Search results for: tensor deep stacking neural networks
3233 Evaluation of Routing Protocols in Mobile Adhoc Networks
Authors: Anu Malhotra
Abstract:
An Ad-hoc network is one that is an autonomous, self configuring network made up of mobile nodes connected via wireless links. Ad-hoc networks often consist of nodes, mobile hosts (MH) or mobile stations (MS, also serving as routers) connected by wireless links. Different routing protocols are used for data transmission in between the nodes in an adhoc network. In this paper two protocols (OLSR and AODV) are analyzed on the basis of two parameters i.e. time delay and throughput with different data rates. On the basis of these analysis, we observed that with same data rate, AODV protocol is having more time delay than the OLSR protocol whereas throughput for the OLSR protocol is less compared to the AODV protocol.Keywords: routing adhoc, mobile hosts, mobile stations, OLSR protocol, AODV protocol
Procedia PDF Downloads 5063232 Avoiding Packet Drop for Improved through Put in the Multi-Hop Wireless N/W
Authors: Manish Kumar Rajak, Sanjay Gupta
Abstract:
Mobile ad hoc networks (MANETs) are infrastructure less and intercommunicate using single-hop and multi-hop paths. Network based congestion avoidance which involves managing the queues in the network devices is an integral part of any network. QoS: A set of service requirements that are met by the network while transferring a packet stream from a source to a destination. Especially in MANETs, packet loss results in increased overheads. This paper presents a new algorithm to avoid congestion using one or more queue on nodes and corresponding flow rate decided in advance for each node. When any node attains an initial value of queue then it sends this status to its downstream nodes which in turn uses the pre-decided flow rate of packet transfer to its upstream nodes. The flow rate on each node is adjusted according to the status received from its upstream nodes. This proposed algorithm uses the existing infrastructure to inform to other nodes about its current queue status.Keywords: mesh networks, MANET, packet count, threshold, throughput
Procedia PDF Downloads 4753231 Effect of Papaverine on Developmental Neurotoxicity: Neurosphere as in vitro Model
Authors: Mohammed Y. Elsherbeny, Mohamed Salama, Ahmed Lotfy, Hossam Fareed, Nora Mohammed
Abstract:
Background: Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on brain during the early childhood when human brains are vulnerable during this period. DNT study in vivo cannot determine the effect of the neurotoxins, as it is not applicable, so using the neurosphere cells of lab animals as an alternative is applicable and time saving. Methods: Cell culture: Rat neural progenitor cells were isolated from rat embryos’ brain. The cortices were aseptically dissected out and the tissues were triturated. The dispersed tissues were allowed to settle. The supernatant was then transferred to a fresh tube and centrifuged. The pellet was placed in Hank’s balanced salt solution and cultured as free-floating neurospheres in proliferation medium. Differentiation was initiated by growth factor withdrawal in differentiation medium and plating onto a poly-d-lysine/ laminin matrix. Chemical Exposure: Neurospheres were treated for 2 weeks with papaverine in proliferation medium. Proliferation analyses: Spheres were cultured. After 0, 4, 5, 11 and 14 days, sphere size was determined by software analyses (CellProfiler, version 2.1; Broad Institute). Diameter of each neurosphere was measured and exported to excel file further to statistical analysis. Viability test: Trypsin-EDTA solution was added to neurospheres to dissociate neurospheres into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Result: As regards proliferation analysis and percentage of viable cells of papaverin treated groups: There was no significant change in cells proliferation compared to control at 0, 4, 5, 11 and 14 days with concentrations 1, 5 and 10 µM of papaverine, but there is a significant change in cell viability compared to control after 1 week and 2 weeks with the same concentrations of papaverine. Conclusion: Papaverine has toxic effect on viability of neural cell, not on their proliferation, so it may produce focal neural lesions not growth morphological changes.Keywords: developmental neurotoxicity, neurotoxin, papaverine, neuroshperes
Procedia PDF Downloads 3843230 Explaining the Relationship between Religiosity and Resilience
Authors: Rita Phillips, Mark Burgess, Maga Berlinski
Abstract:
Although the positive impact of religiosity on well-being, health, and life-coping abilities is well known, up to date research has failed to provide scientific evidence for the relationship reasons. Therefore the present study took a qualitative approach by examining how religiosity interacts in coping with emotionally distressful situations, for which wedding preparations are an example. Wedding preparations, related to the experience of ambiguous emotions, can be the reason for phases of high distress. Although being per-se religious ceremonies, they are also socially-scripted and characterized by people’s striving for personally meaningful celebrations. The negotiation of these many influences can evoke conflicts. To reveal components of religiosity which contribute to stress-resolution, eight biographic-narrative interviews with recently married spouses were conducted. Participants were from different nationalities and Catholic deep-belief communities in order to determine factors independent from national-culture and social-subgroup. The audio-tape recorded, transcribed and translated interviews were analyzed by Interpretative Phenomenological Analysis. Opposing previous research on wedding-related conflicts but in-line with the quantitative account on the relation between stress-resilience and religiosity, the present study found participants reporting very low levels of distress and ambiguity. Although similar areas of potential conflicts were revealed, deep-belief Christians seemed to handle them in a different way. Participants freed themselves from own and others’ rigor mundane expectations by their spiritual preparation and the focus on a divine instance. This evoked a feeling of perceived closeness to God and of unconditional love, resulting in acceptance of oneself and others. Through relativizing mundane goods, participants perceived absolute freedom. Thus belief did not supplement coping strategies, previously defined in the literature, but substituted them. The paper implies that in explaining the connection between stress-resilience and religiosity, one’s perception and experience of unconditional love might outweigh other social or personal factors. However, further qualitative investigations are needed to fully explain the phenomenon.Keywords: deep-belief, religiosity, resilience, wedding
Procedia PDF Downloads 2453229 Geology, Geomorphology and Genesis of Andarokh Karstic Cave, North-East Iran
Authors: Mojtaba Heydarizad
Abstract:
Andarokh basin is one of the main karstic regions in Khorasan Razavi province NE Iran. This basin is part of Kopeh-Dagh mega zone extending from Caspian Sea in the east to northern Afghanistan in the west. This basin is covered by Mozdooran Formation, Ngr evaporative formation and quaternary alluvium deposits in descending order of age. Mozdooran carbonate formation is notably karstified. The main surface karstic features in Mozdooran formation are Groove karren, Cleft karren, Rain pit, Rill karren, Tritt karren, Kamintza, Domes, and Table karren. In addition to surface features, deep karstic feature Andarokh Cave also exists in the region. Studying Ca, Mg, Mn, Sr, Fe concentration and Sr/Mn ratio in Mozdooran formation samples with distance to main faults and joints system using PCA analyses demonstrates intense meteoric digenesis role in controlling carbonate rock geochemistry. The karst evaluation in Andarokh basin varies from early stages 'deep seated karst' in Mesozoic to mature karstic system 'Exhumed karst' in quaternary period. Andarokh cave (the main cave in Andarokh basin) is rudimentary branch work consists of three passages of A, B and C and two entrances Andarokh and Sky.Keywords: Andarokh basin, Andarokh cave, geochemical analyses, karst evaluation
Procedia PDF Downloads 1543228 Persistent Homology of Convection Cycles in Network Flows
Authors: Minh Quang Le, Dane Taylor
Abstract:
Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageRank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer's configuration dynamics. Our experiments highlight how system parameters---e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer---can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a new connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.Keywords: homology, persistent homolgy, markov chains, convection cycles, filtration
Procedia PDF Downloads 1363227 Exploring Long-Term Care Support Networks and Social Capital for Family Caregivers
Authors: Liu Yi-Hui, Chiu Fan-Yun, Lin Yu Fang, Jhang Yu Cih, He You Jing
Abstract:
The demand for care support has been rising with the aging of society and the advancement of medical science and technology. To meet rising demand, the Taiwanese government promoted the “Long Term Care Ten-Year Plan 2.0” in 2017. However, this policy and its related services failed to be fully implemented because of the ignorance of the public, and their lack of desire, fear, or discomfort in using them, which is a major obstacle to the promotion of long-term care services. Given the above context, this research objectives included the following: (1) to understand the current situation and predicament of family caregivers; (2) to reveal the actual use and assistance of government’s long-term care resources for family caregivers; and (3) to explore the support and impact of social capital on family caregivers. A semi-structured in-depth interview with five family caregivers to understand long-term care networks and social capital for family caregivers.Keywords: family caregivers, long-term care, social capital
Procedia PDF Downloads 1593226 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata
Authors: Tanmay Bisen, Aastha Shayla
Abstract:
This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection
Procedia PDF Downloads 573225 Opinion Mining and Sentiment Analysis on DEFT
Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala
Abstract:
Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.Keywords: opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet
Procedia PDF Downloads 1393224 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding
Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang
Abstract:
As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis
Procedia PDF Downloads 353223 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks
Authors: Jayesh M. Patel, Bharat P. Modi
Abstract:
The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.Keywords: cellular, Wi-Fi, mobile, smart phone
Procedia PDF Downloads 3653222 Analysis of Cardiovascular Diseases Using Artificial Neural Network
Authors: Jyotismita Talukdar
Abstract:
In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach
Procedia PDF Downloads 1743221 Multi-Modality Brain Stimulation: A Treatment Protocol for Tinnitus
Authors: Prajakta Patil, Yash Huzurbazar, Abhijeet Shinde
Abstract:
Aim: To develop a treatment protocol for the management of tinnitus through multi-modality brain stimulation. Methodology: Present study included 33 adults with unilateral (31 subjects) and bilateral (2 subjects) chronic tinnitus with and/or without hearing loss independent of their etiology. The Treatment protocol included 5 consecutive sessions with follow-up of 6 months. Each session was divided into 3 parts: • Pre-treatment: a) Informed consent b) Pitch and loudness matching. • Treatment: Bimanual paper pen task with tinnitus masking for 30 minutes. • Post-treatment: a) Pitch and loudness matching b) Directive counseling and obtaining feedback. Paper-pen task is to be performed bimanually that included carrying out two different writing activities in different context. The level of difficulty of the activities was increased in successive sessions. Narrowband noise of a frequency same as that of tinnitus was presented at 10 dBSL of tinnitus for 30 minutes simultaneously in the ear with tinnitus. Result: The perception of tinnitus was no longer present in 4 subjects while in remaining subjects it reduced to an intensity that its perception no longer troubled them without causing residual facilitation. In all subjects, the intensity of tinnitus decreased by an extent of 45 dB at an average. However, in few subjects, the intensity of tinnitus also decreased by more than 45 dB. The approach resulted in statistically significant reductions in Tinnitus Functional Index and Tinnitus Handicap Inventory scores. The results correlate with pre and post treatment score of Tinnitus Handicap Inventory that dropped from 90% to 0%. Discussion: Brain mapping(qEEG) Studies report that there is multiple parallel overlapping of neural subnetworks in the non-auditory areas of the brain which exhibits abnormal, constant and spontaneous neural activity involved in the perception of tinnitus with each subnetwork and area reflecting a specific aspect of tinnitus percept. The paper pen task and directive counseling are designed and delivered respectively in a way that is assumed to induce normal, rhythmically constant and premeditated neural activity and mask the abnormal, constant and spontaneous neural activity in the above-mentioned subnetworks and the specific non-auditory area. Counseling was focused on breaking the vicious cycle causing and maintaining the presence of tinnitus. Diverting auditory attention alone is insufficient to reduce the perception of tinnitus. Conscious awareness of tinnitus can be suppressed when individuals engage in cognitively demanding tasks of non-auditory nature as the paper pen task used in the present study. To carry out this task selective, divided, sustained, simultaneous and split attention act cumulatively. Bimanual paper pen task represents a top-down activity which underlies brain’s ability to selectively attend to the bimanual written activity as a relevant stimulus and to ignore tinnitus that is the irrelevant stimuli in the present study. Conclusion: The study suggests that this novel treatment approach is cost effective, time saving and efficient to vanish the tinnitus or to reduce the intensity of tinnitus to a negligible level and thereby eliminating the negative reactions towards tinnitus.Keywords: multi-modality brain stimulation, neural subnetworks, non-auditory areas, paper-pen task, top-down activity
Procedia PDF Downloads 1473220 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders
Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga
Abstract:
In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory
Procedia PDF Downloads 6073219 Low Power Glitch Free Dual Output Coarse Digitally Controlled Delay Lines
Authors: K. Shaji Mon, P. R. John Sreenidhi
Abstract:
In deep-submicrometer CMOS processes, time-domain resolution of a digital signal is becoming higher than voltage resolution of analog signals. This claim is nowadays pushing toward a new circuit design paradigm in which the traditional analog signal processing is expected to be progressively substituted by the processing of times in the digital domain. Within this novel paradigm, digitally controlled delay lines (DCDL) should play the role of digital-to-analog converters in traditional, analog-intensive, circuits. Digital delay locked loops are highly prevalent in integrated systems.The proposed paper addresses the glitches present in delay circuits along with area,power dissipation and signal integrity.The digitally controlled delay lines(DCDL) under study have been designed in a 90 nm CMOS technology 6 layer metal Copper Strained SiGe Low K Dielectric. Simulation and synthesis results show that the novel circuits exhibit no glitches for dual output coarse DCDL with less power dissipation and consumes less area compared to the glitch free NAND based DCDL.Keywords: glitch free, NAND-based DCDL, CMOS, deep-submicrometer
