Search results for: partical image velocimetry
557 Application of Remote Sensing for Monitoring the Impact of Lapindo Mud Sedimentation for Mangrove Ecosystem, Case Study in Sidoarjo, East Java
Authors: Akbar Cahyadhi Pratama Putra, Tantri Utami Widhaningtyas, M. Randy Aswin
Abstract:
Indonesia as an archipelagic nation have very long coastline which have large potential marine resources, one of that is the mangrove ecosystems. Lapindo mudflow disaster in Sidoarjo, East Java requires mudflow flowed into the sea through the river Brantas and Porong. Mud material that transported by river flow is feared dangerous because they contain harmful substances such as heavy metals. This study aims to map the mangrove ecosystem seen from its density and knowing how big the impact of a disaster on the Lapindo mud to mangrove ecosystem and accompanied by efforts to address the mangrove ecosystem that maintained continuity. Mapping coastal mangrove conditions of Sidoarjo was done using remote sensing products that Landsat 7 ETM + images with dry months of recording time in 2002, 2006, 2009, and 2014. The density of mangrove detected using NDVI that uses the band 3 that is the red channel and band 4 that is near IR channel. Image processing was used to produce NDVI using ENVI 5.1 software. NDVI results were used for the detection of mangrove density is 0-1. The development of mangrove ecosystems of both area and density from year to year experienced has a significant increase. Mangrove ecosystems growths are affected by material deposition area of Lapindo mud on Porong and Brantas river estuary, where the silt is growing medium suitable mangrove ecosystem and increasingly growing. Increasing the density caused support by public awareness to prevent heavy metals in the material so that the Lapindo mud mangrove breeding done around the farm.Keywords: archipelagic nation, mangrove, Lapindo mudflow disaster, NDVI
Procedia PDF Downloads 438556 The Image of Victim and Criminal in Love Crimes on Social Media in Egypt: Facebook Discourse Analysis
Authors: Sherehan Hamdalla
Abstract:
Egypt has experienced a series of terrifying love crimes in the last few months. This ‘trend’ of love crimes started with a young man caught on video slaughtering his ex-girlfriend in the street in the city of El Mansoura. The crime shocked all Egyptian citizens at all levels; unfortunately, not less than three similar crimes took place in other different Egyptian cities with the same killing trigger. The characteristics and easy access and reach of social media consider the reason why it is one of the most crucial online communication channels; users utilize social media platforms for sharing and exchanging ideas, news, and many other activities; they can freely share posts that reflect their mindset or personal views regarding any issues, these posts are going viral in all social media account by reposting or numbers of shares for these posts to support the content included, or even to attack. The repetition of sharing certain posts could mobilize other supporters with the same point of view, especially when that crowd’s online participation is confronting a public opinion case’s consequences. The death of that young woman was followed by similar crimes in other cities, such as El Sharkia and Port Said. These love crimes provoked a massive wave of contention among all social classes in Egypt. Strangely, some were supporting the criminal and defending his side for several reasons, which the study will uncover. Facebook, the most popular social media platform for Egyptians, reflects the debate between supporters of the victim and supporters of the criminal. Facebook pages were created specifically to disseminate certain viewpoints online, for example, asking for the maximum penalty to be given to criminals. These pages aimed to mobilize the maximum number of supporters and to affect the outcome of the trials.Keywords: love crimes, victim, criminal, social media
Procedia PDF Downloads 76555 Final Account Closing in Construction Project: The Use of Supply Chain Management to Reduce the Delays
Authors: Zarabizan Zakaria, Syuhaida Ismail, Aminah Md. Yusof
Abstract:
Project management process starts from the planning stage up to the stage of completion (handover of buildings, preparation of the final accounts and the closing balance). This process is not easy to implement efficiently and effectively. The issue of delays in construction is a major problem for construction projects. These delays have been blamed mainly on inefficient traditional construction practices that continue to dominate the current industry. This is due to several factors, such as environments of construction technology, sophisticated design and customer demands that are constantly changing and influencing, either directly or indirectly, the practice of management. Among the identified influences are physical environment, social environment, information environment, political and moral atmosphere. Therefore, this paper is emerged to determine the problem and issues in the final account closing in construction projects, and it establishes the need to embrace Supply Chain Management (SCM) and then elucidates the need and strategies for the development of a delay reduction framework. At the same time, this paper provides effective measures to avoid or at least reduce the delay to the optimum level. Allowing problems in the closure declaration to occur without proper monitoring and control can leave negative impact on the cost and time of delivery to the end user. Besides, it can also affect the reputation or image of the agency/department that manages the implementation of a contract and consequently may reduce customer's trust towards the agencies/departments. It is anticipated that the findings reported in this paper could address root delay contributors and apply SCM tools for their mitigation for the better development of construction project.Keywords: final account closing, construction project, construction delay, supply chain management
