Search results for: nonlinear static analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29517

Search results for: nonlinear static analysis

27297 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections

Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor

Abstract:

Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.

Keywords: climate change, ecosystem modeling, marine protected areas, management

Procedia PDF Downloads 108
27296 Demystifying the Power of Machine Learning in Detecting Alzheimer’s Disease through Speech Analysis: A Systematic Review

Authors: Dalia Elleuch

Abstract:

The use of machine learning in the field of healthcare has gained tremendous momentum in recent years, with the potential to revolutionize the way diseases are diagnosed and treated. In particular, the field of machine learning in the detection of degenerative diseases through language performance analysis has shown great promise and has been the subject of a growing body of research. As Alzheimer’s Disease (AD) is among the most prevalent neurodegenerative diseases, this review is designed to investigate the effectiveness of machine learning through speech analysis techniques to analyze linguistic data from patients with AD, with the goal of detecting early signs of the disease. A corpus comprising seven comparative studies with a total number of patients (n=1054) was analyzed. The finding reveals a high degree of accuracy, ranging between 83.32% and 97.18%. This systematic review sheds light on the potential of speech analysis and machine learning in the detection of AD, highlighting the need for further development and integration into clinical practice for improved patient outcomes.

Keywords: machine learning, detection, neurodegenerative diseases, Alzheimer’s disease, speech analysis

Procedia PDF Downloads 8
27295 The Generalized Lemaitre-Tolman-Bondi Solutions in Modeling the Cosmological Black Holes

Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik

Abstract:

In spite of the numerous attempts to close the discussion about the influence of cosmological expansion on local gravitationally bounded systems, this question arises in literature again and again and remains still far from its final resolution. Here one of the main problems is the problem of obtaining a physically adequate model of strongly gravitating object immersed in non-static cosmological background. Such objects are usually called ‘cosmological’ black holes and are of great interest in wide set of cosmological and astrophysical areas. In this work the set of new exact solutions of the Einstein equations is derived for the flat space that generalizes the known Lemaitre-Tolman-Bondi solution for the case of nonzero pressure. The solutions obtained are pretending to describe the black hole immersed in nonstatic cosmological background and give a possibility to investigate the hot problems concerning the effects of the cosmological expansion in gravitationally bounded systems, the structure formation in the early universe, black hole thermodynamics and other related problems. It is shown that each of the solutions obtained contains either the Reissner-Nordstrom or the Schwarzschild black hole in the central region of the space. It is demonstrated that the approach of the mass function use in solving of the Einstein equations allows clear physical interpretation of the resulting solutions, that is of much benefit to any their concrete application.

Keywords: exact solutions of the Einstein equations, cosmological black holes, generalized Lemaitre-Tolman-Bondi solutions, nonzero pressure

Procedia PDF Downloads 426
27294 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: LQR controller, optimal control, particle swarm optimization (PSO), two rotor aero-dynamical system (TRAS)

Procedia PDF Downloads 328
27293 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm

Authors: Rashid Ahmed , John N. Avaritsiotis

Abstract:

Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.

Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis

Procedia PDF Downloads 455
27292 An Analysis of the Need of Training for Indian Textile Manufacturing Sector

Authors: Shipra Sharma, Jagat Jerath

Abstract:

Human resource training is an essential element of talent management in the current era of global competitiveness and dynamic trade in the manufacturing industry. Globally, India is behind only China as the largest textile manufacturer. The major challenges faced by the Indian textile manufacturing Industry are low technology levels, growing skill gaps, unorganized structure, lower efficiencies, etc. indicating the need for constant talent up-gradation. Assessment of training needs from a strategic perspective is an essential step for the formulation of effective training. The paper established the significance of training in the Indian textile industry and to determine the training needs on various parameters as presented. 40 HR personnel/s working in the textile and apparel companies based in the industrial region of Punjab, India, were the respondents for the study. The research tool used in this case was a structured questionnaire as per five-point Likert scale. Statistical analysis through descriptive statistics and chi-square test indicated the increased need for training whenever there were technical changes in the organizations. As per the data presented in this study, most of the HR personnel/s agreed that the variables associated with organizational analysis, task analysis, and individual analysis have a statistically significant role to play in determining the need for training in an organization.