Procedia PDF Downloads 2453218 Dynamic Distribution Calibration for Improved Few-Shot Image Classification
Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran
Abstract:
Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.Keywords: deep learning, computer vision, image classification, few-shot learning, threshold
Procedia PDF Downloads 673217 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors
Authors: Katawut Kaewbanjong
Abstract:
We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.Keywords: prediction model, statistical analysis, software project, user satisfaction factor
Procedia PDF Downloads 1243216 Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore
Authors: Almas Rajguru, Archana Kamath, Rachana Singh
Abstract:
The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area.Keywords: sequence stratigraphy, depositional facies, diagenesis petrography, early Oligocene, Mumbai offshore
Procedia PDF Downloads 773215 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization
Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed
Abstract:
Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction
Procedia PDF Downloads 123214 Chaotic Electronic System with Lambda Diode
Authors: George Mahalu
Abstract:
The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.Keywords: chaos, lambda diode, strange attractor, nonlinear system
Procedia PDF Downloads 863213 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3693212 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models
Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche
Abstract:
It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells
Procedia PDF Downloads 1203211 Interactive Effects of Challenge-Hindrance Stressors and Core Self-Evaluations on In-Role and Extra-Role Performance
Authors: Khansa Hayat
Abstract:
Organizational stress is one of the vital phenomena which is having its roots deep down in has deep roots in management, psychology, and organizational behavior research. In the meanwhile, keeping its focus on the positive strength of humans rather than the traditional negativity oriented research, positive psychology has emerged as a separate branch of organizational behavior. The current study investigates the interactive effects of Challenge and hindrance stressors and core Self Evaluations (CSE’s) of the individual on job performances including the in-role performance and extra role performances. The study also aims to investigate the supporting/buffering role of the human dispositions (i.e., self esteem, self efficacy, locus of control and emotional stability). The results show that Challenge stressors have a significant positive effect on in role performance and extra role performance of the individual. The findings of the study indicate that Core Self evaluations strengthen the relationship between challenge stressors and in role performance of the individual. In case of Hindrance Stressors the Core self Evaluations lessen the negative impact of Hindrance stressors and they let the individual perform at a better and normal position even when the Hindrance stressors are high. The relationship and implication of conservation of resource theory are also discussed. The limitations, future research directions and implications of the study are also discussed.Keywords: challenge-hindrance stressors, core self evaluations, in-role performance, extra-role performance
Procedia PDF Downloads 2773210 Analysis of the Omnichannel Delivery Network with Application to Last Mile Delivery
Authors: Colette Malyack, Pius Egbelu
Abstract:
Business-to-Customer (B2C) delivery options have improved to meet increased demand in recent years. The change in end users has forced logistics networks to focus on customer service and sentiment that would have previously been the priority of the company or organization of origin. This has led to increased pressure on logistics companies to extend traditional B2B networks into a B2C solution while accommodating additional costs, roadblocks, and customer sentiment; the result has been the creation of the omnichannel delivery network encompassing a number of traditional and modern methods of package delivery. In this paper the many solutions within the omnichannel delivery network are defined and discussed. It can be seen through this analysis that the omnichannel delivery network can be applied to reduce the complexity of package delivery and provide customers with more options. Applied correctly the result is a reduction in cost to the logistics company over time, even with an initial increase in cost to obtain the technology.Keywords: network planning, last mile delivery, omnichannel delivery network, omnichannel logistics