Procedia PDF Downloads 366554 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System
Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu
Abstract:
Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance
Procedia PDF Downloads 477553 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 77552 Effect of Underwater Antiquities as a Hidden Competitive Advantage of Hotels on Their Financial Performance: An Exploratory Study
Authors: Iman Shawky, Mohamed Elsayed
Abstract:
Every hotel works in the hospitality market tends to have its own merit and character in its products marketing in order to maintain both its brand's identity and image among guests. According to the growth of global competition in the hospitality industry; the concept of competitive advantage is becoming increasingly important in hotels' marketing world as it examines reasons for outweighing hotels in their dimensions of strategic and marketing plans. In fact, Egypt is the land of appeared and submerged secrets as a result of its ancient civilization ongoing explorations. Although underwater antiquities represent ambiguous treasures, they have auspicious future in it, particularly in Alexandria. The study aims at examining to what extent underwater antiquities represent a competitive advantage of four and five-star hotels in Alexandria. For achieving this aim, an exploratory study conducted by currying out the investigation and comparison of the closest and most popular landmarks mentioned on both hotels' official websites and on common used reservations' websites. In addition to that, two different questionnaire forms designed; one for both revenue and sales and marketing hotels' managers while the other for their guests. The results indicate that both official hotels' websites and the most common used reservations' websites totally ignore mentioning underwater antiquities as attractive landmarks surrounding Alexandria hotels. Furthermore, most managers expect that underwater antiquities can furnish distinguished competitive advantage to their hotels. Also, they can help exceeding guests' expectations during their accommodation as long as they included on both official hotels' and reservations' websites as the most surrounding famous landmarks. Moreover, most managers foresee that high awareness of underwater antiquities can enhance the guests' accommodation frequencies and improve the financial performance of their hotels.Keywords: competitive advantage, financial performance, hotels' websites, underwater antiquities
Procedia PDF Downloads 166551 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor
Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh
Abstract:
Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging
Procedia PDF Downloads 260550 Drape Simulation by Commercial Software and Subjective Assessment of Virtual Drape
Authors: Evrim Buyukaslan, Simona Jevsnik, Fatma Kalaoglu
Abstract:
Simulation of fabrics is more difficult than any other simulation due to complex mechanics of fabrics. Most of the virtual garment simulation software use mass-spring model and incorporate fabric mechanics into simulation models. The accuracy and fidelity of these virtual garment simulation software is a question mark. Drape is a subjective phenomenon and evaluation of drape has been studied since 1950’s. On the other hand, fabric and garment simulation is relatively new. Understanding drape perception of subjects when looking at fabric simulations is critical as virtual try-on becomes more of an issue by enhanced online apparel sales. Projected future of online apparel retailing is that users may view their avatars and try-on the garment on their avatars in the virtual environment. It is a well-known fact that users will not be eager to accept this innovative technology unless it is realistic enough. Therefore, it is essential to understand what users see when they are displaying fabrics in a virtual environment. Are they able to distinguish the differences between various fabrics in virtual environment? The purpose of this study is to investigate human perception when looking at a virtual fabric and determine the most visually noticeable drape parameter. To this end, five different fabrics are mechanically tested, and their drape simulations are generated by commercial garment simulation software (Optitex®). The simulation images are processed by an image analysis software to calculate drape parameters namely; drape coefficient, node severity, and peak angles. A questionnaire is developed to evaluate drape properties subjectively in a virtual environment. Drape simulation images are shown to 27 subjects and asked to rank the samples according to their questioned drape property. The answers are compared to the calculated drape parameters. The results show that subjects are quite sensitive to drape coefficient changes while they are not very sensitive to changes in node dimensions and node distributions.Keywords: drape simulation, drape evaluation, fabric mechanics, virtual fabric
