylated genes were primarily associated with regulation of lipid metabolic process, protein-containing complex localization, and Notch signalling pathway. The present findings highlight that aberrant DNA methylation may play a significant role in the pathogenesis of congenital heart defects.Keywords: biomarker, congenital heart defects, DNA methylation, random forest
Procedia PDF Downloads 1632823 Website Evaluation of Travel Agencies Class A in Saudi Arabia and Egypt Using Extended Version of Internet Commerce Adoption Model: A Comparative Study
Authors: Tarek Abdel Azim Ahmed, Eman Sarhan Shaker
Abstract:
This research aims to explore how well the extended model of internet commerce adoption (eMICA) model is often used to determine the extent of internet commerce adoption in the travel agencies sector in both Egypt and Kingdom of Saudi Arabia (KSA). The web content analysis method was used to analyze the level of adoption of Egyptian travel agencies and Saudi travel agencies according to data immensely available on their websites. Therefore, each site was categorized according to the phases and levels proposed. In order to achieve this, 120 websites were evaluated by the two authors over a three-month period, from August to October 2020, and then categorized according to the phases and levels of (eMICA). The results show that there are deficiencies in the application of the eMICA model by both KSA and Egyptian travel agencies, generally, updating their websites, the absence of quality certification, offering secure online payment, virtual tours, and videos using Flash animation. In general, the Egyptian companies slightly outperformed the KSA ones in applying eMICA model.Keywords: e-commerce, internet marketing, eMICA, travel agencies, websites
Procedia PDF Downloads 1402822 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 1012821 Gender Justice and Empowerment: A Study of Chhara Bootlegger Women of Ahmedabad
Authors: Neeta Khurana, Ritu Sharma
Abstract:
This paper is an impact assessment study of the rehabilitation work done for Chhara women in the rural precincts of Ahmedabad. The Chharas constitute a denotified tribe and live in abject poverty. The women of this community are infamous absconders of law and active bootleggers of locally made liquor. As part of a psychological study with a local NGO, the authors headed a training program aimed at rehabilitating and providing these women alternate modes of employment, thereby driving them away from a life of crime. The paper centers on the idea of women entrepreneurship and women empowerment. It notes the importance of handholding in a conflict situation. Most of the research on Chharas is either focused on victimising them for state-sponsored violence or mostly makes a plea on reconditioning them in the mainstream. Going against this trend, this paper which documents the study argues that making these poor women self-dependent is a panacea for their sluggish development. The alienation caused due to the demonisation of the community has made them abandon traditional modes of employment. This has further led the community astray into making illegal country liquor causing further damage to their reputation. Women are at the centre of this vicious circle facing much repression and ostracisation. The study conducted by the PDPU team was an attempt to change this dogmatic alienation of these poor women. It was found that with consistent support and reformist approach towards law, it is possible to drive these women away from a life of penury repression and crime. The aforementioned study uses empirical tools to verify this claim. Placed at the confluence of the sociology of gender and psychology, this paper is a good way to argue that law enforcement cannot be effective without sensitisation to the ground realities of conflict. The study conducted from which the paper borrows was a scientific survey focused on markers of gender and caste realities of the Chharas. The paper mentions various dynamics involved in the training program that paved the way for the successful employment of the women. In an attempt to explain its uniqueness, the paper also has a section on comparing similar social experiments.Keywords: employment, gender, handholding, rehabilitation
Procedia PDF Downloads 133