Keywords: Indian textile manufacturing industry, significance of training, training needs analysis, parameters for training needs assessment

Procedia PDF Downloads 170
27291 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis

Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim

Abstract:

This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.

Keywords: actuator, piezoelectric, performance, unimorph

Procedia PDF Downloads 466
27290 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases

Authors: Suglo Tohari Luri

Abstract:

Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.

Keywords: data, engine, intelligence, customer, neo4j, database

Procedia PDF Downloads 196
27289 The Pressure Distribution on the Rectangular and Trapezoidal Storage Tanks' Perimeters Due to Liquid Sloshing Impact

Authors: Hassan Saghi, Gholam Reza Askarzadeh Garmroud, Seyyed Ali Reza Emamian

Abstract:

Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank’s perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks’ perimeters due to liquid sloshing impact. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions are solved using coupled BEM-FEM. The code performance for sloshing modeling is validated against available data. Finally, this code is used for partially filled rectangular and trapezoidal storage tanks and the pressure distribution on the tanks’ perimeters due to liquid sloshing impact is estimated. The results show that the maximum pressure on the perimeter of the rectangular and trapezoidal storage tanks was decreased along the sidewalls from the top to the bottom. Furthermore, the period of the pressure distribution is different for different points on the tank’s perimeter and it is bigger in the trapezoidal tanks compared to the rectangular ones.

Keywords: pressure distribution, liquid sloshing impact, sway motion, trapezoidal storage tank, coupled BEM-FEM

Procedia PDF Downloads 555
27288 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach

Authors: Assem I. El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 550
27287 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models

Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh

Abstract:

In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.

Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals

Procedia PDF Downloads 304
27286 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 391
27285 High-Performance Liquid Chromatographic Method with Diode Array Detection (HPLC-DAD) Analysis of Naproxen and Omeprazole Active Isomers

Authors: Marwa Ragab, Eman El-Kimary

Abstract:

Chiral separation and analysis of omeprazole and naproxen enantiomers in tablets were achieved using high-performance liquid chromatographic method with diode array detection (HPLC-DAD). Kromasil Cellucoat chiral column was used as a stationary phase for separation and the eluting solvent consisted of hexane, isopropanol and trifluoroacetic acid in a ratio of: 90, 9.9 and 0.1, respectively. The chromatographic system was suitable for the enantiomeric separation and analysis of active isomers of the drugs. Resolution values of 2.17 and 3.84 were obtained after optimization of the chromatographic conditions for omeprazole and naproxen isomers, respectively. The determination of S-isomers of each drug in their dosage form was fully validated.

Keywords: chiral analysis, esomeprazole, S-Naproxen, HPLC-DAD

Procedia PDF Downloads 303
27284 Experimental Investigations on Group Interaction Effects of Laterally Loaded Piles in Submerged Sand

Authors: Jasaswini Mishra, Ashim K. Dey

Abstract:

This paper aims to investigate the group interaction effects of laterally loaded pile groups driven into a medium dense sand layer in submerged state. Static lateral load tests were carried out on pile groups consisting of varying number of piles and at different spacings. The test setup consists of a load cell (500 kg capacity) and an LVDT (50 mm) to measure the load and pile head deflection respectively. The piles were extensively instrumented with strain gauges so as to study the variation of soil resistance within the group. The bending moments at various depths were calculated from strain gauge data and these curves were fitted using a higher order polynomial in order to get 'p-y' curves. A comparative study between a single pile and a pile under a group has also been done for a better understanding of the group effect. It is observed that average load per pile is significantly reduced relative to single pile and it decreases with increase in the number of piles in a pile group. The loss of efficiency of the piles in the group, commonly referred to as "shadowing" effect, has been expressed by the use of a 'p-multiplier'. Leading rows carries greater amount of load when compared with the trailing rows. The variations of bending moment with depth for different rows of pile within a group and different spacing have been analyzed and compared with that of a single pile. p multipliers within different rows in a pile group were evaluated from the experimental study.