Procedia PDF Downloads 338549 Synthesis, Characterization of Organic and Inorganic Zn-Al Layered Double Hydroxides and Application for the Uptake of Methyl Orange from Aqueous Solution
Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohammed Abdennouri, Noureddine Barka
Abstract:
Zn-Al layered double hydroxides containing carbonate, nitrate and dodecylsulfate as the interlamellar anions have been prepared through a coprecipitation method. The resulting compounds were characterized using XRD, ICP, FTIR, TGA/DTA, TEM/EDX and pHPZC analysis. The XRD patterns revealed that carbonate and nitrate could be intercalated into the interlayer structure with basal spacing of 22.74 and 26.56 Å respectively. Bilayer intercalation of dodecylsulfate molecules was achieved in Zn-Al LDH with a basal spacing of 37.86 Å. The TEM observation indicated that the materials synthesized via coprecipitation present nanoscale LDH particle. The average particle size of Zn-AlCO3 is 150 to 200 nm. Irregular circular to hexagonal shaped particles with 30 to 40 nm in diameter was observed in the Zn-AlNO3 morphology. TEM image of Zn-AlDs display nanostructured sheet like particles with size distribution between 5 to 10 nm. The sorption characteristics and mechanisms of methyl orange dye on organic LDH were investigated and were subsequently compared with that on the inorganic Zn-Al layered double hydroxides. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. The adsorption behavior onto inorganic LDHs was obviously influenced by initial pH. However, the adsorption capacity of organic LDH was influenced indistinctively by initial pH and the removal percentage of MO was practically constant at various value of pH. As the MO concentration increased, the curve of adsorption capacity became L-type onto LDHs. The adsorption behavior for Zn-AlDs was proposed by the dissolution of dye in a hydrophobic interlayer region (i.e., adsolubilization). The results suggested that Zn-AlDs could be applied as a potential adsorbent for MO removal in a wide range of pH.Keywords: adsorption, dodecylsulfate, kinetics, layered double hydroxides, methyl orange removal
Procedia PDF Downloads 293548 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 93547 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images
Authors: Jingjue Bao, Ye Li, Yujie Qi
Abstract:
The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image
Procedia PDF Downloads 81546 Comparative Ethnography and Urban Health: A Multisite Study on Obesogenic Cities
Authors: Carlos Rios Llamas
Abstract:
Urban health challenges, like the obesity epidemic, need to be studied from a dialogue between different disciplines and geographical conditions. Public health uses quantitative analysis and local samples, but qualitative data and multisite analysis would help to better understand how obesity has become a health problem. In the last decades, obesity rates have increased in most of the countries, especially in the Western World. Concerned about the problem, the American Medical Association has recently voted obesity as a disease. Suddenly, a ‘war on obesity’ attracted scientists from different disciplines to explore various ways to control and even reverse the trends. Medical sciences have taken the advance with quantitative methodologies focused on individual behaviors. Only a few scientist have extended their studies to the environment where obesity is produced as social risk, and less of them have taken into consideration the political and cultural aspects. This paper presents a multisite ethnography in South Bronx, USA, La Courneuve, France, and Lomas del Sur, Mexico, where obesity rates are as relevant as urban degradation. The comparative ethnography offers a possibility to unveil the mechanisms producing health risks from the urban tissue. The analysis considers three main categories: 1) built environment and access to food and physical activity, 2) biocultural construction of the healthy body, 3) urban inequalities related to health and body size. Major findings from a comparative ethnography on obesogenic environments, refer to the anthropological values related to food and body image, as well as the multidimensional oppression expressed in fat people who live in stigmatized urban zones. At the end, obesity, like many other diseases, is the result of political and cultural constructions structured in urbanization processes.Keywords: comparative ethnography, urban health, obesogenic cities, biopolitics
Procedia PDF Downloads 246545 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy
Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa
Abstract:
Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator
Procedia PDF Downloads 192544 Remote Sensing and GIS-Based Environmental Monitoring by Extracting Land Surface Temperature of Abbottabad, Pakistan
Authors: Malik Abid Hussain Khokhar, Muhammad Adnan Tahir, Hisham Bin Hafeez Awan
Abstract:
Continuous environmental determinism and climatic change in the entire globe due to increasing land surface temperature (LST) has become a vital phenomenon nowadays. LST is accelerating because of increasing greenhouse gases in the environment which results of melting down ice caps, ice sheets and glaciers. It has not only worse effects on vegetation and water bodies of the region but has also severe impacts on monsoon areas in the form of capricious rainfall and monsoon failure extensive precipitation. Environment can be monitored with the help of various geographic information systems (GIS) based algorithms i.e. SC (Single), DA (Dual Angle), Mao, Sobrino and SW (Split Window). Estimation of LST is very much possible from digital image processing of satellite imagery. This paper will encompass extraction of LST of Abbottabad using SW technique of GIS and Remote Sensing over last ten years by means of Landsat 7 ETM+ (Environmental Thematic Mapper) and Landsat 8 vide their Thermal Infrared (TIR Sensor) and Optical Land Imager (OLI sensor less Landsat 7 ETM+) having 100 m TIR resolution and 30 m Spectral Resolutions. These sensors have two TIR bands each; their emissivity and spectral radiance will be used as input statistics in SW algorithm for LST extraction. Emissivity will be derived from Normalized Difference Vegetation Index (NDVI) threshold methods using 2-5 bands of OLI with the help of e-cognition software, and spectral radiance will be extracted TIR Bands (Band 10-11 and Band 6 of Landsat 7 ETM+). Accuracy of results will be evaluated by weather data as well. The successive research will have a significant role for all tires of governing bodies related to climate change departments.Keywords: environment, Landsat 8, SW Algorithm, TIR
Procedia PDF Downloads 355543 3D Human Face Reconstruction in Unstable Conditions
Authors: Xiaoyuan Suo
Abstract:
3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition
Procedia PDF Downloads 150542 A Review of Accuracy Optical Surface Imaging Systems for Setup Verification During Breast Radiotherapy Treatment
Authors: Auwal Abubakar, Ahmed Ahidjo, Shazril Imran Shaukat, Noor Khairiah A. Karim, Gokula Kumar Appalanaido, Hafiz Mohd Zin
Abstract:
Background: The use of optical surface imaging systems (OSISs) is increasingly becoming popular in radiotherapy practice, especially during breast cancer treatment. This study reviews the accuracy of the available commercial OSISs for breast radiotherapy. Method: A literature search was conducted and identified the available commercial OSISs from different manufacturers that are integrated into radiotherapy practice for setup verification during breast radiotherapy. Studies that evaluated the accuracy of the OSISs during breast radiotherapy using cone beam computed tomography (CBCT) as a reference were retrieved and analyzed. The physics and working principles of the systems from each manufacturer were discussed together with their respective strength and limitations. Results: A total of five (5) different commercially available OSISs from four (4) manufacturers were identified, each with a different working principle. Six (6) studies were found to evaluate the accuracy of the systems during breast radiotherapy in conjunction with CBCT as a goal standard. The studies revealed that the accuracy of the system in terms of mean difference ranges from 0.1 to 2.1 mm. The correlation between CBCT and OSIS ranges between 0.4 and 0.9. The limit of agreements obtained using bland Altman analysis in the studies was also within an acceptable range. Conclusion: The OSISs have an acceptable level of accuracy and could be used safely during breast radiotherapy. The systems are non-invasive, ionizing radiation-free, and provide real-time imaging of the target surface at no extra concomitant imaging dose. However, the system should only be used to complement rather than replace x-ray-based image guidance techniques such as CBCT.Keywords: optical surface imaging system, Cone beam computed tomography (CBCT), surface guided radiotherapy, Breast radiotherapy
Procedia PDF Downloads 66541 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data
Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao
Abstract:
Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing
Procedia PDF Downloads 440540 Fabrication and Characterization Analysis of La-Sr-Co-Fe-O Perovskite Hollow Fiber Catalyst for Oxygen Removal in Landfill Gas
Authors: Seong Woon Lee, Soo Min Lim, Sung Sik Jeong, Jung Hoon Park
Abstract:
The atmospheric concentration of greenhouse gas (GHG, Green House Gas) is increasing continuously as a result of the combustion of fossil fuels and industrial development. In response to this trend, many researches have been conducted on the reduction of GHG. Landfill gas (LFG, Land Fill Gas) is one of largest sources of GHG emissions containing the methane (CH₄) as a major constituent and can be considered renewable energy sources as well. In order to use LFG by connecting to the city pipe network, it required a process for removing impurities. In particular, oxygen must be removed because it can cause corrosion of pipes and engines. In this study, methane oxidation was used to eliminate oxygen from LFG and perovskite-type ceramic catalysts of La-Sr-Co-Fe-O composition was selected as a catalyst. Hollow fiber catalysts (HFC, Hollow Fiber Catalysts) have attracted attention as a new concept alternative because they have