Procedia PDF Downloads 1503209 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks
Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu
Abstract:
The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding
Procedia PDF Downloads 913208 CoP-Networks: Virtual Spaces for New Faculty’s Professional Development in the 21st Higher Education
Authors: Eman AbuKhousa, Marwan Z. Bataineh
Abstract:
The 21st century higher education and globalization challenge new faculty members to build effective professional networks and partnership with industry in order to accelerate their growth and success. This creates the need for community of practice (CoP)-oriented development approaches that focus on cognitive apprenticeship while considering individual predisposition and future career needs. This work adopts data mining, clustering analysis, and social networking technologies to present the CoP-Network as a virtual space that connects together similar career-aspiration individuals who are socially influenced to join and engage in a process for domain-related knowledge and practice acquisitions. The CoP-Network model can be integrated into higher education to extend traditional graduate and professional development programs.Keywords: clustering analysis, community of practice, data mining, higher education, new faculty challenges, social network, social influence, professional development
Procedia PDF Downloads 1833207 Product Modularity, Collaboration and the Impact on Innovation Performance in Intra-Organizational R&D Networks
Authors: Daniel Martinez, Tim de Leeuw, Stefan Haefliger
Abstract:
The challenges of managing a large and geographically dispersed R&D organization have been further increasing during the past years, concentrating on the leverage of a geo-graphically dispersed body of knowledge in an efficient and effective manner. In order to reduce complexity and improve performance, firms introduce product modularity as one key element for global R&D network teams to develop their products and projects in collaboration. However, empirical studies on the effects of product modularity on innovation performance are really scant. Furthermore, some researchers have suggested that product modularity promotes innovation performance, while others argue that it inhibits innovation performance. This research fills this gap by investigating the impact of product modularity on various dimensions of innovation performance, i.e. effectiveness and efficiency. By constructing the theoretical framework, this study suggests that that there is an inverted U-shaped relationship between product modularity and innovation performance. Moreover, this research work suggests that the optimum of innovation performance efficiency will be at a higher level than innovation performance effectiveness at a given product modularity level.Keywords: modularity, innovation performance, networks, R&D, collaboration
Procedia PDF Downloads 5203206 Performance Improvement of Long-Reach Optical Access Systems Using Hybrid Optical Amplifiers
Authors: Shreyas Srinivas Rangan, Jurgis Porins
Abstract:
The internet traffic has increased exponentially due to the high demand for data rates by the users, and the constantly increasing metro networks and access networks are focused on improving the maximum transmit distance of the long-reach optical networks. One of the common methods to improve the maximum transmit distance of the long-reach optical networks at the component level is to use broadband optical amplifiers. The Erbium Doped Fiber Amplifier (EDFA) provides high amplification with low noise figure but due to the characteristics of EDFA, its operation is limited to C-band and L-band. In contrast, the Raman amplifier exhibits a wide amplification spectrum, and negative noise figure values can be achieved. To obtain such results, high powered pumping sources are required. Operating Raman amplifiers with such high-powered optical sources may cause fire hazards and it may damage the optical system. In this paper, we implement a hybrid optical amplifier configuration. EDFA and Raman amplifiers are used in this hybrid setup to combine the advantages of both EDFA and Raman amplifiers to improve the reach of the system. Using this setup, we analyze the maximum transmit distance of the network by obtaining a correlation diagram between the length of the single-mode fiber (SMF) and the Bit Error Rate (BER). This hybrid amplifier configuration is implemented in a Wavelength Division Multiplexing (WDM) system with a BER of 10⁻⁹ by using NRZ modulation format, and the gain uniformity noise ratio (signal-to-noise ratio (SNR)), the efficiency of the pumping source, and the optical signal gain efficiency of the amplifier are studied experimentally in a mathematical modelling environment. Numerical simulations were implemented in RSoft OptSim simulation software based on the nonlinear Schrödinger equation using the Split-Step method, the Fourier transform, and the Monte Carlo method for estimating BER.Keywords: Raman amplifier, erbium doped fibre amplifier, bit error rate, hybrid optical amplifiers
Procedia PDF Downloads 703205 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 1943204 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)
Procedia PDF Downloads 441