Keywords: group action, laterally loaded piles, p-multiplier, strain gauge

Procedia PDF Downloads 243
27283 Propagation of DEM Varying Accuracy into Terrain-Based Analysis

Authors: Wassim Katerji, Mercedes Farjas, Carmen Morillo

Abstract:

Terrain-Based Analysis results in derived products from an input DEM and these products are needed to perform various analyses. To efficiently use these products in decision-making, their accuracies must be estimated systematically. This paper proposes a procedure to assess the accuracy of these derived products, by calculating the accuracy of the slope dataset and its significance, taking as an input the accuracy of the DEM. Based on the output of previously published research on modeling the relative accuracy of a DEM, specifically ASTER and SRTM DEMs with Lebanon coverage as the area of study, analysis have showed that ASTER has a low significance in the majority of the area where only 2% of the modeled terrain has 50% or more significance. On the other hand, SRTM showed a better significance, where 37% of the modeled terrain has 50% or more significance. Statistical analysis deduced that the accuracy of the slope dataset, calculated on a cell-by-cell basis, is highly correlated to the accuracy of the input DEM. However, this correlation becomes lower between the slope accuracy and the slope significance, whereas it becomes much higher between the modeled slope and the slope significance.

Keywords: terrain-based analysis, slope, accuracy assessment, Digital Elevation Model (DEM)

Procedia PDF Downloads 450
27282 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 50
27281 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics

Procedia PDF Downloads 309
27280 Examples of RC Design with Eurocode2

Authors: Carla Ferreira, Helena Barros

Abstract:

The paper termed “Design of reinforced concrete with Eurocode 2” presents the theory regarding the design of reinforced concrete sections and the development of the tables and abacuses to verify the concrete section to the ultimate limit and service limit states. This paper is a complement of it, showing how to use the previous tools. Different numerical results are shown, proving the capability of the methodology. When a section of a beam is already chosen, the computer program presents the reinforcing steel in many locations along the structure, and it is the engineer´s task to choose the layout available for the construction, considering the maximum regular kind of reinforcing bars. There are many computer programs available for this task, but the interest of the present kind of tools is the fast and easy way of making the design and choose the optimal solution. Another application of these design tools is in the definition of the section dimensions, in a way that when stresses are evaluated, the final design is acceptable. In the design offices, these are considered by the engineers a very quick and useful way of designing reinforced concrete sections, employing variable strength concrete and higher steel classes. Examples of nonlinear analyses and redistribution of the bending moment will be considered, according to the Eurocode 2 recommendations, for sections under bending moment and axial forces. Examples of the evaluation of the service limit state will be presented.

Keywords: design examples, eurocode 2, reinforced concrete, section design

Procedia PDF Downloads 76
27279 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 154
27278 Theoretical Study of Electronic Structure of Erbium (Er), Fermium (Fm), and Nobelium (No)

Authors: Saleh O. Allehabi, V. A. Dzubaa, V. V. Flambaum, Jiguang Li, A. V. Afanasjev, S. E. Agbemava

Abstract:

Recently developed versions of the configuration method for open shells, configuration interaction with perturbation theory (CIPT), and configuration interaction with many-body perturbation theory (CI+MBPT) techniques are used to study the electronic structure of Er, Fm, and No atoms. Excitation energies of odd states connected to the even ground state by electric dipole transitions, the corresponding transition rates, isotope shift, hyperfine structure, ionization potentials, and static scalar polarizabilities are calculated. The way of extracting parameters of nuclear charge distribution beyond nuclear root mean square (RMS) radius, e.g., a parameter of quadrupole deformation β, is demonstrated. In nuclei with spin > 1/2, parameter β is extracted from the quadrupole hyperfine structure. With zero nuclear spin or spin 1/2, it is impossible since quadrupole zero, so a different method was developed. The measurements of at least two atomic transitions are needed to disentangle the contributions of the changes in deformation and nuclear RMS radius into field isotopic shift. This is important for testing nuclear theory and for searching for the hypothetical island of stability. Fm and No are heavy elements approaching the superheavy region, for which the experimental data are very poor, only seven lines for the Fm element and one line for the No element. Since Er and Fm have similar electronic structures, calculations for Er serve as a guide to the accuracy of the calculations. Twenty-eight new levels of Fm atom are reported.