high specific surface area and mechanical strength compared to other types of catalysts. HFC was prepared by a phase-inversion/sintering technique using commercial La-Sr-Co-Fe-O powder. In order to measure the catalysts' activity, simulated LFG was used for feed gas and complete oxidation reaction of methane was confirmed. Pore structure of the HFC was confirmed by SEM image and perovskite structure of single phase was analyzed by XRD. In addition, TPR analysis was performed to verify the oxygen adsorption mechanism of the HFC. Acknowledgement—The project is supported by the ‘Global Top Environment R&D Program’ in the ‘R&D Center for reduction of Non-CO₂ Greenhouse gases’ (Development and demonstration of oxygen removal technology of landfill gas) funded by Korea Ministry of Environment (ME).Keywords: complete oxidation, greenhouse gas, hollow fiber catalyst, land fill gas, oxygen removal, perovskite catalyst
Procedia PDF Downloads 117539 The Impact of the Core Competencies in Business Management to the Existence and Progress of Traditional Foods Business with the Case of Study: Gudeg Sagan Yogyakarta
Authors: Lutfi AuliaRahman, Hari Rizki Ananda
Abstract:
The traditional food is a typical food of a certain region that has a taste of its own unique and typically consumed by a society in certain areas, one of which is Gudeg, a regional specialties traditional food of Yogyakarta and Central Java which is made of young jackfruit cooked in coconut milk, edible with rice and served with thick coconut milk (areh), chicken, eggs, tofu and sambal goreng krecek. However, lately, the image of traditional food has declined among people, so with gudeg, which today's society, especially among young people, tend to prefer modern types of food such as fast food and some other foods that are popular. Moreover, traditional food usually only preferred by consumers of local communities and lack of demand by consumers from different areas for different tastes. Thus, the traditional food producers increasingly marginalized and their consumers are on the wane. This study aimed to evaluate the management used by producers of traditional food with a case study of Gudeg Sagan which located in the city of Yogyakarta, with the ability of their management in creating core competencies, which includes the competence of cost, competence of flexibility, competence of quality, competence of time, and value-based competence. And then, in addition to surviving and continuing to exist with the existing external environment, Gudeg Sagan can increase the number of consumers and also reach a broader segment of teenagers and adults as well as consumers from different areas. And finally, in this paper will be found positive impact on the creation of the core competencies of the existence and progress of the traditional food business based on case study of Gudeg Sagan.Keywords: Gudeg Sagan, traditional food, core competencies, existence
Procedia PDF Downloads 251538 Problem Solving in Chilean Higher Education: Figurations Prior in Interpretations of Cartesian Graphs
Authors: Verónica Díaz
Abstract:
A Cartesian graph, as a mathematical object, becomes a tool for configuration of change. Its best comprehension is done through everyday life problem-solving associated with its representation. Despite this, the current educational framework favors general graphs, without consideration of their argumentation. Students are required to find the mathematical function without associating it to the development of graphical language. This research describes the use made by students of configurations made prior to Cartesian graphs with regards to an everyday life problem related to a time and distance variation phenomenon. The theoretical framework describes the function conditions of study and their modeling. This is a qualitative, descriptive study involving six undergraduate case studies that were carried out during the first term in 2016 at University of Los Lagos. The research problem concerned the graphic modeling of a real person’s movement phenomenon, and two levels of analysis were identified. The first level aims to identify local and global graph interpretations; a second level describes the iconicity and referentiality degree of an image. According to the results, students were able to draw no figures before the Cartesian graph, highlighting the need for students to represent the context and the movement of which causes the phenomenon change. From this, they managed Cartesian graphs representing changes in position, therefore, achieved an overall view of the graph. However, the local view only indicates specific events in the problem situation, using graphic and verbal expressions to represent movement. This view does not enable us to identify what happens on the graph when the movement characteristics change based on possible paths in the person’s walking speed.Keywords: cartesian graphs, higher education, movement modeling, problem solving
Procedia PDF Downloads 218537 Human and Environment Coevolution: The Chalcolithic Tell Settlements from Muntenia and Dobrogea, South-Eastern Romania
Authors: Constantin Haita
Abstract:
The chalcolithic tell settlements from south-eastern Romania, attributed to Gumelnița culture, are characterised by a well-defined surface, marked often by delimitation structures, a succession of many layers of construction, destruction, and rebuilding, and a well-structured area of occupation: built spaces, passage areas, waste zones. Settlements of tell type are located in the river valleys –on erosion remnants, alluvial bars or small islands, at the border of the valleys– on edges or prominences of Pleistocene terraces, lower Holocene terraces, and banks of lakes. This study integrates data on the geographical position, the morphological background, and the general stratigraphy of these important settlements. The correlation of the spatial distribution with the geomorphological units of each area of evolution creates an image of the natural landscape in which they occurred. The sedimentological researches achieved in the floodplain area of Balta Ialomiței showed important changes in the alluvial activity of Danube, after the Chalcolithic period (ca. 6500 - 6000 BP), to Iron Age and Middle Ages. The micromorphological analysis, consisting in thin section interpretation, at the microscopic scale, of sediments and soils in an undisturbed state, allowed the interpretation of the identified sedimentary facies, in terms of mode of formation and anthropic activities. Our studied cases reflect some distinct situations, correlating either with the geomorphological background or with the vertical development, the presence of delimiting structures and the internal organization. The characteristics of tells from this area bring significant information about the human habitation of Lower Danube in Prehistory.Keywords: chalcolithic, micromorphology, Romania, sedimentology, tell settlements
Procedia PDF Downloads 149536 Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features
Authors: Bo Wang
Abstract:
The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically.Keywords: multi-source image geometric process, high precision geometric positioning, quotient space of multi-geometric features, optimized weight selection
Procedia PDF Downloads 284535 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar
Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi
Abstract:
Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization
Procedia PDF Downloads 148534 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 88533 Land Cover Change Analysis Using Remote Sensing
Authors: Tahir Ali Akbar, Hirra Jabbar
Abstract:
Land cover change analysis plays a significant role in understanding the trends of urban sprawl and land use transformation due to anthropogenic activities. In this study, the spatio-temporal dynamics of major land covers were analyzed in the last twenty years (1988-2016) for District Lahore located in the Punjab Province of Pakistan. The Landsat satellite imageries were downloaded from USGS Global Visualization Viewer of Earth Resources Observation and Science Center located in Sioux Falls, South Dakota USA. The imageries included: (i) Landsat TM-5 for 1988 and 2001; and (ii) Landsat-8 OLI for 2016. The raw digital numbers of Landsat-5 images were converted into spectral radiance and then planetary reflectance. The digital numbers of Landsat-8 image were directly converted into planetary reflectance. The normalized difference vegetation index (NDVI) was used to classify the processed images into six major classes of water, buit-up, barren land, shrub and grassland, sparse vegetation and dense vegetation. The NDVI output results were improved by visual interpretation using high-resolution satellite imageries. The results indicated that the built-up areas were increased to 21% in 2016 from 10% in 1988. The decrease in % areas was found in case of water, barren land and shrub & grassland. There were improvements in percentage of areas for the vegetation. The increasing trend of urban sprawl for Lahore requires implementation of GIS based spatial planning, monitoring and management system for its sustainable development.Keywords: land cover changes, NDVI, remote sensing, urban sprawl
Procedia PDF Downloads 318532 Highly Oriented and Conducting SNO2 Doped Al and SB Layers Grown by Automatic Spray Pyrolysis Method
Authors: A.Boularouk, F. Chouikh, M. Lamri, H. Moualkia, Y. Bouznit
Abstract:
The principal aim of this study is to considerably reduce the resistivity of the SnO2 thin layers. In this order, we have doped tin oxide with aluminum and antimony incorporation with different atomic percentages (0 and 4%). All the pure and doped SnO2 films were grown by simple, flexible and cost-effective Automatic Spray Pyrolysis Method (ASPM) on glass substrates at a temperature of 350 °C. The microstructural, optical, morphological and electrical properties of the films have been studied. The XRD results demonstrate that all films have polycrystalline nature with a tetragonal rutile structure and exhibit the (200) preferential orientation. It has been observed that all the dopants are soluble in the SnO2 matrix without forming secondary phases. However, dopant introduction does not modify the film growth orientation. The crystallite size of the pure SnO2 film is about 36 nm. The films are highly transparent in the visible region with an average transmittance reaching up to 80% and it slightly reduces with increasing doping concentration (Al and Sb). The optical band gap value was evaluated between 3.60 eV and 3.75 eV as a function of doping. The SEM image reveals that all films are nanostructured, densely continuous, with good adhesion to the substrate. We note again that the surface morphology change with the type and concentration dopant. The minimum resistivity is 0.689*10-4, which is observed for SnO2 film doped 4% Al. This film shows better properties and is considered the best among all films. Finally, we concluded that the physical properties of the pure and doped SnO2 films grown on a glass substrate by ASPM strongly depend on the type and concentration dopant (Al and Sb) and have highly desirable optical and electrical properties and are promising materials for several applications.Keywords: tin oxide, automatic spray, Al and Sb doped, transmittance, MEB, XRD and UV-VIS