Keywords: atomic spectra, electronic transitions, isotope effect, electron correlation calculations for atoms

Procedia PDF Downloads 158
27277 Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, electromagnetic radiation, magnetized plasma, ordinary and extraordinary modes

Procedia PDF Downloads 288
27276 Gait Analysis in Total Knee Arthroplasty

Authors: Neeraj Vij, Christian Leber, Kenneth Schmidt

Abstract:

Introduction: Total knee arthroplasty is a common procedure. It is well known that the biomechanics of the knee do not fully return to their normal state. Motion analysis has been used to study the biomechanics of the knee after total knee arthroplasty. The purpose of this scoping review is to summarize the current use of gait analysis in total knee arthroplasty and to identify the preoperative motion analysis parameters for which a systematic review aimed at determining the reliability and validity may be warranted. Materials and Methods: This IRB-exempt scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist strictly. Five search engines were searched for a total of 279 articles. Articles underwent a title and abstract screening process followed by full-text screening. Included articles were placed in the following sections: the role of gait analysis as a research tool for operative decisions, other research applications for motion analysis in total knee arthroplasty, gait analysis as a tool in predicting radiologic outcomes, gait analysis as a tool in predicting clinical outcomes. Results: Eleven articles studied gait analysis as a research tool in studying operative decisions. Motion analysis is currently used to study surgical approaches, surgical techniques, and implant choice. Five articles studied other research applications for motion analysis in total knee arthroplasty. Other research applications for motion analysis currently include studying the role of the unicompartmental knee arthroplasty and novel physical therapy protocols aimed at optimizing post-operative care. Two articles studied motion analysis as a tool for predicting radiographic outcomes. Preoperative gait analysis has identified parameters than can predict postoperative tibial component migration. 15 articles studied motion analysis in conjunction with clinical scores. Conclusions: There is a broad range of applications within the research domain of total knee arthroplasty. The potential application is likely larger. However, the current literature is limited by vague definitions of ‘gait analysis’ or ‘motion analysis’ and a limited number of articles with preoperative and postoperative functional and clinical measures. Knee adduction moment, knee adduction impulse, total knee range of motion, varus angle, cadence, stride length, and velocity have the potential for integration into composite clinical scores. A systematic review aimed at determining the validity, reliability, sensitivities, and specificities of these variables is warranted.

Keywords: motion analysis, joint replacement, patient-reported outcomes, knee surgery

Procedia PDF Downloads 97
27275 An Efficient Traceability Mechanism in the Audited Cloud Data Storage

Authors: Ramya P, Lino Abraham Varghese, S. Bose

Abstract:

By cloud storage services, the data can be stored in the cloud, and can be shared across multiple users. Due to the unexpected hardware/software failures and human errors, which make the data stored in the cloud be lost or corrupted easily it affected the integrity of data in cloud. Some mechanisms have been designed to allow both data owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the cloud server. But public auditing on the integrity of shared data with the existing mechanisms will unavoidably reveal confidential information such as identity of the person, to public verifiers. Here a privacy-preserving mechanism is proposed to support public auditing on shared data stored in the cloud. It uses group signatures to compute verification metadata needed to audit the correctness of shared data. The identity of the signer on each block in shared data is kept confidential from public verifiers, who are easily verifying shared data integrity without retrieving the entire file. But on demand, the signer of the each block is reveal to the owner alone. Group private key is generated once by the owner in the static group, where as in the dynamic group, the group private key is change when the users revoke from the group. When the users leave from the group the already signed blocks are resigned by cloud service provider instead of owner is efficiently handled by efficient proxy re-signature scheme.