Procedia PDF Downloads 68531 The Association of Smoking and Body Mass Index with Acne Vulgaris in Adolescents and Young Adults
Authors: Almutazballlah Qablan, Jihan M. Muhaidat, Bana Abu Rajab
Abstract:
Background: Acne vulgaris is the most common skin condition that general practitioners and dermatologists encounter. It represents a chronic inflammatory disease affecting the pilosebaceous unit. Although acne vulgaris is not a life-threatening condition, it has a considerable psychological impact on the affected person. Acne patients have poor body image, low self-esteem, social isolation, and restricted activities. As part of the emotional impact, increased levels of anxiety, anger, depression, and frustration have also been observed in acne patients. (1) In this study, we want to assess the association between two modifiable risk factors; BMI and smoking, regarding acne vulgaris. Methods: A case-control study was conducted at King Abdullah University Hospital in Irbid, north Jordan in 2019/2020. A total number of 163 Acne cases were collected and interviewed by the author; on the other hand, there were 162 control cases. Anthropometric measures for Acne patients and control individuals were taken, and BMI was calculated. Both groups were asked about smoking habits. Data on subjects between 14 and 33 years of age were extracted. The characteristics of people who reported acne were compared with those with no acne using univariate and multivariate analysis. The Statistical Package for Social Sciences (SPSS) was relied on to analyze the collected data. The crosstabs methods (chi-square) and odd ratios were relied on to test the study hypothesis. Results: Cigarette smoking was highly associated with no-acne, with an odds ratio of 0.4 (95% CI: 0.2–0.9), P-value = 0.018. BMI and waterpipe smoking were not significantly associated with acne in the multivariate analysis. Conclusion: Cigarette smoking was found to be protective from Acne. No significant relation between BMI nor waterpipe smoking and the development of Acne Vulgaris.Keywords: acne, BMI, smoking, case-control
Procedia PDF Downloads 98530 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity
Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink
Abstract:
The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction
Procedia PDF Downloads 313529 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics
Procedia PDF Downloads 109528 The Influence of Emotion on Numerical Estimation: A Drone Operators’ Context
Authors: Ludovic Fabre, Paola Melani, Patrick Lemaire
Abstract:
The goal of this study was to test whether and how emotions influence drone operators in estimation skills. The empirical study was run in the context of numerical estimation. Participants saw a two-digit number together with a collection of cars. They had to indicate whether the stimuli collection was larger or smaller than the number. The two-digit numbers ranged from 12 to 27, and collections included 3-36 cars. The presentation of the collections was dynamic (each car moved 30 deg. per second on the right). Half the collections were smaller collections (including fewer than 20 cars), and the other collections were larger collections (i.e., more than 20 cars). Splits between the number of cars in a collection and the two-digit number were either small (± 1 or 2 units; e.g., the collection included 17 cars and the two-digit number was 19) or larger (± 8 or 9 units; e.g., 17 cars and '9'). Half the collections included more items (and half fewer items) than the number indicated by the two-digit number. Before and after each trial, participants saw an image inducing negative emotions (e.g., mutilations) or neutral emotions (e.g., candle) selected from International Affective Picture System (IAPS). At the end of each trial, participants had to say if the second picture was the same as or different from the first. Results showed different effects of emotions on RTs and percent errors. Participants’ performance was modulated by emotions. They were slower on negative trials compared to the neutral trials, especially on the most difficult items. They errored more on small-split than on large-split problems. Moreover, participants highly overestimated the number of cars when in a negative emotional state. These findings suggest that emotions influence numerical estimation, that effects of emotion in estimation interact with stimuli characteristics. They have important implications for understanding the role of emotions on estimation skills, and more generally, on how emotions influence cognition.Keywords: drone operators, emotion, numerical estimation, arithmetic
Procedia PDF Downloads 116