Keywords: data integrity, dynamic group, group signature, public auditing

Procedia PDF Downloads 395
27274 Research and Development of Methodology, Tools, Techniques and Methods to Analyze and Design Interface, Media, Pedagogy for Educational Topics to be Delivered via Mobile Technology

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and they are increasingly used as enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material's user interfaces for mobile devices is beset by many unresolved research problems such as those arising from constraints associated with mobile devices or from issues linked to effective learning. The proposed research aims to produce: (i) a method framework for the design and evaluation of educational material’s interfaces to be delivered on mobile devices, in multimedia form based on Human Computer Interaction strategies; and (ii) a software tool implemented as a fast-track alternative to use the method framework in full. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the method framework. The method framework is a framework to enable an educational designer to effectively and efficiently create educational multimedia interfaces to be used on mobile devices by following a particular methodology that contains practical and usable tools and techniques. It is a method framework that accepts any educational material in its final lesson plan and deals with this plan as a static element, it will not suggest any changes in any information given in the lesson plan but it will help the instructor to design his final lesson plan in a multimedia format to be presented in mobile devices.

Keywords: mobile learning, M-Learn, HCI, educational multimedia, interface design

Procedia PDF Downloads 378
27273 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 83
27272 Color-Based Emotion Regulation Model: An Affective E-Learning Environment

Authors: Sabahat Nadeem, Farman Ali Khan

Abstract:

Emotions are considered as a vital factor affecting the process of information handling, level of attention, memory capacity and decision making. Latest e-Learning systems are therefore taking into consideration the effective state of learners to make the learning process more effective and enjoyable. One such use of user’s affective information is in the systems that tend to regulate users’ emotions to a state optimally desirable for learning. So for, this objective has been tried to be achieved with the help of teaching strategies, background music, guided imagery, video clips and odors. Nevertheless, we know that colors can affect human emotions. Relationship between color and emotions has a strong influence on how we perceive our environment. Similarly, the colors of the interface can also affect the user positively as well as negatively. This affective behavior of color and its use as emotion regulation agent is not yet exploited. Therefore, this research proposes a Color-based Emotion Regulation Model (CERM), a new framework that can automatically adapt its colors according to user’s emotional state and her personality type and can help in producing a desirable emotional effect, aiming at providing an unobtrusive emotional support to the users of e-learning environment. The evaluation of CERM is carried out by comparing it with classical non-adaptive, static colored learning management system. Results indicate that colors of the interface, when carefully selected has significant positive impact on learner’s emotions.

Keywords: effective learning, e-learning, emotion regulation, emotional design

Procedia PDF Downloads 308
27271 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis

Procedia PDF Downloads 243
27270 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures

Authors: P. G. Siddheshwar, B. N. Veena

Abstract:

Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.

Keywords: enclosures, free-free, rigid-rigid, rigid-free boundaries, Ginzburg-Landau model, Lorenz model

Procedia PDF Downloads 258
27269 Spectral Analysis Applied to Variables of Oil Wells Profiling

Authors: Suzana Leitão Russo, Mayara Laysa de Oliveira Silva, José Augusto Andrade Filho, Vitor Hugo Simon

Abstract:

Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals.

Keywords: oil, well, spectral analysis, oil extraction

Procedia PDF Downloads 537
27268 Multivalued Behavior for a Two-Level System Using Homotopy Analysis Method

Authors: Angelo I. Aquino, Luis Ma. T. Bo-ot

Abstract:

We use the Homotopy Analysis Method (HAM) to solve the system of equations modeling the two-level system and extract results which will pinpoint to turbulent behavior. We look at multi-valued solutions as indicative of turbulence or turbulent-like behavior. We take di erent speci c cases which result in multi-valued velocities. The solutions are in series form and application of HAM ensures convergence in some region.

Keywords: multivalued solutions, homotopy analysis method, two-level system, equation

Procedia PDF Downloads 596